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Abstract

A stochastic model for a general system of first-order reactions in which each reaction may
be either a conversion reaction or a catalytic reaction is derived. The governing master equation
is formulated in a manner that explicitly separates the effects of network topology from other
aspects, and the evolution equations for the first two moments are derived. We find the surprising,
and apparently unknown, result that the time evolution of the second moments can be represented
explicitly in terms of the eigenvalues and projections of the matrix that governs the evolution of the
means. The model is used to analyze the effects of network topology and the reaction type on the
moments of the probability distribution. In particular, it is shown that for an open system of first-
order conversion reactions, the distribution of all the system components is a Poisson distribution
at steady state. Two different measures of the noise have been used previously, and it is shown that
different qualitative and quantitative conclusions can result, depending on which measure is used.
The effect of catalytic reactions on the variance of the system components is also analyzed, and the
master equation for a coupled system of first-order reactions and diffusion is derived.
© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the time-dependent behavior of a system of interacting species is
necessary for analyzing numerous problems, including the dynamics of chemical reactions,
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gene expression profiles, signal transduction, and other biochemical processes. Many of
these systems are characterized by low numbers of interacting species: for example, gene
transcription involves interactions between 1-3 promoter elements, 10-20 polymerase
holoenzyme units, 10-20 molecules of repressor proteins, 3000 RNA polymerase
molecules, and ca. 1000 ribosomésithan, 200). Since interactions at the molecular
level are inherently stochastic there is an inherent “irreproducibility” in these dynamics,
which has been demonstrated experimentally for single cell gene expression events
(Ozbudak et al., 2005 pudich and Koshland, 197B6evsky and Singer, 2003A major
unsolved problem is to understand how the interplay between the nature of the individual
steps and the connectivity or topology of the entire network affects the dynamics of the
system, irrespective of whether a deterministic or a stochastic description is the most
appropriate. In this paper we formulate and analyze the master equation that governs
the time evolution of the number density of species that participate in a network of
first-order reactions. The network may comprise both conversion reactions of the form
A — B, in which one component is converted to another, and catalytic reactions of

the form¢ B A, in which the rate of formation of a particular component depends
on the concentration of the other (the catalyst), but the concentration of the catalyst is
unchanged by the reaction. This is the first step in the analysis of higher-order reaction
networks.

There are numerous examples of first-order reaction networks that involve a small
number of molecules, for which this analysis is directly applicable. Transcription
and translation have been modeled as first-order catalytic reacfidratdi and van
Oudenaarden, 2001The evolution of the surface morphology during epitaxial growth
involves the nucleation and growth of atomic islands, and these processes may be described
by first-order adsorption and desorption reactions coupled with diffusion along the surface.
Proteins exist in various conformational states, and the reversible transitions between
states may be described as a first-order conversion procegesg®r(et al., 2008
Fluctuating protein conformations are important in the movement of small molecules
through proteins such as myoglobin; hence it is important to understand the distribution
of these statesldrio et al.,, 1991 Austin et al.,, 197h RNA also exists in several
conformations, and the transitions between various folding states follow first-order kinetics
(Bokinsky et al., 2008

One of the earliest investigations of stochastic effects in reactionDeliyuck (1940)
who studied the distribution of the number of molecules for a single reacting species
in an auto-catalytic one-component system, and derived an expression for the variance
as a function of the mean and initial values of the mean and vari@iegert (1949)
derived the probability distribution for the momentum of a gas as a function of time,
and formulated the first stochastic model of a system of first-order conversion reactions,
using a matrix formulation to derive the master equation for first and second-order
reaction networks. He also outlined the generating function approach for characterizing
the distribution of the network components. The system he studied is equivalent to a
closed system (i.e., the total mass is conserved) of conversion reactions. He proved that
one eigenvalue of the matrix of reaction rate constants is zero and the rest are real
and negative. Unfortunately, this important work was largely overlooked in the field of
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stochastic chemical reaction kinetics for more than a decade, Kinéiber and Gans
(1960)re-derived these results formulating the problem as a chemical reaction network
problem.

Klein (1956)used Siegert's results to analyze the Ehrenfest Urn problem, in which
balls are transferred between two urns with given probabilities. Klein treated the number
of balls in an urn as a measure of the occupancy of an energy state, and calculated the
probability of the number of balls in an urn as a function of the transition probability
and the initial distribution. This can be interpreted as a closed system with one first-order
reversible reaction, with the urns characterizing the reactant and product of the reversible
reaction. He showed that the stationary distribution is independent of the initial distribution,
but assumed that transitions occur at fixed intervals of tikendall (1948)formulated
a master equation for a birth—death process starting with one ancestor and computed
the extinction time of the population. He also discussed the case of time-dependent rate
constants. Birth processes may be modeled as auto-catalytic production reactions and death
as a first-order degradation reacti@artholomay (1958)vas apparently the first to derive
the master equation for a unimolecular reaction allowing steps at random times, and he
used the generating function approach to calculate the mean and standard deviation of the
number of reactant molecules. He also showed that the stochastic process is “consistent
in the mean” with the deterministic description, and later showed how to calculate the
observed first-order rate constaBaftholomay, 1959

At about the same timiontroll and Shuler (1958nhodeled chemical decomposition as
a random walk between reflecting and absorbing barriersKeamq1958)computed mean
first passage times for general first-order stochastic procesiseler (1960pnalyzed the
relaxation kinetics of a multi-state system, which is equivalent to a closed first-order system
of reversible conversion reactions, and pointed out that there was no single characteristic
“relaxation time”. He re-derived the property that such a system cannot exhibit any form
of periodic behavior, and showed that the relaxation of any one of the moments of the
distribution does not convey any information about the relaxation of the distribution.

A systematic analysis of a closed system of first-order conversion reactions was done
by Krieger and Gans (1960\ho showed that a multinomial distribution characterizes the
temporal evolution of the system. This generalized results of Montroll and Shuler, who had
proved that the end states were characterized by a multinomial distribution. Gans extended
this and previous analyses of closed systems to an open system of first-order conversion
reactions Gans, 196] FollowingKrieger and Gans (1960he derived a condition for the
eigenvalues associated with the evolution of the mean to be negativec — Zj aij ),
but did not analyze the evolution of the higher moments or their relation to the mean.
McQuarrie (1963)derived solutions for the mean and variance of closed systems with
reactions of the type a8 — B, A = B, andA — B, A — C. He also discussed the
use of a cumulant generating function as a method of generating lower-order moments.
Gani (1965¥ormulated a birth—death model for bacteriophage kinetics that was similar to
an open system model for one speci&®drickson (1966¢omputed the stochastic mean
and variance for the concentrations in a closed cyclic ternary system, and again showed
that these moments do not oscillate in tindarvey and Staff (1966)resented the first
derivation for the time-dependent mean and variance of all the species present in a closed
system with first-order conversion reactions. They derived an expression for the moment
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generating function for a case when only one species is present initially, and showed that
the first moment is the same as the solution of the corresponding deterministic system, but
did not analyze the evolution of the variance.

Other processes such as the waiting times in a queue have also been analyzed, and some
of these results can be applied to reaction netwdfledly (1979) considered reversible
gueuing processes in which “customers” enter a queue either with a defined distribution
from a source or defined transition probabilities from other queues. Every queue has a finite
number of “servers”, with a characteristic waiting time associated with the service. The
entry into a queue from another queue can be regarded as a conversion process, entry from
the source is equivalent to production from the source, and service can be thought of as a
degradation process that removes customers from the queue. A pure conversion process can
be considered as an infinite server queue @eendiy, but catalytic reactions have no
apparent analog in queuing theory. Kelly considered several aspects of the process, such
as whether it was open or closed, and the nature of the connections between the queues
(linear vs. looped), and derived the important result that the equilibrium distribution for a
closed system tends to the equilibrium distribution for an open system when the number of
individuals is large. We show later that this result is also true for open and closed systems
where all the reactions are first-order conversion reactions. For a particular class of open
migration processes in which the transition probabilities between queues (or colonies) is
proportional to the number of individuals in the colony, Kelly proved that the number of
individuals in each queue has a Poisson distribution, assuming that the inflow of individuals
to queues (or colonies) from outside the system (source) are Poisson processes. If one
considers each colony to be a distinct species, the open migration process is equivalent
to an open conversion reaction system, and the proof for the stationary distribution of the
number of individuals in each colony statedislly (1979)may be considered as another
proof for the distribution of the number of each species in an open conversion network
that we derive later. Branching Markov processes also give rise to problems with a similar
mathematical structure to that in kinetiddg(ris, 1963 Athreya and Ney, 1972Athreya
and Ney (1972fonsidered continuous-time, multi-type branching processes initiated by
one patrticle of each type and derived first and second moments of the distribution of the
number of particles of each type. Catalytic reactions can be interpreted as the death of a
particle with two offspring, one identical to the original and the other possibly different,
but a systematic analysis of the effect of catalytic reactions on the resulting probability
distribution has not been reported earlier to our knowledge.

Thattai and van Oudenaarden (20@igsented the first analysis of a system of first-
order catalytic reactions. They formulated a procedure for deriving the master equation for
such systems, similar to the general procedure giv&uirdiner (1983)They incorporated
a negative feedback regulation of some reactions (production from source), and derived
the steady-state means and covariances for a system of catalytic transformations with
one source term, and first-order degradation of all the species. Red&mtiyn (2003)
derived the probability of the number of forward and reverse steps in a reversible first-
order conversion reaction in which the transition probabilities are time-dependent.

