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Abstract

A stochastic model for a general system of first-order reactions in which each reaction may
be either a conversion reaction or a catalytic reaction is derived. The governing master equation
is formulated in a manner that explicitly separates the effects of network topology from other
aspects, and the evolution equations for the first two moments are derived. We find the surprising,
and apparently unknown, result that the time evolution of the second moments can be represented
explicitly in terms of the eigenvalues and projections of the matrix that governs the evolution of the
means. The model is used to analyze the effects of network topology and the reaction type on the
moments of the probability distribution. In particular, it is shown that for an open system of first-
order conversion reactions, the distribution of all the system components is a Poisson distribution
at steady state. Two different measures of the noise have been used previously, and it is shown that
different qualitative and quantitative conclusions can result, depending on which measure is used.
The effect of catalytic reactions on the variance of the system components is also analyzed, and the
master equation for a coupled system of first-order reactions and diffusion is derived.
© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the time-dependent behavior of a system of interacting species is
necessary for analyzing numerous problems, including the dynamics of chemical reactions,
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gene expression profiles, signal transduction, and other biochemical processes. Many of
these systems are characterized by low numbers of interacting species: for example, gene
transcription involves interactions between 1–3 promoter elements, 10–20 polymerase
holoenzyme units, 10–20 molecules of repressor proteins, 3000 RNA polymerase
molecules, and ca. 1000 ribosomes (Kuthan, 2001). Since interactions at the molecular
level are inherently stochastic there is an inherent “irreproducibility” in these dynamics,
which has been demonstrated experimentally for single cell gene expression events
(Ozbudak et al., 2002; Spudich and Koshland, 1976; Levsky and Singer, 2003). A major
unsolved problem is to understand how the interplay between the nature of the individual
steps and the connectivity or topology of the entire network affects the dynamics of the
system, irrespective of whether a deterministic or a stochastic description is the most
appropriate. In this paper we formulate and analyze the master equation that governs
the time evolution of the number density of species that participate in a network of
first-order reactions. The network may comprise both conversion reactions of the form
A → B, in which one component is converted to another, and catalytic reactions of

the formφ
B−→ A, in which the rate of formation of a particular component depends

on the concentration of the other (the catalyst), but the concentration of the catalyst is
unchanged by the reaction. This is the first step in the analysis of higher-order reaction
networks.

There are numerous examples of first-order reaction networks that involve a small
number of molecules, for which this analysis is directly applicable. Transcription
and translation have been modeled as first-order catalytic reactions (Thattai and van
Oudenaarden, 2001). The evolution of the surface morphology during epitaxial growth
involves the nucleation and growth of atomic islands, and these processes may be described
by first-order adsorption and desorption reactions coupled with diffusion along the surface.
Proteins exist in various conformational states, and the reversible transitions between
states may be described as a first-order conversion processes (Mayor et al., 2003).
Fluctuating protein conformations are important in the movement of small molecules
through proteins such as myoglobin; hence it is important to understand the distribution
of these states (Iorio et al., 1991; Austin et al., 1975). RNA also exists in several
conformations, and the transitions between various folding states follow first-order kinetics
(Bokinsky et al., 2003).

One of the earliest investigations of stochastic effects in reactions is byDelbruck (1940),
who studied the distribution of the number of molecules for a single reacting species
in an auto-catalytic one-component system, and derived an expression for the variance
as a function of the mean and initial values of the mean and variance.Siegert (1949)
derived the probability distribution for the momentum of a gas as a function of time,
and formulated the first stochastic model of a system of first-order conversion reactions,
using a matrix formulation to derive the master equation for first and second-order
reaction networks. He also outlined the generating function approach for characterizing
the distribution of the network components. The system he studied is equivalent to a
closed system (i.e., the total mass is conserved) of conversion reactions. He proved that
one eigenvalue of the matrix of reaction rate constants is zero and the rest are real
and negative. Unfortunately, this important work was largely overlooked in the field of
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stochastic chemical reaction kinetics for more than a decade, untilKrieger and Gans
(1960)re-derived these results formulating the problem as a chemical reaction network
problem.