A major objective of many of the analyses treating biological systems is prediction
of the stochastic variations or noise of the concentrations. Two measures of the noise
have been used in the past. Until recently the standard measure was the coefficient of
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variation (CV), defined as the standard deviation divided by the mBatbfuck, 1940
Singer, 1953Kepler and Elston, 20Q1or its square. The CV is used as a measure of noise
in McQuarrie et al. (1964 Darvey et al. (1966) aurenzi (2000)Elowitz et al. (2002and
Swain et al. (2002)while the Fano factof, defined as the variance divided by the mean,
was introduced byrhattai and van Oudenaarden (2004nd used irBlake et al. (2003)
andOzbudak et al. (2002)t has been shown that the use of different measures of noise
may lead to different conclusions concerning the importance of noise in the underlying
process $wain et al., 200R

Our objectives here are (i) to introduce a derivation of the master equation that clarifies
the separate roles of reaction rates and network topology in the master equation, (ii)
to develop a unified treatment of first-order networks, including the evolution of both
the mean and the variance of any species and (iii) to understand the effect of network
topology on the stochastic fluctuations in specified components. We compare the noise in
the amount of a species as measured by the Fano factor or the coefficient of variation
for both conversion and catalytic reactions, as well as for species in open and closed
systems. We also demonstrate through simple examples the utility of this framework in
the analysis of the effect of reaction network topology on the variation of the number
of molecules of each network component. All of the preceding analyses can be treated
as special cases of the general framework that we develop here. No previous analysis
of first-order reaction systems has to our knowledge considered a system consisting of
both catalytic and conversion reactions, nor has a systematic comparison of the stochastic
behavior of conversion and catalytic systems been made.

2. Formulation of the master equation

We first derive the master equation for a general system of reactions to provide a
framework for the analysis of reactions of arbitrary order. We then focus on first-order
reactions and specialize the general result for a very large class of first-order processes.

2.1. The master equation for a general system of reactions

We begin with some background on a general deterministic description of reacting
systems, and then derive the master equation for an arbitrary network of reacting species.
The abstract formulation is presented in brief here and follows that given elsewhere
(Othmer, 19791981).

Suppose that the reacting mixture contains the\dedf s chemical species; that par-
ticipate in a total of reactions. Levjj be the stoichiometric coefficient of thth species
in the jth reaction. Theyjj are non-negative integers that represent the normalized molar
proportions of the species in a reaction. Each reaction is written in the form

reac prod g
reac 4. __ pro . i —
DovierM = M j=1,....r, (1)
i i
where the sums are over reactants and products, respectively jthtimeaction. In this
formulation, the forward and reverse reaction of a reversible pair are considered separately
as two irreversible reactions.
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For each reaction, once the reactants and products are specified, the significant entities
so far as the network topology is concerned are not the species themselves, but rather
the linear combinations of species that appear as reactants or products in the various
elementary steps. Followirigorn and Jackson (1972hese linear combinations of species
will be called complexes. A species may also be a complex (as is the case for first-order
reactions). We assume that changes in temperature, pressure and Voafrihee mixture
during reaction are negligible. Thus the state of the system is specified by the concentration
vectorc = (c1,...,Cs)", wherec is the non-negative concentration of speciet
measured in molg#ter.

Let M be the set of linear combinations with integral coefficients of the species, and
letC = {C(1),...,C(p)} be a set of complexes. #eaction networkconsists of the triple
{M, M, C}, together with a stoichiometric functioh : M — Canda binary relation
R c C x C. The functiond, which identifies a linear combination of species as a complex
is onto, and the relatiolR has the properties ({C(i), C(j)) € R if and only if there
exists one and only one reaction of the fo@iti) — C(j), (ii) for everyi thereis aj # i
such that(C(i), C(j)) € R, (iii) (C(i),C(i)) € R. Thus every complex is related to at
least one other complex and the trivial reactioi) — C(i) that produces no change
is not admitted. ThereforR is never reflexive and in general it is neither symmetric nor
transitive.

The relation orC gives rise to a directed graghin the following way. Each complex
is identified with a verteX in G and a directed edgg, is introduced intog for each
reaction. Each edge carries a non-negative wefgi{t) given by the intrinsic rate of the
corresponding reactiod. provides a concise representation of the reaction network.

The topology o is in turn represented in its vertex—edge incidence mé&trixhich is
defined as follows.

+1 if E, is incident atv; and is directed toward it
Sr=1-1 if E, is incident atv; and is directed away from it (2)
0 otherwise

If there arer reactions orC, then& has p rows andr columns and every column has
exactly one+1 and one—1. The rateR,(C) of an elementary reactiof(j) — C(k)

is generally not a function o (j), but of the concentration or activity of the individual
species in the complex. Once the complexes and reactions are fixed, the stoichiometry of
the complexes is specified unambiguously, and we ldenote thes x p matrix whose

jth column encodes the stoichiometric amounts of the species ifthheomplex. Then

the temporal evolution of the composition of a reacting mixture is governed by

3—: = vER(C), 3)

where the columns of are given by the columns of€2andvP™d, and the initial condition

is ¢(0) = cp. It follows from (2) that the columns of the producE are the stoichiometric
vectors of reactions written according to the standard convention. When the reactions are
first-order this deterministic equation also governs the evolution of the mean in the Markov
process description discussed later.
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A special butimportant class of rate functions is that in which the rate dttheaction
can be written as

Re(c) = keRj (c) 4)

for every reaction that involves thgh complex as the reactant. This includes ideal mass
action rate laws, in which the rate is proportional to the product of the concentrations
of the species in the reactant complex, each concentration raised to a power equal to the
stoichiometric coefficient of the corresponding species in the complex. In that case

S
Rj = H(Ci)vij . %)
i=1
For mass-action kineticgl) implies that

R(c) = KR(C) (6)

whereK is anr x p matrix withk; > 0 if and only if the/th edge leaves thigth vertex,
andk,j = 0 otherwise. The topology of the underlying grapkenters intoK as follows.
Define the exit matriX, of G by replacing all 1's ir€’ by zeros, and changing the sign of

the resulting matrix. LeK be ther x r diagonal matrix with thé’s, ¢ =1, ..., r, along
the diagonal. Then it is easy to see tKat= KSJ and therefore

dc R

= VEK R(C) = vEKET R(0). 7)

It follows from the definitions that (i) thép, q)th entry, p # q, of aigg is nonzero
(and positive) if and only if there is a directed edgg p) € G, (ii) each diagonal entry
of SKSJ is minus the sum of thk’s for all edges that leave thgh vertex, and (iii) the
columns of€ Kg all sum to zero, and so the rank®K Eg is < p—1. When all complexes
are species and all reactions are first-ordes, | for a closed system and= [l | O] for an
open system, where | is tlsex s identity matrix and is the zero vector, and the right-hand
side reduces to the usual forkc for a suitably-defined matrik . In the following section
we will treat the stochastic analysis of first-order systems in detail.

As it stands, ) includes all reacting species, but those whose concentration is constant
on the time scale of interest can be deleted from each of the complexes in which it appears
and its concentration or mole fraction can be absorbed into the rate constant of that reaction
in which it participates as reactahtAs a result of these deletions, it will appear that
reactions which involve constant species do not necessarily conserve mass. Furthermore,
some complexes may not comprise any time-dependent species; these will be called zero
or null complexes. Each null complex gives rise to a column of zerasand the rate
of any reaction in which the reactant complex is a null complex is usually constant. For
instance, any transport reaction of the fomt® — M; introduces a null complex and
the corresponding flux of; represents a constant input to the reaction network, provided
that the rate of the transport step does not depend on the concentration of a time-dependent
species. Of course, a constant species that appears in a complex which also contains a

3 Hereafters will denote the number of species whose concentration may be time-dependent.
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variable species likewise represents an input to the network, and to distinguish these from
inputs due to null complexes, the former are calleglicit inputsand the latter are called
explicit inputs

An alternate description of the deterministic dynamics is obtained by introducing an
extent for each reaction and expressing composition changes in terms of extents. It follows
from (3) that the composition changes due to reaction lie in a cosej bfthe range ob &,
and this coset is called the reaction simpl&th{mer, 19791981). Therefore, by choosing
coordinates in the simplex, the composition changes can be expressed in terms of an extent
for each reaction as follows

C=Co+ vEE. (8)

If the reactions are all independent, i.e. if the rank&fisr, it follows from (3) and @)
that

d N
T =R+ vep), ©)
but in general we can only conclude that
d R
d—i’: = R(Co+ vEE) + Y _ Mk, (10)
k

where{N} is a basis for the null space of. The yk can be chosen so as to remove all
dependent steps, in particular, those that arise from cycles in the graph.

We can also describe the evolution in terms of the number of molecules present for
each species. Lat = (n1,ny,...,ns) denote the discrete composition vector whose
ith componeni; is the number of molecules of speci®4; presentin the volum¥. This
is the discrete version of the composition veatpand they are related by = AMaVe,
where MVa is Avogadro’s number. FronB) we obtain the deterministic evolution for
as

dn -
& = vER(N) (11)

whereR(n) = NaVR(n/NaV). In particular, for mass-action kinetics

- vij
Re(N) = NaVKR | (n/NAV) = NAVK‘“(/\/ v)

= DrJYmW—mHmu (12)
(NaV) T

The number of molecules can be expressed in terms of the integer extents of each
reaction as

n=ng+ v&n, (13)

and it follows from (L1) that

dn
i = R(no + vEn) + Z MMk (14)
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The description in terms of the number of molecules present assumes that there are
sufficient numbers present so that we can assume they vary continuously in time, but the
same assumption is needed féy. (

2.2. The stochastic description

The first level of stochastic description is to consider an ensemble of deterministic
systems that differ in the initial condition. L&¥(c, t) be the probability that the state
of the system ig; then the evolution oP is governed by

P D A

— — [ (WER(c)iP) =0 15

TR (weR©)P) (15)
subject to the initial conditionP(c,0) = Py. The characteristic equations for this

hyperbolic equation are precisely the evolution equations gives).at (

At the next level of description the numbers of the individual components are followed
in time and the reactions are modeled as a continuous-time Markov jump proceldgth et
be a random variable that represents the number of molecules of spéciatstimet, and
let N denote the vector df;s. Further, lefP(n, t) be the joint probability thaN(t) = n,
i.e., N1 = n1, N2 = ny, ..., Ns = ng. Clearly the state of the system at any time is now
a point in Z3, whereZj is the set of non-negative integers. Formally the master equation
that governs the evolution & is

d—dtP(n,t)z > Rm.n)-Pmt)y— > RM,m)-P(n,1) (16)
meS(n) me7 (n)

whereR(m, n) is the probability per unit time of a transition from stateto staten,
R(n, m) is the probability per unit time of a transition from statgo statem, S(n) is
the set of all states that can terminatenafter one reaction step, arfd(n) is the set of
all states reachable fromin one step of the feasible reactions. The notation is meant to
suggest the ‘source’ and ‘target’ statemabne could also calb(n) the predecessors of
staten and 7 (n) the successors of state The predecessor states must be non-negative
for production reactions and positive for conversion, degradation and catalytic reactions.
Similar bounds on the target states are naturally enforced by zero rates of reaction when
the reactants are absent.

The setsS(n) and7 (n) are easily determined using the underlying graph structure.
It follows from the definition ofv and £ that thefth reactionC(j) — C(k) induces a
changeAn® = 1€ in the number of molecules of all species after one step of the
reaction, where subscriptdenotes théth column. Therefore the state=n — vE) is a
source or predecessormaunder one step of théh reaction. Similarly, states of the form
m = n+ v& are reachable from in one step of the‘th reactiort Once the graph of
the network and the stoichiometry are fixed, we can sum over reactions rather than sources

4n slightly more abstract way of stating this is that each complex defines an equivalenc& @jaﬁ and
the change in number of molecules due to one step dittheeaction lies in the directionj) — v in Ej N Ej.
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and targets, and consequently the master equation takes the form
d
GPmo = D Re(n=vEp) - P —vEp. 1) = Y Re(n) - P(n, 1). (17)
4 4

However, the transition probabilitiéd, (n) are not simply the macroscopic ratesf the
reactions are second-order (or higher), becaus&iléespie (1976)and others have noted,
combinatorial effects may play a significant role when the number of molecules is small.
Hereafter we restrict attention to mass-action kinetics, and we suppose tht thaction
involves conversion of thgth to thekth complex:C(j) — C(K). Then using the notation

of Gillespie (1976)we can write,

Re¢ = cehjy(n) (18)

wherec, is the probability per unit time that the molecular species in jttrecomplex
react,j (£) denotes the reactant complex for #ik reaction, andhj ) (n) is the number of
independent combinations of the molecular components in this complex. Thus

ke

Wan) T

Ce = = |213 (19)

and

N
hie = ( ) (20)
’ 1._[ ij )
In the definition oth we use the standard convention thg} = 1.
We can write the master equation in terms of integer extents in the form

d -
P = ;Rg(no +vEn —v€)) - P(No + vEn — vEp, t)
— Y Re(No+vEn) - P(no+vEn, 1)
4
=Y Re(n—v€wp) - Pl —vEu. ) = Y Re()- P, 1) (21)
14 14

Moments of this equation or oflf) can be used to obtain the evolution equations for
average extents and from this, the equations for the average change in the numbers.
Only in the linear case is the right-hand side of the equation for the first moment the
deterministic rate, as is shown in the following subsection. Others have derived a similar
master equation for reacting systems, without the explicit inclusion of the underlying
graph-theoretic structur&@rdiner, 1983Rao and Arkin, 2008

2.3. The master equation for general system of first-order reactions

The stochastic analysis of first-order reaction networks can be done in essentially
complete generality, and in this section we analyze all cases in which every reactant and
product complex is a species. We thereby exclude only those first-order splitting reactions
of the typeM; — Mj + M. Our aim is to separate the effects of various types of
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Iﬁt;l?otr classes of first-order reactions considered in the stochastic model
Label Type of reaction Reaction Rate
| Production from a source ¢ — Mi kiS
I Degradation Mi - ¢ kidni
n Conversion Mj = M kicl-O“nj
v Catalytic production from source ) ﬂ Mi kicjatn i

reactions (catalytic, conversion) on the distribution of the chemical species, and to this end
we divide the set of all reactions, represented by the directed deigés= 1,2,...,r

into four subsets corresponding to the following reactions: production from a constant
source (which in fact is a zero-order step), degradation, conversion to another species, and
production catalyzed by another species. These four types are summarTadddrl The

first type represents an explicit input to the system, whereas the last type represents an
implicit input.

Every speciesM; can be produced from a source at a specific kiteand every
species can be removed by degradation at a rate proportional to its concentration, with
rate constant given bk(id. Each species may participate in two other types of first-order
reactions: conversion reactions, in which spediégsis converted to specie$!; at a rate
proportional to its concentration, and catalytic reactions, in which speeiegatalyzes
the formation of specie$1 from a source, but is itself unchanged during the process. The
first-order rate constant for the conversion reaction of speeigso species\| is denoted
by kj’io“, and the first-order rate constant for the catalytic production of spedigswith
speciesM; catalyzing the reaction, is denoted Ik‘{"}"i“. Thus there are uncatalyzed source
reactionss first-order decay reactions(s — 1) conversion an@? catalytic reactions, for
a total of up to 8% + sreactions.

Since all reactant and product complexes are species, the stoichiometric matrix is

v=[1]0]
if at least one reaction of type I, II, or IV is present, and
v=[1]

if the system is closed. The corresponding incidence matrices for the different types are
equally simple, and if we order the types agable 1 then& can be written as follows.

I —| con
= [ y \ T \ ¢
wherel” = (1,1,...,1), | is the identity matrix of the appropriate dimension, &ffd"

is the incidence matrix for the conversion network. Thus the stoichiometry of the reactions
and the topology of the network are easily encodedamd&, respectively.

| ] (22)

17
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It follows easily that the deterministic equations for the first-order reaction network can
be written as
dc

= KS1— K9c + K 4 KM (23)

whereK s = diagk®}, K9 = diagfkd}, Ki‘J?at = kicjat andK ®"is defined as follows.

kﬁ-°” if i # |

/' con s
L ifi=j.

Itis clear that type | and IV reactions induce an increase of 1 in the number of species

i without other changes, type IV induces a decrease of onalitne, and type Il induces
a decrease of one ip and an increase of 1 in Therefore, for reactions of type | the
predecessor state to staids Si‘ln = (N1,Nn2,...,nj —1,...,ng), and the successor
state isSi“n =(ny, N2, ...,Ni +1,...,ng), whereSik is the shift operator that increases
theith component oh by an integer amourk. For degradation ofM;, the predecessor
state isSi“n and the successor state§s n.In type 1l reactions the predecessor state
is 5715 and the successor stateSg'S;*n. Finally, for the catalytic reaction the
predecessor and successor state§§ile1 andSi“n, respectively. Using these, the master

equation for the first-order reaction network can be written as follows (here and hereafter
we drop the explicit time dependencehRq., .)).

con
Kij =

S S
? =y [Kﬁ STt=DPM) + > (Kﬁ"”(si—lsj*l)
i=1 =1

+ Kicjat(gi—l -1 - Ki? (Si+1 _ 1)) (n; P(n))] (24)

whereS‘(ni P(n)) = §n; - P(Sn).

3. Evolution equationsfor the mean and variance

The master equation derived in the previous section cannot be solved analytically except
for a small number of specific simple systems. Usually the objective of a stochastic analysis
is to calculate the moments of the distribution of the number of reactant molecules. There
are several ways in which evolution equations for the moments of the distribution function
can be obtained. One is to multiply both sides of the master equatian bynj, njnjng
etc and sum over all possible valueswAlternatively, one can use the moment generating
function (MGF) approach, which is what we use here to calculate the mean and variance
for all the reactants in an arbitrary network. The advantage of the MGF approach is that
it allows us to get an analytical solution for the MGF of purely conversion systems, thus
enabling the calculation of the probability distribution function for the distribution of each
reactant in such systems.
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Letz= (z, ..., Zs) wherez € [0, 1]; then the MGF is defined as
o
Gz ty= Y zZ* - 2P
nj=0

It follows that G(z,t)|,_; = 1. The first and second moments can be obtained through
successive derivatives of the MGF evaluated after setting &l one.

0G(z, t
Mi(t) = ;ZZK)

= Gk(z,t)|z=1 = E[Nk]
z=1

E[N Nk] if | £k

(EIN?] — E[Ng)  ifl =k

where E[ ] denotes the expectation of the quantity in the square brackets, and for any
combination of indices we define

209 9 9

T 0z 0zj 0z ot

The probability distribution of the number of molecules of thie specieqN;) at steady
state can be derived from the MGF. Differentiating the MiGimes w.r.t.z;, we get

*G(z t X R -
( ):Z i AN k Z 221"'ZPI—_112PJ|:11"'ZQSP(n,t),

Vik(t) = Gik(@. D)y = {

Gijk....t

K L i
97 ask (i = K)! nj=0. ] #i
and therefore
*G(z, 1)
Tk =KUY Poymaknig.ns® = KIPy (.1,
i lz=0,7j=1,j#i nj,j#i

wherePy; (k, t) represents the marginal probability density functiompf Therefore

1 9¥G(z,1)
Pn (k1) = Kok

z=0,zj=1,j#i

These relationships are valid for the MGF corresponding to any reaction network. In
the case of a system of reactions with first-order kinetics we obtain the partial differential
equation for the MGF as

S S
1= =

Alternatively, and somewhat more directly, one can use a backward equation to obtain
Eq. 25) (see theAppendix.