Klein (1956) used Siegert’s results to analyze the Ehrenfest Urn problem, in which
balls are transferred between two urns with given probabilities. Klein treated the number
of balls in an urn as a measure of the occupancy of an energy state, and calculated the
probability of the number of balls in an urn as a function of the transition probability
and the initial distribution. This can be interpreted as a closed system with one first-order
reversible reaction, with the urns characterizing the reactant and product of the reversible
reaction. He showed that the stationary distribution is independent of the initial distribution,
but assumed that transitions occur at fixed intervals of time.Kendall (1948)formulated
a master equation for a birth–death process starting with one ancestor and computed
the extinction time of the population. He also discussed the case of time-dependent rate
constants. Birth processes may be modeled as auto-catalytic production reactions and death
as a first-order degradation reaction.Bartholomay (1958)was apparently the first to derive
the master equation for a unimolecular reaction allowing steps at random times, and he
used the generating function approach to calculate the mean and standard deviation of the
number of reactant molecules. He also showed that the stochastic process is “consistent
in the mean” with the deterministic description, and later showed how to calculate the
observed first-order rate constant (Bartholomay, 1959).

At about the same timeMontroll and Shuler (1958)modeled chemical decomposition as
a random walk between reflecting and absorbing barriers, andKim (1958)computed mean
first passage times for general first-order stochastic processes.Shuler (1960)analyzed the
relaxation kinetics of a multi-state system, which is equivalent to a closed first-order system
of reversible conversion reactions, and pointed out that there was no single characteristic
“relaxation time”. He re-derived the property that such a system cannot exhibit any form
of periodic behavior, and showed that the relaxation of any one of the moments of the
distribution does not convey any information about the relaxation of the distribution.

A systematic analysis of a closed system of first-order conversion reactions was done
by Krieger and Gans (1960), who showed that a multinomial distribution characterizes the
temporal evolution of the system. This generalized results of Montroll and Shuler, who had
proved that the end states were characterized by a multinomial distribution. Gans extended
this and previous analyses of closed systems to an open system of first-order conversion
reactions (Gans, 1960). FollowingKrieger and Gans (1960), he derived a condition for the
eigenvalues associated with the evolution of the mean to be negative(αi i ≤ −∑

j αi j ),
but did not analyze the evolution of the higher moments or their relation to the mean.
McQuarrie (1963)derived solutions for the mean and variance of closed systems with
reactions of the type asA → B, A � B, and A → B, A → C. He also discussed the
use of a cumulant generating function as a method of generating lower-order moments.
Gani (1965)formulated a birth–death model for bacteriophage kinetics that was similar to
an open system model for one species.Fredrickson (1966)computed the stochastic mean
and variance for the concentrations in a closed cyclic ternary system, and again showed
that these moments do not oscillate in time.Darvey and Staff (1966)presented the first
derivation for the time-dependent mean and variance of all the species present in a closed
system with first-order conversion reactions. They derived an expression for the moment
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generating function for a case when only one species is present initially, and showed that
the first moment is the same as the solution of the corresponding deterministic system, but
did not analyze the evolution of the variance.

Other processes such as the waiting times in a queue have also been analyzed, and some
of these results can be applied to reaction networks.Kelly (1979) considered reversible
queuing processes in which “customers” enter a queue either with a defined distribution
from a source or defined transition probabilities from other queues. Every queue has a finite
number of “servers”, with a characteristic waiting time associated with the service. The
entry into a queue from another queue can be regarded as a conversion process, entry from
the source is equivalent to production from the source, and service can be thought of as a
degradation process that removes customers from the queue. A pure conversion process can
be considered as an infinite server queue (seeAppendix), but catalytic reactions have no
apparent analog in queuing theory. Kelly considered several aspects of the process, such
as whether it was open or closed, and the nature of the connections between the queues
(linear vs. looped), and derived the important result that the equilibrium distribution for a
closed system tends to the equilibrium distribution for an open system when the number of
individuals is large. We show later that this result is also true for open and closed systems
where all the reactions are first-order conversion reactions. For a particular class of open
migration processes in which the transition probabilities between queues (or colonies) is
proportional to the number of individuals in the colony, Kelly proved that the number of
individuals in each queue has a Poisson distribution, assuming that the inflow of individuals
to queues (or colonies) from outside the system (source) are Poisson processes. If one
considers each colony to be a distinct species, the open migration process is equivalent
to an open conversion reaction system, and the proof for the stationary distribution of the
number of individuals in each colony stated byKelly (1979)may be considered as another
proof for the distribution of the number of each species in an open conversion network
that we derive later. Branching Markov processes also give rise to problems with a similar
mathematical structure to that in kinetics (Harris, 1963; Athreya and Ney, 1972). Athreya
and Ney (1972)considered continuous-time, multi-type branching processes initiated by
one particle of each type and derived first and second moments of the distribution of the
number of particles of each type. Catalytic reactions can be interpreted as the death of a
particle with two offspring, one identical to the original and the other possibly different,
but a systematic analysis of the effect of catalytic reactions on the resulting probability
distribution has not been reported earlier to our knowledge.

Thattai and van Oudenaarden (2001)presented the first analysis of a system of first-
order catalytic reactions. They formulated a procedure for deriving the master equation for
such systems, similar to the general procedure given inGardiner (1983). They incorporated
a negative feedback regulation of some reactions (production from source), and derived
the steady-state means and covariances for a system of catalytic transformations with
one source term, and first-order degradation of all the species. Recently,Brown (2003)
derived the probability of the number of forward and reverse steps in a reversible first-
order conversion reaction in which the transition probabilities are time-dependent.

A major objective of many of the analyses treating biological systems is prediction
of the stochastic variations or noise of the concentrations. Two measures of the noise
have been used in the past. Until recently the standard measure was the coefficient of
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variation (CV), defined as the standard deviation divided by the mean (Delbruck, 1940;
Singer, 1953; Kepler and Elston, 2001), or its square. The CV is used as a measure of noise
in McQuarrie et al. (1964), Darvey et al. (1966), Laurenzi (2000), Elowitz et al. (2002)and
Swain et al. (2002), while the Fano factorF , defined as the variance divided by the mean,
was introduced byThattai and van Oudenaarden (2001), and used inBlake et al. (2003)
andOzbudak et al. (2002). It has been shown that the use of different measures of noise
may lead to different conclusions concerning the importance of noise in the underlying
process (Swain et al., 2002).

Our objectives here are (i) to introduce a derivation of the master equation that clarifies
the separate roles of reaction rates and network topology in the master equation, (ii)
to develop a unified treatment of first-order networks, including the evolution of both
the mean and the variance of any species and (iii) to understand the effect of network
topology on the stochastic fluctuations in specified components. We compare the noise in
the amount of a species as measured by the Fano factor or the coefficient of variation
for both conversion and catalytic reactions, as well as for species in open and closed
systems. We also demonstrate through simple examples the utility of this framework in
the analysis of the effect of reaction network topology on the variation of the number
of molecules of each network component. All of the preceding analyses can be treated
as special cases of the general framework that we develop here. No previous analysis
of first-order reaction systems has to our knowledge considered a system consisting of
both catalytic and conversion reactions, nor has a systematic comparison of the stochastic
behavior of conversion and catalytic systems been made.

2. Formulation of the master equation

We first derive the master equation for a general system of reactions to provide a
framework for the analysis of reactions of arbitrary order. We then focus on first-order
reactions and specialize the general result for a very large class of first-order processes.

2.1. The master equation for a general system of reactions

We begin with some background on a general deterministic description of reacting
systems, and then derive the master equation for an arbitrary network of reacting species.
The abstract formulation is presented in brief here and follows that given elsewhere
(Othmer, 1979, 1981).