For simple network topologies with a small number of nod25), ¢an be solved analyt-
ically to get the complete characterization of the evolution of the probability distribution
function P(n). We shall later derive such expressions for systems where only conversion
reactions occur. However, this is not feasible for an arbitrary network structure, and there-
fore we first outline the procedure for obtaining the evolution equation for the moments,
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and then we focus on the first two moments. Differentiating E§). With respect tay, we
obtain

S S
Gkt = (z -1 (Kﬁek + ) (KE 4+ Kz — KIHGjk + kaa‘Gk)
i=1 j=1

S
+ (kaG + Z(Klfjon%— Kff‘tzj - K%)Gj) . (26)
i—1

Therefore the evolution equation for the mean ofktrecomponent is
S
EING = > (K" + K — KEEINjT + Kg
j=1

or in matrix form
M(t) = (K€" 4+ K _ Kd)M(t) + K51 (27)
= KM(t) + K51, (28)

where M(t) = [E[Nz(t)],..., E[Ns()]]" and K is defined by the second equality.
From this one sees that the explicit inputs contained in the last term serve as a
nonhomogeneous forcing term for the evolution of the mean. This equation is identical
to Eq. @3) given earlier for the evolution of the deterministic first-order system. Therefore
a general stochastic system of first-order interactions is “consistent in the mean” with the
corresponding system for systems comprised of catalytic and conversion reactions, as is
well known Darvey and Staff, 1966
Higher moments of the distribution are obtained by successive differentiati@bpf (
For the second moment we obtain
S S
Gikt = Y (i —1) (Kisi Gu + Y _(KP"+ Kz — K$)Gju + K§'Gu
i=1 j=1
S
+ Ki‘fatGm) + (KﬁGk + ) (KEP"+ Kz — KHGjk + Kﬁ(atGk)
j=1
S
+ (KEKG| + Z(KﬁjonvL Kﬁjatzj - dej)Gu + KE{’“G|) )
j=1
Thus the matrix containing the second-order moments can be written as
V@) =KV + KV ) + ')+ I (t) (29)
where
L) = (K + KM (b).
It is noteworthy that in this equation both the implicit and explicit inputs, as well as the
mean, appear in the forcing term for the evolution of the second moments. In the equation

for the mean the forcing is time-independent, but here the forcing is time-dependent via the
appearance of the mean in this term. Later we will see how this time-dependence is filtered
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via the action of the kinetic matrix. The somewhat unusual structure on the right-hand side
arises from the fact tha¥ is a symmetric matrix, and thus the evolution equation for it
must be symmetric as well.

The equations for the mean and the second moments can be integrated to get the first
two moments of the distribution. Thus we now have an algorithm to compute both the
steady-state and time-dependent behavior of the mean and variance of every species in a
general first-order network. Next we analyze this behavior in detalil.

3.1. The steady-state and time-dependent solution for the mean

The steady-state solutidvis for the mean is the solution of
KMS = —KS1 = —k8 (30)

wherek® = (k3, ..., k). The nature of the reaction types and rates, as reflected in the
spectral structure ok, dictates the steady-state mean. In generd(; i singular then

KS1 must lie in the range ok, and in particular, if there are no explicit input<sS = 0)

then M7 is given by an eigenvector corresponding to a zero eigenvalite 6 the other
hand, if degradation reactions are the only type present, and all species readt, ihen
nonsingular andM?® = 0 is the only solution. This case is of little interest and will be
excluded in what follows. Results concerning the localization of the spectruth are
summarized in the following theorem.

Theorem 1. The eigenvalues o€ have non-positive real parts if either of the following
conditions hold.

(a) The sum of the specific rates of formation for each spetigsby conversion and
catalytic reactions does not exceed the sum of the specific rates of lost bfy
conversion reactions and degradation (this implies that the column sukhsuef non-
positive).

(b) The sum of the specific rates of formation catalyzed by each spktiés less than
or equal to the sum of the specific rates of degradation of that species.

Proof. The statementin (a) can be translated into the inequality

D OKENE Y KA <Y KP4 K (31)

j#i j J#i
Since all the terms are non-negative, each of the terms on the left-hand side of the inequality
is less than the right-hand side. In particular,

Kt < Y K+ K, (32)
j#
and therefore
’Cii = Ki(i:on+ Ki(i:at - chlj (33)
=— ) KP4 K- K (34)
i#

<. (35)
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Using the definition oK °" andK; , we can rewrite31)

Z[Kcon+ Kcat < —[KEN 4 KEat Kitij] (36)
7
> Kij < —Kii. (37
j#i

Now, bounds on the eigenvaluestofare given by the Levy—Hadamard theoreBodewig,
1959, which states that for every eigenvaluef /C,

= Kii] < Y IKij .

i#
Since the off-diagonal elements kfare non-negative, this can be written as
A —=Kii| < Z/Cij < —Ki (38)
i#

where the second inequality follows froi34). SinceKii < O, it follows thatRe(A) < 0,
which proves (a).

To prove (b) we do a similar analysis, using the Levy—Hadamard theorem expressed in
terms of a sum over the columns/6f The constraint (b) can be written as

YK <K
i
By reasoning similar to that used in the proof of (a), this constraint leads to the relations
Kii <0
> Kji < —Kii.
j#
The Levy—Hadamard theorem applied to the columnfs sfates that
A= Kiil <) Kii,
j#
and the proof of (b) now follows as before. [

Remark 2. (i) A special case of (a) shows that in a closed system the eigenvalues have
non-negative real parts, for in that cdéﬁ = 0,KS = 0 andK " = = ik Kﬁon In

fact in that case it is known that the eigenvalues are all real as well if the system satisfies
detailed balanceGans, 196pWei and Prater, 1962If the underlying graph is strongly
connected, then there is exactly one zero eigenvétienger, 1979

The theorem gives conditions for the stability of an arbitrary first-order system of
reactions in terms of the specific rates of the reactions. The first sufficient condition for
stability is easily understood, as it is expected that for stability of a system the specific
rates of production for all species should be less than the specific rates of degradation for
every component of the system. The second criterion, which requires that the rate at which
any component catalyzes the formation of other species is less than its degradation rate,
is less immediately obvious. This is however an important relationship that can be used
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to guarantee stability of the mean of artificial transcriptional networks. In particular, once
the inequality between the catalytic and degradation rates is satisfied, the system will be
stable irrespective of the conversion reactions in the system, and may be used in the design
of such networks. In the theory of branching processes condition b is equivalent to the
assumption that the offspring distribution has mean less than or equal to 1.

Further information about the structure of the solution can be gotten from a spectral
representation of. Hereafter we assume thigtis semisimple (i.e., it has a complete set
of eigenvectors), which is the generic case, and then it has the spectral representation

K= ZM P (39)

where}; is theith eigenvalue ofC and P; is the associated projection onto the span of
the eigenvectors associated with SinceC is assumed to be semisimple, they have the
property thad ; P = I.

The projections have the representation

P =Y d¢pxdp (40)
p=1

wherem; is the algebraic multiplicity of theth eigenvalue #' represents the dyad product,
and thep’s and¢*’s are the corresponding eigenvectors and adjoint eigenvectors, defined
via

Kép = rigp forp=1,m (41)

KT¢% = 1o} forp=1,m. (42)

They can be chosen to satisfy the orthogonality relations

(@ bq) = Z«b )i (¢a)i = Spq

and the projection of any vector is defined as

Pu= (2': bp *gb_;;) u= 2(4)’5, u)¢p.

p=1 p=1
WhenK is invertible the steady-state mean can be written as

(R r

Thus in the nonsingular case the steady—state mean is the weighted sum of projections
onto theith eigenspace ok, weighted by the corresponding eigenvalue. In particular,
projections corresponding to eigenvalues of large modulus contribute less to the sum
than those of small modulus. K€ has ad-dimensional null space there are vectors
{n1, n2, ..., nq} with the property that the functionalg, M) are time-invariant, and this
restricts the dynamics and steady-state solution to a lower-dimensional set. We leave the
details of this case to the reader.

Mz
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The transient solution o@) is given by

t
zeICt e/C(t—r)d s
M (t) M(0)+</0 T>K 1
t
it i(t—7) S
(}i e P|> M(0)+(/0 §i e P.dr)K 1

it _ _ it i S
(Xi:e* P.)M(O) iZ(l e ))\i KS1. (44)

Since &t is non-negative, i.e. all its entries are non-negative, the solution remains non-
negative ifM(0) is non-negative. Therefore if there are no eigenvalues with a positive real
part the solution converges to a non-negative steady state. If the real part of all eigenvalues
is negative, the solution is globally asymptotically stable. However these conditions do
not guarantee that the solution has strictly positive components, i.e. that it does lie on the
boundary of the positive ‘orthant’ d®. Under stronger hypotheses one can guarantee that
the solution lies in the interior of the orthant, as shown in the following theorem.

Theorem 3. Suppose that the graghassociated with the reactions is strongly connected,
and that the eigenvalues &f have negative real parts. Théé ! < 0 and if there is at
least one species produced by a source then the sol(8®)rs component-wise positive.

Proof. Notice that/C is irreducible since the graph is strongly connected. Writ& =
Kt —«l, whereK™ > 0 and« > 0. Observe thak'™ is also irreducible. Let

Q=—-K=xl—K*. (45)

Since the eigenvalues &f have negative real parts by hypothesis, the eigenval(@s
of Q have positive real parts and

MQ) =k — 1K),

Let p(K*) be the spectral radius d€*; then by Perron—Frobenius theorenC*) is
a simple positive real eigenvalue #ft andx — p(K™) is an eigenvalue of). Thus
Kk —p(KT) > 0,i.e.,p(KT)/k < 1. Sincep(KT)/k < 1, the series

Kt (K2
|+_+(—) ro

K K

converges, and so

c+ -1 N n
)5
K =0 K
Since(l + ’%) is ans x s irreducible non-negative matrix with positive diagonal elements,
it can be obtained that

’C+ s—1
(I + —) > 0,
K
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which implies that
Kt (kM2 o
| +—+(—) +--~+(—> > 0.
K K K
Therefore

)

K

1 Kt (KT\2
— (e ()
K K K
> 0.
ThusQ~1 > 0, soK~1 < 0 and finally, if there is at least one species produced by a
source, i.e.k’ > 0 for at least oné, then
MS = —K~ 1k > 0.