Suppose that the reacting mixture contains the setM of s chemical speciesMi that par-
ticipate in a total ofr reactions. Letνi j be the stoichiometric coefficient of thei th species
in the j th reaction. Theνi j are non-negative integers that represent the normalized molar
proportions of the species in a reaction. Each reaction is written in the form

reac.∑
i

νreac
i j Mi =

prod∑
i

ν
prod
i j Mi j = 1, . . . , r, (1)

where the sums are over reactants and products, respectively in thej th reaction. In this
formulation, the forward and reverse reaction of a reversible pair are considered separately
as two irreversible reactions.
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For each reaction, once the reactants and products are specified, the significant entities
so far as the network topology is concerned are not the species themselves, but rather
the linear combinations of species that appear as reactants or products in the various
elementary steps. FollowingHorn and Jackson (1972), these linear combinations of species
will be called complexes. A species may also be a complex (as is the case for first-order
reactions). We assume that changes in temperature, pressure and volumeV of the mixture
during reaction are negligible. Thus the state of the system is specified by the concentration
vector c = (c1, . . . , cs)

T , whereci is the non-negative concentration of speciesMi

measured in moles/liter.
Let M̂ be the set of linear combinations with integral coefficients of the species, and

let C = {C(1), . . . , C(p)} be a set of complexes. Areaction networkconsists of the triple
{M,M̂, C}, together with a stoichiometric function̂ν : M̂ → C and a binary relation
R⊂ C × C. The functionν̂, which identifies a linear combination of species as a complex
is onto, and the relationR has the properties (i)(C(i ), C( j )) ∈ R if and only if there
exists one and only one reaction of the formC(i )→ C( j ), (ii) for every i there is aj 
= i
such that(C(i ), C( j )) ∈ R, (iii) (C(i ), C(i )) 
∈ R. Thus every complex is related to at
least one other complex and the trivial reactionC(i ) → C(i ) that produces no change
is not admitted. ThereforeR is never reflexive and in general it is neither symmetric nor
transitive.

The relation onC gives rise to a directed graphG in the following way. Each complex
is identified with a vertexVk in G and a directed edgeE	 is introduced intoG for each
reaction. Each edge carries a non-negative weightR̂	(c) given by the intrinsic rate of the
corresponding reaction.G provides a concise representation of the reaction network.

The topology ofG is in turn represented in its vertex–edge incidence matrixE , which is
defined as follows.

Ei	 =


+1 if E	 is incident atVi and is directed toward it
−1 if E	 is incident atVi and is directed away from it
0 otherwise.

(2)

If there arer reactions onC, thenE has p rows andr columns and every column has
exactly one+1 and one−1. The rateR̂	(C) of an elementary reactionC( j ) → C(k)

is generally not a function ofC( j ), but of the concentration or activity of the individual
species in the complex. Once the complexes and reactions are fixed, the stoichiometry of
the complexes is specified unambiguously, and we letν denote thes× p matrix whose
j th column encodes the stoichiometric amounts of the species in thej th complex. Then
the temporal evolution of the composition of a reacting mixture is governed by

dc

dt
= νER̂(c), (3)

where the columns ofν are given by the columns ofνreacandνprod, and the initial condition
is c(0) = c0. It follows from (2) that the columns of the productνE are the stoichiometric
vectors of reactions written according to the standard convention. When the reactions are
first-order this deterministic equation also governs the evolution of the mean in the Markov
process description discussed later.
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A special but important class of rate functions is that in which the rate of the	th reaction
can be written as

R̂	(c) = k	Rj (c) (4)

for every reaction that involves thej th complex as the reactant. This includes ideal mass
action rate laws, in which the rate is proportional to the product of the concentrations
of the species in the reactant complex, each concentration raised to a power equal to the
stoichiometric coefficient of the corresponding species in the complex. In that case

Rj =
s∏

i=1

(ci )
νi j . (5)