Next we analyze the evolution of the second moment, and find that the conditions (a)
and (b) inTheorem will also guarantee the stability of the second moments.

3.2. Evolution of the second moment

One can show (cfAppendiy that the evolution equation for the second momesj (

can be written in the forfh
dv
— 46
" Vv+y (46)

where
v(t) = col(V (1)) V=K®Ih+1h,®K) and y(t)=col(I'(t)+ ren.

Here the notatiorol(A) denotes a vector of leng#f whose elements are the columns of
A stacked in order (cfAppendiy. By the definition of the tensor product
V(i ®9j)) = (KR In+ In®@K)(@di ®¢j) =K¢i ® Ingpj + Indi @ Ko
= (Ai + 1)) (i ® ¢j), (47)
and thereforgy ® ¢; are the eigenvectors ® ® In + Iy ® K corresponding ta; + Aj.

It follows that if P and P; are the projections associated with thieandjth eigenvalues,
respectively, then

m; mi
Pi ER®Pj=<Z¢P*¢_ﬁ)®<Z¢P*¢_ﬁ> (48)
p=1 p=1

5 A reviewer has pointed out that the equation for second moments in the &®)nis(solved formally i.e.
converted to an integral equation,Athreya and Ney (19723nd estimates of the growth rate derived from this.
However, an explicit solution is not given.
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is the projection associated with + 2 j. Consequently

V=i + 2Py
i

After some simplification one finds (cAppendiy) that the solution for the second moment
is
v = e’ (0) +/ V(t_r)y(r)dr
t
_ Ze()‘i+)‘j)t Py v(0) + Z/ e()»i+)»j)(t—r)plj y(n)dr
Ny N

( ghitAt _ ghit

= Ze“ LR v(0) + Z

1
(Ai+Ajt it
e+t _ gt
n (AM )

e()tl'Ht])t _ e)tj
Aj

(R Mo ® Pj)

= ittt .
Ai(AiHj)(e J 1)>(P'S®PJ)

1 :
(P ® PjMo) + ( (@t e
iAj

(eHTAt 1)) (P ® P s>) colKS®

IR
t
+) / MR KA R P + P @ Pj K col Mydr, (49)
where Mg = [MOIM©O)]---IM©)], S = [k°k’---k°] and Mg =

diag{M1(t), M2(t) - -- My(t)}. From @9) and @7) it is clear that the time-dependent
behavior of the covariance is governed by the set of eigenva\l,ﬁ% AKX, and if the
eigenvalues ok have negative real parts, so do the eigenvaluds.ofhus the sufficient
conditions for the stability of the mean derived in the preceding section also guarantee the
stability of the second moment. For a closed system, one of the eigenvalues is zero and
hence the longest characteristic time for the evolutioMaindV will be identical. For an
open system, the characteristic time for the evolution of the second moment will be twice
as large as that for the evolution bf. Note however tha¥; = (E[N; (t)?] — E[Nj (1)]),
and therefore this should not be interpreted to imply that the variance of the number of
molecules of a particular species evolves twice as rapidly as the mean.

From the expression far, one obtains the variance of thin species (cfAppendiy
explicitly as

of(t) = = ) e IR 0 PiM(0))
L

1
£y [(PM(O))Jr( )'} > SR
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+3 3 pa.k | D (PMO)) PGLST PR
.y K, ) r r k " ri,j
N

_ (P k®)k (e()‘i"')‘j)t _1
Ar (A 4+ Aj) ’

where

Dd,k, ) = ((PPC(, k, 1) + (POKCA, K, |,

n
Cl. ki)=Y (POmKS

m=1
1 .y ,
frii®) = A=A — A (& — M i # i 4
ri,j =
teti At if Ar = Ai + 2

and © denotes element-wise multiplication. Using the expression for the mean of the
Ith reactant given in44), we obtain the relationship between the mean and variance of
every species in the reaction network.

of(t) = — Y MNP o PyM(0)), + Mi(t)
i

+> 3" Dd.k ) (P M(0)k + PO ¢
pa , K, ] Xr: r k " ri,j (®
N

_ (Prks)k
Ar (A +Aj)

(eHFApt _ 1)] ) (50)

From this expression one can calculate the evolution of the Fano fﬁci@rolz/m and
CV = a/M, for every species, and thus determine the effect of various network structures
and reaction types on the noise. We study several examples in the following section.

4. The effect of network structure on the dynamics

The master equation for a system of first-order chemical reactions reflects three major
characteristics of the system, (i) whether it is open or closed, (ii) the topology of the
network of the chemical interactions, and (iii) whether or not the reacting mixture is
spatially uniform, i.e., whether or not diffusive or other transport mechanisms play an
important role. The effect of each of these factors on the distribution of species undergoing
first-order catalytic and conversion reactions can be studied using the general results of the
preceding section.

4.1. Open and closed conversion systems

In the context of first-order reaction dynamics, catalytic systems are necessarily open
because they involve production from a source catalyzed by a time-dependent species
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(cf. Table 9. Thus the comparison of open and closed systems can only be made for those
in which there are no catalytic reactions. Therefore we compare open conversion networks
in which there is at least one Type | reaction and one Type Il reaction, with closed networks
in which all reactions are type Ill and thus the total mass is constant.

The equation for the MGF for a system of stochastic conversion reactions can be
solved analytically Gans, 1960 Darvey and Staff, 1966 and for closed conversion
networks it has been shown that the distribution is multinomial when the eigenvalues are
distinct Darvey and Staff, 1966 We derive the general result via a backward equation.
For open systems we prove that the distribution is Poisson, and we demonstrate how the
choice of the noise measure leads to differing conclusions about the noise in open and
closed conversion networks.

4.1.1. Closed conversion systems

In a closed system of linear reactions the molecules independently execute a random
walk through the states, where the state of a molecule is the property of being a molecule
of typei;i = 1, s, wheres is the number of species or states. WeM&t) be the random
process whose value #tis the state of a given molecule. L& be Pr{X(t) = j |
X (0) = i}; then the matriXP of transition probabilities satisfies the backward Kolmogorov
differential equation

dP(t

S = KTPO. (51)
whereK = KN, SinceP(0) = 1, this has the solution

P(t) = ekt

If we denote byp;(t) the probability that the molecule is of tygeat timet, then
p(t) = (pr(t), ..., ps(t)T is the solution of

dp _
dt
and therefore
p(t) = P(t)" p(0) = ' p(0). (52)

Assume that the graph of the underlying network is strongly-connectedktlners exactly
one zero eigenvalue and the equilibrium probability distribution is given by

P1,i
> b1
j

(53)

T =

wheregs is the unique positive eigenvector Kf corresponding to the zero eigenvalue.
Now if there are a total oN molecules in the system, the joint equilibrium distribution
is the multinomial distribution

S
7(N1, N2, ..., Ng) = ]_[ (54)

nl'ng'
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since there are classes to put th&l molecules into, and the probability of thth class
is 7rj. In particular, the number of individuals of thth species is binomially distributed
according to

() = (:)n{‘i A —mpN—", (55)

If in addition the joint distribution of molecular numbers of two species is multinomial
initially, then the joint distribution at any timeis also multinomial. First suppose there are
only two molecular species aridl molecules initially. Then for & m < N, one can show
that (see théppendixfor details)

Pr(Ny(t) = m, No(t) = N —m)
N
=Y Pr(Ny(t) =m, Na(t) = N = m|N3(0) = i, N2(0) = N — i)
i=0

-Pr(N1(0) =i, N2(0) = N — 1)
N—m+k

=g) > (L)(ptka, 1>p{‘k<1,2>)<:::<>

x (P @ npl M2, 2)) ( " ) p1(0) PO

N
= (m> (P )™ (p2tHN—™

where the last step follows fron52). Thus{N1(t), N2(t)} has a binomial distribution if
initially it has a binomial distribution. By induction, it follows that the joint distribution of
{N1(t), N2(1), ..., Ns(t)} is multinomial if the initial distribution is multinomial. That is
to say, if the initial joint distribution of molecular numbers of species is multinomial, i.e.,

N!
P(,0) =Pr(N1(0) =ng,..., Ns(0) =ng) = m(pl(O))nl - (ps(0)s,
...ng!

then the joint distribution at any tintds also multinomial and the density function is given
by

N!
P(N1(t) =ng, ..., Ns(t) =ns) = m(pl(t))nl ~(ps(t)™s,
... ng!

where the probabilitiegj (t), 1 < i < s are given by %2).
It follows from (55) that the mean and variance for timth species at the steady state
are given by

Mm = Nmm = E[Nn]

0%(Nm) = Nzm(1 — 7m) = E[Nm] (1— (56)

E[Nm]
N .
Notice thatry, is the steady-state fraction of theh molecular species in a deterministic
description, and since this is fixed by the reaction rates, the variafidéy,) does not
approach the mean even Bs— oo. Thus the distribution is never Poisson in a closed
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conversion network. The maximum variance is attained for that species for which
is closest to 12. The Fano factofF,, = 1 — myy is always less than 1 for aih, it is
independent oN, and it is fixed entirely by the network topology and reaction rates. Thus
it is an inappropriate measure of stochastic fluctuations in these networks.

In contrast,

1 1—7Tm 1—7Tm
CVn=— = 57
m VN TTm /' Mm 7)

varies as 1+/N, while for fixed N it is monotone decreasing withy. In both cases the
measures are smallest for the most-abundant species in the system.

4.1.2. Open conversion systems
Next we derive the steady-state distribution of species in an open conversion network.
HereK = KN — K9 and @5) can be written as

ZZ/C., z - 1)— Z K@ - 1G.

j=li=

We find the solution of this PDE using the method of characteristics, analogous to the
procedure outlined bgans (196Q)The result is that

_ 1 s Lot -
G_exp(mZKi Xk:k—kd5 Ch —1)Xj:¢k1(21 -1
m;
1 oK o t
]i_[ <1+ v Z Xj:w, (zj — e ) :

where & is the matrix whose rows are the eigenveciws®X! is the cofactor ofj, and
m; is the number of molecules of specigsresent initially. Therefore at steady state

G(zoo)—exp(—mz Z @“qukj(zj-—l)),
i

and the steady-state value of the mean is given by

3G(z, o) 1 1
Mm = E(Nm) = =— K3 o
m (Nm) 3Zm detd XI: i Xk: K ki

To obtain the probability distribution, we differentidteimes to get
k
kG(Z OO) Z Z ¢ki¢
9z, det@ km
ki (7
xexp( detd Z Z @ ' Xj:‘/’kJ(ZJ - 1))
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and then

1 9KG(z, o0) RV
PNm(k, 00) = E W = EMme .

Zm=0,zj=1,j#m

This defines the density for a Poisson distribution, and as in any Poisson distribution, the

variance is equal to the mean. This shows that the steady-state distribution of any species
in an open first-order conversion network is a Poisson distribution, but this does not extend

to the transient dynamics unless one assumes that the initial distribution of molecules is a

Poisson distribution, rather than the Dirac distribution generally fised.

4.1.3. The noise during transients in conversion systems
The time-dependent variance in an open conversion system is givesOpwlierein
K= 0. Inthat cas€(l, k, i) = 0 and £0) reduces to

on®) = =D MR 0 PiMO)m + Mm(b).
N

Evidently lim_ o0 62(t) = lim¢_ oo Mm(t) and if M(0) = 0, thens2(t) = Mn(t). Thus
Fm will always be 1 for open conversion systems when no species is present initially
(M(0) = 0, which is by definition a Poisson initial distribution), and for more general
initial conditions,Fy, = 1 for all species at the steady state. On the other hand, it is easy
to see that th€ Vi, is always inversely proportional to the square root of the mean for all
these situations whetgy, is a constant. There is thus a clear difference in the qualitative
estimation of the noise predicted by the two factors during transients as well as at steady
state.

For closed systemstm = 1 — pm at steady state, whil€ Vi, is given by §7). When
Mm ~ N for somem, pn ~ 1 andFy, andC V;, are both small. However whed >>> Mp,
Fm — 1, while CVy, is inversely proportional t§/Mpy,. We illustrate this and the transient
behavior of the noise measures with an example of a closed three-component system shown
in the following figure, where arrows indicate conversion reactions, and the symbols on the
arrows indicate the specific rate constant associated with that reaction.

ka1
M M,
k12 ' '
ka1 23 32
M3
Using the procedure given earlier, one can find the means and covariances by solving

M) = KM(t) (58)
VY =KV + kv, (59)

6 A reviewer has remarked that the distribution in an open system is Poisson atitithe initial distribution
is Poisson.
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where
—ko1 — ka1 k12 0
K= ko1 —ki2 — k32 ko3
ka1 ka2 —ko23
The eigenvalues df’ are given by
A1 =0

1
h23=73 [— k12 — ko1 — ko3 — K31 — K32

i\/ (kg2 + ko1 + kog + ka1 + k32)? — 4(kioko3 + ka1kog + Kiokag + koskai + kaiksz + k31k32)]

and because

(k12 + ko1 + koz + ka1 + ka2)?
— 4(k12Koz + ko1kaz + K12ka1 + Kozka1 + ka1kaz + Kaikzo) > 0,

the eigenvalues are distinct aRidis semisimple. Thus,

M(t) = &“'M(0)

3
=Y ' (RMO)K
i=1
and furthermore
3
oty =Y eW (P © PjM(0), + > ' (RM(O))k.

i i=1

Assuming that only one specie$t) for | € {1, 2,3} is present initially withN
molecules, we find that fdc = 1, 2, 3,

3
Mk(t) = N> €' (R
i=1
and so

3
oty = Y e TIY(—R © PyM(0)), + Mk(t)
i,j=1

3
= Mk(t) — Y MNP (PN
ij=1

= Mc(H) <1 - Mk(t)) .

Fig. 1 shows the evolution of the Fano factor and CV for two components of the network.
Since the sum of the number of molecules of all components at any instant is equal to the
sum of the initial number, the mean and variance of the first component can be calculated
from the mean and variance of the other two. It is clear that for these values of the
rate parameters, which produce a steady state in which most of the total molecules exist
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Fig. 1. Time-evolution X-axis) of the mean scaled to the total number of molecules (-.-.-.), Fano factor (solid
line) and CV (dashed line) for Species 2 (left) and Species 3 (right) for two valuNs=6f100 andN = 1000.
Profiles for the fraction in each state and the Fano factor are independdnfTbiese plots illustrate the fact that
use of the Fano factor leads to the conclusion that the noise of both species does not change on iftreasing
whereas use of the CV predicts that increadihgeduces the noise in Species 2, whereas the noise in Species 3
remains essentially unchanged at steady state. The values of the rate constants are (in units)dine 100,

k31 = 100,k12 = 1, ko3 = 1, k3o = 100 and allN molecules exist ad14 initially.

as Species 3 and the steady-state value of the mean for Species 2 is a small fraction of the
total number of molecules, the Fano factor for species 2 is close to one at steady state, and
does not change as the total number of molecules is increased 10-fold. For Species 3 the
steady-state value of the mean is almost equal to the total number of molecules, and both

the Fano factor and the CV predict that the steady-state noise will not change appreciably

when the total number of molecules in the system is changed.

4.2. The effect of network topology on stochastic reaction networks

The structure of the graph of interactions among the network components influences
the transient stochastic evolution of the network through its effect on the eigenvalues and
eigenvectors ofC. However, we have shown that the steady-state distribution is always
multinomial for a closed conversion system and Poisson for an open conversion system,
and these conclusions are independent of the topology of the network. In both cases
the distribution is completely characterized by the mean, and the effect of topology on
the mean of the various species can be derived from an analysis of the structure of the
vertex—edge incidence matré (Othmer, 1979 We illustrate the effects of a change in
network topology on the steady-state distribution of a simple catalytic network, and on the
evolution of the distribution to the steady state for general conversion or catalytic networks
through a simple example.

We consider reaction networks that either form closed “loop&j.(2(b)), with either
a feedforward or feedback interaction, and compare the results with the evolution of the
distribution in linear reaction networks of the form shownFig. 2(a). In general, for a
conversion chain thith species is formed from th@ — 1)st species and is converted to
the (i + 1)st species; and in a catalytic chain tiie species is formed from the source with
the reaction being catalyzed by tlie— 1)st species, and catalyzes the formation of the

(i + 1)st species. All species undergo first-order degradation. The conversion chain is an
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(a) (0) o .
0 0 0 0 04" 0 0 o 0
t A g oy
Mj_} M2 """""""""" Ms—1 Afs ,\/,1—> M2 """""""""" M;_1—> Ms
vy '

0 0 0 X i i i

Fig. 2. Linear (a) and looped (b) reaction networks. The arrows represent the dependence of one species on the
rate of formation of the species at the head of the arrow: the reactions may be conversion (solid lines) or catalytic
(dashed lines).

Table 2
Mean and variance for a 2-component feedback network with either conversion or catalytic reactions
Species Meartonversion Meantatalytic Variancatalytic
M ptiS (KS"+KS) ptiSKd ptidd kd(kd +kg) —KGaNEaL (e —KEat) "
1 k°°“+kg)(k§°“+kd) kgonkcon kijkg_kgalltkggt k2 kgatkcat)(kd +k2) x Vi
M pgkSe” pigkSE" ptk&’k%<k“+k2>+k§ il CL Y
2 (KE3M-+kG) (kEN-+KE) —KE9MkESN kS kd —kgatcat (kg —KSaKEEY (K -+kG ) )

example of an open conversion system, and we have shown that the distribution of the num-
ber of molecules of all components is a Poisson distribution. The analysis of the dynamics
of the mean for feedback networks has been carried out ealiso and Othmer, 1958

Consider an example of a feedback loop véita 2, where onlyM 1 has a non-negative
rate of production from the sourc&able 2gives the steady-state mean of both species for
conversion and catalytic reactions, and the steady-state variance for a network of catalytic
reactions (the variance is equal to the mean in the conversion case).

It is clear that the presence or absenkg = 0) of a feedback loop in a conversion
network changes the mean value of bathy and My, but the variance is always equal to
the mean and the Fano factor is always equal to one. In contrast, for a catalytic network
the presence of a feedback loop changes not only the mean, but also the steady-state
fluctuations, as is most clear from the change in the Fano factotfpfrom a value of
one in the absence of a feedbe(k{(‘gt = 0), to the value indicated imable 2for a network
with feedback. We will further explore the differences in the variance of conversion and
catalytic networks in the following subsection.

We can also compare the change in the evolution rates for these networks. For the
reaction networks iffrig. 2, the matrix of reaction rates takes the form

IC]_]_ 0 0 e ’C]_s
Ko1 K22 O 0

K= 0 K32 Kaz ... 0

0 0 ’Css—l ’CSS
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For the linear network, the value #fis is zero andCj; are its eigenvalues.
The characteristic equatioh(r) of K is given by

f(A) = [(Ki1— D (Kaz =) - (Kss — W]+ (=15 1601 - - - Kss1

S

= (-1° [n(k — Kii) — K1sKa1 - -- ’Css—1:| = (=D°g).

i=1
Consider a looped network that conforms to the stability conditigninat the specific

rate of production of each species is less than the specific rate of degradation. This requires

that

Kor < K11, Kz2a< =Koz, ..., Kss1< —Ks—1s-1, Kis < —Kss

and this implies that

S
K1sK21K3z- - Kss-1 < [ [(=Kii).
i=1

Hence, for allCkk, 1 < k < swe have
I(Kxkk) = —K1sK21- - Kss—1 <0

and

S
9(0) = [ [(=Kii) — K1nK21K32- - - Kss-1 > O.

i=1

Therefore there is a real roat of g(A) = 0 such that mgxCi; < A; < 0, which implies
that in the loops there exists at least one real negative eigenvahfelC which is bigger
than max ;.
Thus the presence of a loop leads to a slowing down of the evolution of the moments
to the steady-state values. Notice that for a feed-forward looped networlig.e2(b)
with the the arrow fromM; to Ms reversed), the corresponding reaction fateis still
in the lower triangular part ofC and the eigenvalues will be identical to those of the
corresponding linear system.