For mass-action kinetics (4) implies that

R̂(c) = K R(c) (6)

whereK is anr × p matrix with k	 j > 0 if and only if the	th edge leaves thej th vertex,
andk	 j = 0 otherwise. The topology of the underlying graphG enters intoK as follows.
Define the exit matrixEo of G by replacing all 1’s inE by zeros, and changing the sign of
the resulting matrix. Let̂K be ther × r diagonal matrix with thek	’s, 	 = 1, . . . , r , along
the diagonal. Then it is easy to see thatK = K̂ET

0 and therefore

dc

dt
= νEK R(c) = νE K̂ET

o R(c). (7)

It follows from the definitions that (i) the(p, q)th entry, p 
= q, of E K̂ET
0 is nonzero

(and positive) if and only if there is a directed edge(q, p) ∈ G, (ii) each diagonal entry
of E K̂ET

0 is minus the sum of thek’s for all edges that leave thej th vertex, and (iii) the

columns ofE K̂ T
0 all sum to zero, and so the rank ofE K̂ET

0 is≤ p−1. When all complexes
are species and all reactions are first-order,ν = I for a closed system andν = [I | 0] for an
open system, where I is thes×s identity matrix and0 is the zero vector, and the right-hand
side reduces to the usual formK c for a suitably-defined matrixK . In the following section
we will treat the stochastic analysis of first-order systems in detail.

As it stands, (5) includes all reacting species, but those whose concentration is constant
on the time scale of interest can be deleted from each of the complexes in which it appears
and its concentration or mole fraction can be absorbed into the rate constant of that reaction
in which it participates as reactant.3 As a result of these deletions, it will appear that
reactions which involve constant species do not necessarily conserve mass. Furthermore,
some complexes may not comprise any time-dependent species; these will be called zero
or null complexes. Each null complex gives rise to a column of zeros inν and the rate
of any reaction in which the reactant complex is a null complex is usually constant. For
instance, any transport reaction of the formM0 → Mi introduces a null complex and
the corresponding flux ofMi represents a constant input to the reaction network, provided
that the rate of the transport step does not depend on the concentration of a time-dependent
species. Of course, a constant species that appears in a complex which also contains a

3 Hereafters will denote the number of species whose concentration may be time-dependent.
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variable species likewise represents an input to the network, and to distinguish these from
inputs due to null complexes, the former are calledimplicit inputsand the latter are called
explicit inputs.

An alternate description of the deterministic dynamics is obtained by introducing an
extent for each reaction and expressing composition changes in terms of extents. It follows
from (3) that the composition changes due to reaction lie in a coset byc0 of the range ofνE ,
and this coset is called the reaction simplex (Othmer, 1979, 1981). Therefore, by choosing
coordinates in the simplex, the composition changes can be expressed in terms of an extent
for each reaction as follows

c = c0+ νEξ. (8)

If the reactions are all independent, i.e. if the rank ofνE is r , it follows from (3) and (8)
that

dξ

dt
= R̂(c0+ νEξ), (9)

but in general we can only conclude that

dξ

dt
= R̂(c0+ νEξ)+

∑
k

γkNk, (10)

where{Nk} is a basis for the null space ofνE . Theγk can be chosen so as to remove all
dependent steps, in particular, those that arise from cycles in the graph.

We can also describe the evolution in terms of the number of molecules present for
each species. Letn = (n1, n2, . . . , ns) denote the discrete composition vector whose
i th componentni is the number of molecules of speciesMi present in the volumeV . This
is the discrete version of the composition vectorc, and they are related byn = NAV c,
whereNA is Avogadro’s number. From (3) we obtain the deterministic evolution forn
as

dn

dt
= νER̃(n) (11)

whereR̃(n) ≡ NAVR̂(n/NAV). In particular, for mass-action kinetics

R̃	(n) = NAV k	R j (n/NAV) = NAV k	

s∏
i=1

(
ni

NAV

)νi j

= k	

(NAV)

∑
i

νi j −1

s∏
i=1

(ni )
νi	 = k̂	

s∏
i=1

(ni )
νi j . (12)

The number of molecules can be expressed in terms of the integer extents of each
reaction as

n = n0+ νEη, (13)

and it follows from (11) that

dη

dt
= R̃(n0 + νEη)+

∑
k

γkNk. (14)
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The description in terms of the number of molecules present assumes that there are
sufficient numbers present so that we can assume they vary continuously in time, but the
same assumption is needed for (4).