4.3. Effect of the nature of the chemical reaction

Previous analyses of stochastic first-order reaction systems have been restricted to
either all-conversion or all-catalytic systems, but they have not been compared directly.
Let us consider reactions of the form showrFiig. 2(a) in which the first component is
produced from a source, and then is either converted to the second species (conversion
chain), or catalyzes the formation of the second species (catalysis chain). As we know, the
distribution of the number of molecules is a Poisson distribution for an open conversion
chain, the Fano factor is one for all species at steady state, and the CV is inversely
proportional to the square root of the mean. The results are quite different for a catalytic
chain. InFig. 3we show the Fano factor and CV for a catalytic chain with rate parameters
such that the means are identidé) and differen8(b). It is clear that for a catalytic chain
with identical meanskf(?t_l) = kid Vi > 2), the variance reaches a limiting value as the
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Fig. 3. Fano factor (solid line) and CV (dashed line) at steady state fathtepecies in a catalytic chain with

equal (a) and unequal (b) means. In (a) all species have a steady-state mean value of 3, resulting from setting
all catalysis and degradation rate constants to 2 and the production ratd{do 2, random parameters for

rate constants lead to mean values betweerf' Hhd 120 for species in (b). In both simulations, one molecule

of each species was assumed to be present initially: but the results do not depend on the choice of the initial
condition.

chain length is increased. This agrees with the resultShafttai and van Oudenaarden
(2001) who studied catalytic chains with hyperbolic activation functions. However, it is
important to note that variance may not saturate when the means are different, which is
almost always the case in biological systems. When the means are the same, the Fano
factor and CV give estimations of the noise that are qualitatively consistent, but when the
means are different the use of the two measures of noise give different predictions of the
effect of increasing the number of species in a catalytic chain on the level of fluctuations.

5. The effect of diffusion on stochastic reaction networks

Heretofore we have ignored the possible effects of spatial nonuniformity in the
distribution of species, but when transport is solely by diffusion we can analyze a suitably-
discretized spatial model within the preceding framework, because diffusion is a linear
process. As the reader will appreciate after the development of the equations, the same
analysis applies to compartmental models in which transport between compartments is
linear in the concentration of the species. Here we restrict the discussion to a closed
system containing an isotropic medium having no diffusive coupling between species,
but the general formulation of the corresponding deterministic linear equations allows for
bi-directional exchange with a reservoir, diffusive coupling, anisotropy in the transport
(Othmer and Scriven, 1971

For simplicity of exposition we begin with a symmetric domain that is subdivided into
identical cubical compartments, and denote the number of molecules of spécEesent
in the jth compartment abl;; . Diffusive transport from compartmeptto compartmenk
can be represented as the reactidlyj, Nxi) — (Nji — 1, Nxj + 1) at a rate given by
D; /82, wheres is the length scale of each compartment @&ds the diffusion constant
for species (Nicolis and Prigogine, 197 Btundzia and Lumsden, 1996
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Suppose that there aMg cells ands reacting species. As befolé,is thes x s reaction
rate constant matrix K ¢ 4 KN _ K9 defined for reactions without diffusion. Let
be theN: x N structural matrix of the network of cells, whose elemenig for j # k
are 1 or O, resp., if cek is connected to cel|, or not, resp., and-Aj; is the number
of cells connected to cefl. A encodes the connectivity of the network, and in the simple
case treated here simply reflects the discretization of the Laplace operator on the domainin
question. We defin® as thes x s diagonal matrix of diffusion rateB; /82 for the species.

The deterministic evolution of the system is governed by

dc
— = (Jc,
dt
wherec is the composition vector for all cells and the - N; x ns - Nc matrix 2 =
In, ® K + A ® D. It follows immediately that the equations for the means and second

moments are

M@t) = 2M@t) +KS. 1

V) =2V + VD] +C+CT.
Here the matrix of means is defined as

M(t) = diag[M11(t), M12(t), ... M1s(t),
Ma1(t), ... Mas(t), ... Mn.1(D), ... Mns(D)]

and K® is a matrix containing the rate constants for production of each ofNthe s
species, given by

S _ Hi S S S S S S
K - d|ag [kll’ 129+« - le’ k21, “ee kZS’ “e NCS] 9

wherekisj is the rate of inflow of speciegfrom sources.
The covariance matri¥ (t) has matrix-valued element$; defined as

E[Nik (1)?] — E[Nik (D] ifi = j andk = m

Vij (k, m) = {E[Nik(t)ij(t)] otherwise

Finally, C = W + KS1-M(t)" whereW is a block-diagonal matrix, with each block
defined adVik(, j) = Ki‘J?atE[Nkj )]

It is clear from earlier sections that the evolution of the first and second moments
are formally known once the eigenvalues and eigenvector@ afe known, and these
are known from earlier work. Letyx be an eigenvalue of the symmetric matu
then the eigenvaluex; of {2 are solutions of the family oN¢ sth-order determinantal
equations

I +akD — Aklg| =0 (60)

(Othmer and Scriven, 19F1lt is known that wheneveX is not diagonal there may be
counter-intuitive effects of diffusion on the eigenvalues determine®0)y é&nd this lies at
the heart of Turing’s mechanism of pattern formatidarfng, 1952 Othmer, 1963

The foregoing has been formulated for a regular discretization of a domain, but it holds
whatever the topology of the connections between the compartments, as long as transport
depends only on the concentration difference between compartments. The advantage of
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the present formulation is that the effects of network structure in the reaction dynamics
can be separated to the maximal extent possible from the topology of the compartmental
connections, and effects due to spatial variations arise from the effect afithdor
different spatial modes. It should be noted here that in our treatment of reaction—diffusion
systems there is an assumption that individual compartments are well-mixed, and for this
to be valid, the size of each compartment should be related to the diffusion coefficient
(and ultimately to the mean free path) of the diffusing species. However, the basis for
the choice of compartment size is not clear for a system containing species with very
different diffusion coefficients. On the one hand, if the size is based on the faster-diffusing
species the well-mixed assumption may not be true for species that diffuse slowly, but if the
size is computed using the slower-diffusing species, any solution algorithm will become
computationally inefficient. More generally, the problem of how to treat wide disparities
in time scales in the full master equation remains to be solved.

6. Discussion and conclusion

We have analyzed a general system of first-order reactions ansspsties that can be
produced from sources, converted to other species or degraded, and catalyze the formation
of other species. All previous stochastic analyses of systems of first-order reactions can
be formulated as special cases of the general model studied here. We have derived explicit
evolution equations for the mean and variance of the number of molecules of each reactant,
and have solved them explicitly in a number of cases when the rate ritagigemisimple.

We find that the evolution of the second moments is completely determined by the spectral
properties ofC and the mean itself. To our knowledge this is the first report of a method to
analytically compute the first two moments for an arbitrary first-order network comprising
both conversion and catalytic reactions.

We have used the general framework to explore the effect of changes in the network
topology on the distribution of the number of reactant molecules, and the difference
between conversion and catalytic networks with the same topology. We prove that for an
open system of first-order conversion reactions, the distribution of the number of molecules
of every species is always a Poisson distribution. This is not the case for closed conversion
systems, since the total number of molecules is constant. This result can be directly applied
to the interpretation of experimental results on protein conformational-state transitions.
The folding of a protein from its unfolded state to the fully folded (“native”) state occurs
through a series of intermediates. The first-order rate constants governing the reversible
transitions from the unfolded state to the native state are calculated experimevitaltyr(
et al., 2003. The above theory suggests the distributions that the experimental data may
be fitted to in order to derive accurate estimates of the first-order transition rates. If
ingress and egress through flow is allowed for the measurement device, each of the protein
folding states will exhibit a Poisson distribution. If the system is closed, each state will be
characterized by a multinomial distribution with a mean that is lower than the variance.
A protein molecule undergoing conformational-state transitions is but one example of a set
of chemical reactions that may be carried out in a closed or batch process, where there is
no inflow or outflow of the chemical species, or in an open or continuous process, where
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one or more chemicals are introduced at a constant rate, or removed from the system. The
inflows may be modeled as production reactions of the form M; where specied;

is produced at a constant rate from a source. The outflows are modeled as degradation
reactions that result in a depletion of species at a rate proportional to their concentration,
with the specific rate constant corresponding to the dilution rate for the reactor. These
equations exactly describe the addition and removal of species in microfluidic devices
which may be modeled as continuous stirred-tank reactors. Our analysis of open and closed
systems may be used to distinguish between the effects of batch-mode operations and
continuous operations on the stochastic behavior of the chemical species undergoing the
same set of chemical conversion reactions.

Two measures are used to estimate the stochastic fluctuations of reactant concentrations:
the Fano factor and the coefficient of variance. We have shown that the equilibrium
distribution of all components is a Poisson distribution for open conversion networks, in
which case use of the Fano factor as the measure of noise leads to the prediction that the
fluctuations of all components in an open conversion reaction system are identical. Thus a
species that has a mean of 10 molecules will exhibit the same amount of noise as a species
that has a mean concentration of 1M. This is clearly not correct, and the use of the CV as
the measure of the noise will correctly predict that the noise is inversely proportional to
the square root of the mean value. The only instance when the use of the Fano factor has
a distinct advantage is when noise is defined as a deviation from the Poisson distribution.
Our work is the first instance where the two measures have been compared theoretically,
and we conclude that the only instance where either measure can be used to compare the
noise of two species is when the mean values are identical. We have also shown that the
use of the two measures leads to contradictory conclusions about the noise when the means
are not identical.