2.2. The stochastic description

The first level of stochastic description is to consider an ensemble of deterministic
systems that differ in the initial condition. LetP(c, t) be the probability that the state
of the system isc; then the evolution ofP is governed by

∂ P

∂ t
+

s∑
i=1

∂

∂ci

(
(νE R̂(c))i P

)
= 0 (15)

subject to the initial conditionP(c, 0) = P0. The characteristic equations for this
hyperbolic equation are precisely the evolution equations given at (3).

At the next level of description the numbers of the individual components are followed
in time and the reactions are modeled as a continuous-time Markov jump process. LetNi (t)
be a random variable that represents the number of molecules of speciesMi at timet , and
let N denote the vector ofNi s. Further, letP(n, t) be the joint probability thatN(t) = n,
i.e., N1 = n1, N2 = n2, . . . , Ns = ns. Clearly the state of the system at any time is now
a point inZs

0, whereZ0 is the set of non-negative integers. Formally the master equation
that governs the evolution ofP is

d

dt
P(n, t) =

∑
m∈S(n)

R(m, n) · P(m, t) −
∑

m∈T (n)

R(n, m) · P(n, t) (16)

whereR(m, n) is the probability per unit time of a transition from statem to staten,
R(n, m) is the probability per unit time of a transition from staten to statem, S(n) is
the set of all states that can terminate atn after one reaction step, andT (n) is the set of
all states reachable fromn in one step of the feasible reactions. The notation is meant to
suggest the ‘source’ and ‘target’ states atn; one could also callS(n) the predecessors of
staten andT (n) the successors of staten. The predecessor states must be non-negative
for production reactions and positive for conversion, degradation and catalytic reactions.
Similar bounds on the target states are naturally enforced by zero rates of reaction when
the reactants are absent.

The setsS(n) andT (n) are easily determined using the underlying graph structure.
It follows from the definition ofν andE that the	th reactionC( j ) → C(k) induces a
change�n(	) = νE(	) in the number of molecules of all species after one step of the
reaction, where subscript	 denotes the	th column. Therefore the statem= n− νE(	) is a
source or predecessor ton under one step of the	th reaction. Similarly, states of the form
m = n + νE(	) are reachable fromn in one step of the	th reaction.4 Once the graph of
the network and the stoichiometry are fixed, we can sum over reactions rather than sources

4 A slightly more abstract way of stating this is that each complex defines an equivalence classE ⊂ Zs
0, and

the change in number of molecules due to one step of thekth reaction lies in the directionν( j ) − ν(i ) in Ei ∩ Ej .
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and targets, and consequently the master equation takes the form

d

dt
P(n, t) =

∑
	

R	(n− νE(	)) · P(n− νE(	), t)−
∑

	

R	(n) · P(n, t). (17)

However, the transition probabilitiesR	(n) are not simply the macroscopic ratesP̂ if the
reactions are second-order (or higher), because asGillespie (1976)and others have noted,
combinatorial effects may play a significant role when the number of molecules is small.
Hereafter we restrict attention to mass-action kinetics, and we suppose that the	th reaction
involves conversion of thej th to thekth complex:C( j )→ C(k). Then using the notation
of Gillespie (1976), we can write,

R	 = c	h j (	)(n) (18)

wherec	 is the probability per unit time that the molecular species in thej th complex
react, j (	) denotes the reactant complex for the	th reaction, andh j (	)(n) is the number of
independent combinations of the molecular components in this complex. Thus

c	 = k	

(NAV)

∑
i

νi j (	)−1
= k̂	 (19)

and

h j (	) =
∏

i

(
ni

νi j (	)

)
. (20)

In the definition ofh we use the standard convention that
( n

0

) = 1.
We can write the master equation in terms of integer extents in the form

d

dt
P̃(η, t) =

∑
	

R	(n0+ νEη − νE(	)) · P(n0 + νEη − νE(	), t)

−
∑

	

R	(n0+ νEη) · P(n0 + νEη, t)

=
∑

	

R̃	(η − νE(	)) · P̃(η − νE(	), t)−
∑

	

R̃	(η) · P̃(η, t). (21)

Moments of this equation or of (16) can be used to obtain the evolution equations for
average extents and from this, the equations for the average change in the numbers.
Only in the linear case is the right-hand side of the equation for the first moment the
deterministic rate, as is shown in the following subsection. Others have derived a similar
master equation for reacting systems, without the explicit inclusion of the underlying
graph-theoretic structure (Gardiner, 1983; Rao and Arkin, 2003).

2.3. The master equation for general system of first-order reactions

The stochastic analysis of first-order reaction networks can be done in essentially
complete generality, and in this section we analyze all cases in which every reactant and
product complex is a species. We thereby exclude only those first-order splitting reactions
of the typeMi → M j + Mk. Our aim is to separate the effects of various types of
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Table 1
The four classes of first-order reactions considered in the stochastic model

Label Type of reaction Reaction Rate

I Production from a source φ →Mi ks
i

II Degradation Mi → φ kd
i ni

III Conversion M j →Mi kcon
i j n j

IV Catalytic production from source φ
M j−→Mi kcat

i j n j

reactions (catalytic, conversion) on the distribution of the chemical species, and to this end
we divide the set of all reactions, represented by the directed edgesE	, 	 = 1, 2, . . . , r
into four subsets corresponding to the following reactions: production from a constant
source (which in fact is a zero-order step), degradation, conversion to another species, and
production catalyzed by another species. These four types are summarized inTable 1. The
first type represents an explicit input to the system, whereas the last type represents an
implicit input.

Every speciesMi can be produced from a source at a specific rateks
i , and every

species can be removed by degradation at a rate proportional to its concentration, with
rate constant given bykd

i . Each species may participate in two other types of first-order
reactions: conversion reactions, in which speciesMi is converted to speciesM j at a rate
proportional to its concentration, and catalytic reactions, in which speciesMi catalyzes
the formation of speciesM j from a source, but is itself unchanged during the process. The
first-order rate constant for the conversion reaction of speciesMi to speciesM j is denoted
by kcon

j i , and the first-order rate constant for the catalytic production of speciesM j , with
speciesMi catalyzing the reaction, is denoted bykcat

j i . Thus there ares uncatalyzed source

reactions,s first-order decay reactions,s(s− 1) conversion ands2 catalytic reactions, for
a total of up to 2s2+ s reactions.

Since all reactant and product complexes are species, the stoichiometric matrix is

ν = [ I | 0 ]
if at least one reaction of type I, II, or IV is present, and

ν = [ I ]
if the system is closed. The corresponding incidence matrices for the different types are
equally simple, and if we order the types as inTable 1, thenE can be written as follows.

E =
[

I

−1T

∣∣∣∣ −I

1T

∣∣∣∣ Econ
∣∣∣∣ I

−1T

]
(22)

where1T = (1, 1, . . . , 1), I is the identity matrix of the appropriate dimension, andEcon

is the incidence matrix for the conversion network. Thus the stoichiometry of the reactions
and the topology of the network are easily encoded inν andE , respectively.
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It follows easily that the deterministic equations for the first-order reaction network can
be written as

dc

dt
= K s1− K dc+ K catc+ K conc (23)

whereK s = diag{ks
i }, K d = diag{kd

i }, K cat
i j = kcat

i j andK con is defined as follows.

K con
i j =

{
kcon

i j if i 
= j

−
∑′

k
kcon

kj if i = j .