We use the example of a linear reaction chain with and without feedback to demonstrate
the effect of changes in the species interconnectivity on the dynamics of the evolution of the
moments of the distribution. For the same interconnectivity, the nature of the distribution
changes depending on whether the reactions are conversion reactions or catalytic reactions.
It has been shown for a catalytic chain whose mean values are equal at steady state that
the variance of the last species in the chain increases as the number of species in the
chain increasesThattai and van Oudenaarden, 2P0dut ultimately saturates for long
chains. We show with a counterexample that the ratio of the variance to the mean does not
show this saturation behavior when the steady-state mean values of all the components are
different.

The mathematical formulation that leads to a direct solution of the moment equations for
a well-stirred system can be extended to arbitrary networks of well-mixed compartments
that are coupled by diffusion. We demonstrate that the eigenvalues that govern the evolution
in such distributed systems are solutions of a one-parameter family of modified kinetic
matrices and thus one can formally display the solution for the first two moments in this
case as well. However much remains to be done for this case to develop computationally-
efficient algorithms.

We anticipate that the analytical framework presented here will be extended to the
stochastic analysis of nonlinear reaction networks, and our analysis of first-order reaction
network will lead to insights into the local linear behavior of such networks.
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Appendix

An alternate approach to the evolution equation for the MGF

To obtain the generating function for the first-order network, one may use the
Kolmogorov backward equation instead of the master equafidy {vhich is generally
used in the field of chemical reaction networks.

The Kolmogorov backward equation is given by

d
aE[f(N(t))] = E[AT(N@®)],

where
Af() =Y kST = F) + Y ki STESTHE(m) — ()
i

+I > ke (St f ) — f (H)) + Y ki) — F(y).
i i
Notice thatG(z, t) = E[[]z]" "], and therefore, taking (N(t)) = [z,
%G(Z’ b= %E [[12"] = Z ¢@ - DE[[T7""]
- ;kﬁ"”(;—; - 1> E[N O]
+ Z ki*(z — DE [N io[]7" (U]
1]
+ Zk{’ <z_1. - 1) E[nO T2

Using the fact that

E[NOTTZ ] =2 %E [[124“].
]

we obtain Eq. 24).

7 We thank a reviewer for pointing out this approach.
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Tensor products and the column operation

Here we record a few basic facts about tensor products ancoffaperation that are
used throughout.

Let X = (X1, X2,....%n)! andy = (y1, V2, ...,ym)".Then we define the tensor
product ofx andy as (cf.Othmer and Scriven (197 &nd references therein)

X®Y=(Xay, X1y, -, X1y)
= (X1Y1, X1Y2, - - - » X1 Y, X2Y1, X2, Y2, - - - » X2¥ns « - - XnYm) -
For anyn x n matrix B = [bjj ] and anrm x m matrixC, we define

b11C bioC ... binC
b21C poC ... bonC
B®C) = : . .

bn]_C hqzc e bnnC
Let B(i) be theith column of an x n matrix B. Then define theolumnoperation as

B(1)
B(2)
colB = .
B(‘n)
Then we have
BC(1) B C@
BC(2) B C@
col(BC) = : = . : = (I, ® B)colC.
BCM) B | \cm
Similarly

col(CB) = (BT ® In)colC.
We can use these results to rewri28)as follows. We have
V()Y =KV@O) + K V)T + M)+ I ()
and therefore
col(V(t)") = col(V (1)) + col(KV (t)T) + col(I'(t) + I'T (1)).

We apply the above to the first term on the right-hand side by seirg/C andC =V,
and to the second term by settiBg= X' andC = V, and noting tha¥ is symmetric.
This leads t046).

Evolution of the moments

We consider the differential equation for the second moment

dv
E—Vv-i-)/
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where

vt) =colV(t)) V=K®Ih+1h,®K) and yt)=col(l't)+I®)").
Since

[T ()] = KETEINj ()] + K EIN;]
andK S andMq are diagonal matrices,

y(@) =col(I"'(t) + I't)")
= col(K Mg (t) + (K®@Mg(t))T) 4 col(KSL(t) + (KSL(t)T)
= (KR In+ In ® KcolMg + (LT ® Iy + In ® LT)colKS.

Thus

Py (1) = Pjcol(K®Mq + (K®@Mg) " 4+ KSL + (KSL)T)
(P ® P)(K® Iy + 1n ® K®colMg
+Pj(LT ® In+ In® LT)colK®
= (RK®® Pj + P ® P;K®®)colMy
+(PLT®Pj + P ® PjLT)colK®.

We have that

—erit
PM() = R ((ZéitH)Mw)—Z—(l < )P.kS)

!
(1-¢eh

— it _
= e'PM(0) .

Rk®

and

PLT = RIM®)]--- IM()]
=[PM®]- - [RM()]
_ it

I

whereMg = [M(0)|M(0)| - - - IM(0)], andS = [k5|kS| - - - |k5]. Thus

=e'A Mo —

Piy() = (RK®® P + R @ P{K™)colMg
et |
(RS® Pj) + €' (R ® PjMo)

+ [e“(P. Mo ® Pj) — 1-
1— et

]

(P ® P S)} colK®
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and therefore

v = e’ (0) +/ e’y (t)dr

t
zze(xi“j)tpljv(o)_l_/o Ze()ni'l-)»j)(t—‘f)Pljy(r)dT
N N

e()~|+)hj)t e}tit
= Ze@'“ﬂtp v(0) + Z <7(F‘. Mo ® Pj)

1 vy . wy
+ (—“_ (e At — e (Mt — 1)) (PK*® P))
7]

MO + i)
e+t _ ghit

- (P ®P Mo)+( (@t e
]

i
_ #(e()»i-i')\j)t -1 (P ®P KS) colKS
A (i +A)) e
t
+ Z/ TR KA S P + P @ Pj K col Mydr.

Using the fact thatol(ABC) = (CT ® A)col B, we obtain

e ghi+At _ ghit
V() =Y M IUPVOPRT+ Y A7_)[%5(9 Mo)"]
iJ iJ !

<e<xi+xj>t _ehit @it _q

)[PJKS(H SN

Aikj EY)

(Ai+Ajt _ e)tj

e i

[P MoK P
A
e()»i‘f‘)\j)t_e)\jt e()»i—'r)\j)t_l
+ - [PjSK°R]

Aidj Ai(Ai +Aj)

t
+ Z/ e()ni-l—)nj)(t—r)(Pj Md(PI KC&I)T + Pj KC&IMd PiT)dT.

Thus
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+ ( [P SKSPT)

Aidj B A +4)
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L) (t— T T
+ Z/O e()\|+)nj)(t T)(Pj Md(PI Kcat) _I_PjKCathPi )” dr.
1]
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Pj1iM1 Pj12M2 -+ PjinMp
Pj2iM1 Pj22Mz -+ PjanMp
PiMg = . . . .
PjniM1 Pjn2aM2 -+ PjanMp
D T RGKE Y P KE - Y P K
j i j
D o RLKE Y PoK§E e Y P K
(P Kcat)T — j j i
D P KE Y P KR - Y Rn KR
L] i j |
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j
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j j
= Z Piik MkC(i, k, 1)
K
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Ca. k=Y Py KR
j
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[Py K@MaPT I =) PimMmC(j. k. ).
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t
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After some computation we get
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and ‘©’ is componentwise matrix multiplication.
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If there is no catalysis in the system, then
Dd, j,k,Ih)=0
and we have

o (t) = — ) e" IR © PIM(0))
L

1
£y [rmon + B3 Lemien.

Detalils for the proof of the binomial distribution

P(Ni(t) = m, Na(t) = N —m)
N
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m N-—m+k i i
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N
= (m> (P20 pr(1, 1) + p2(0) pr(2, )™
x (p1(O) pr(L, 2) + p2(0) pr(2, 2)N~™
N
= (m) (P (p2t)N~™, by (52)

where we used the fact that

(O CRE) )

_ K+ D! (N — (k+ D) N!
kI M=KIN =1 —=m)! (K+DIN = (K+1))!
N! m! (N —m)!

m!i(N —m)! (m— Kk TN —m —1)!
N m N—m
- <m> (k) < I )
Queuing theory and chemical reaction networks

There are formal similarities between chemical reaction networks and queuing networks
(Arazi et al., 2003 that can be used to translate results between the two contexts.
For example, the following shows that an open conversion network is equivalent to an
M/M /oo queuing network.

Consider an irreducible or strongly connected network consisting ¥ /oo queues
with s stations. The notatioM/M/oco means Poisson arrivals, exponential service
time and an infinite number of servers. The scheme of this queuing network is as

follows:

l, aj; l, aj
Arrivals Arrivals
Aij
M/M /oo P M/M /oo
Station i (Passage between stations) Station j
L di v d;
Departure Departure

e Each station haM/M /oo queuing scheme.

e g = rate of arrivals from outside the network into station

e When station hasn occupants, then individuals may depart the system atrate
¢ A customer leaving stationgoes to statiorj with probabilityx;j, fori # j.

The connection between the network Bf/M/oco queue and the open conversion
network is as follows.
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Network of M/M /oo queues Open conversion network

Station Species

Customer Molecule

Number of customers in station Number of molecules of species
Arrival of a customer from outside the system Production of a molecule from source
Departure out of system Degradation

Transition fromith to jth station Conversion frorth species

to jth species

From this table we can see tHsdi(t), the number of customers in thih station at time
t, corresponds to the number of molecules ofittiespecies at timg, and the rate can
be considered d¢’, di ask{ andij asK ©".

It can be shown that in a network &fi/M /oo queues the stationary distribution is
Poisson. Furthermore, the distributionsNif(t), . . ., Ns(t) for each timed are independent
Poisson if the system is empty initiallip(rrett, 1999.
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