It is clear that type I and IV reactions induce an increase of 1 in the number of species
i without other changes, type IV induces a decrease of one ini alone, and type III induces
a decrease of one inj and an increase of 1 ini . Therefore, for reactions of type I the
predecessor state to staten is S−1

i n ≡ (n1, n2, . . . , ni − 1, . . . , ns), and the successor
state isS+1

i n ≡ (n1, n2, . . . , ni + 1, . . . , ns), whereSk
i is the shift operator that increases

the i th component ofn by an integer amountk. For degradation ofMi , the predecessor
state isS+1

i n and the successor state isS−1
i n. In type III reactions the predecessor state

is S−1
i S+1

j n and the successor state isS+1
i S−1

j n. Finally, for the catalytic reaction the

predecessor and successor states areS−1
i n andS+1

i n, respectively. Using these, the master
equation for the first-order reaction network can be written as follows (here and hereafter
we drop the explicit time dependence inP(., .)).

dP(n)

dt
=

s∑
i=1

[
K s

ii (S
−1
i − 1)P(n)+

s∑
j=1

(
K con

i j (S−1
i S+1

j )

+ K cat
i j (S−1

i − 1)− K d
i j (S

+1
i − 1)

)
(nj P(n))

]
(24)

whereSk
i (ni P(n)) = Sk

i ni · P(Sk
i n).

3. Evolution equations for the mean and variance

The master equation derived in the previous section cannot be solved analytically except
for a small number of specific simple systems. Usually the objective of a stochastic analysis
is to calculate the moments of the distribution of the number of reactant molecules. There
are several ways in which evolution equations for the moments of the distribution function
can be obtained. One is to multiply both sides of the master equation byni , ni n j , ni n j nk

etc and sum over all possible values ofn. Alternatively, one can use the moment generating
function (MGF) approach, which is what we use here to calculate the mean and variance
for all the reactants in an arbitrary network. The advantage of the MGF approach is that
it allows us to get an analytical solution for the MGF of purely conversion systems, thus
enabling the calculation of the probability distribution function for the distribution of each
reactant in such systems.
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Let z≡ (z1, . . . , zs) wherezi ∈ [0, 1]; then the MGF is defined as

G(z, t) =
∞∑

ni=0

zn1
1 · · · zns

s P(n).

It follows that G(z, t)|z=1 = 1. The first and second moments can be obtained through
successive derivatives of the MGF evaluated after setting allzi to one.

Mk(t) = ∂G(z, t)

∂zk

∣∣∣∣
z=1

≡ Gk(z, t)|z=1 = E[Nk]

Vlk(t) = Glk(z, t)|z=1 =
{

E[Nl Nk] if l 
= k
(E[N2

k ] − E[Nk]) if l = k

where E[ ] denotes the expectation of the quantity in the square brackets, and for any
combination of indices we define

Gijk ...,t = ∂

∂zi

∂

∂zj

∂

∂zk
· · · ∂

∂ t
G.

The probability distribution of the number of molecules of thei th species(Ni ) at steady
state can be derived from the MGF. Differentiating the MGFk times w.r.t.zi , we get

∂kG(z, t)

∂zk
i

=
∞∑

ni=k

ni !
(ni − k)!z

ni−k
i

∞∑
nj=0, j 
=i

zn1
1 · · · zni−1

i−1 zni+1
i+1 · · · zns

s P(n, t),

and therefore

∂kG(z, t)

∂zk
i

∣∣∣∣∣
zi=0,zj=1, j 
=i

= k!
∑

nj , j 
=i

Pn1,...,ni−1,k,ni+1,...,ns(t) = k!PNi (k, t),

wherePNi (k, t) represents the marginal probability density function ofNi . Therefore

PNi (k, t) = 1

k!
∂kG(z, t)

∂zk
i

∣∣∣∣∣
zi=0,zj=1, j 
=i

.

These relationships are valid for the MGF corresponding to any reaction network. In
the case of a system of reactions with first-order kinetics we obtain the partial differential
equation for the MGF as

Gt =
s∑

i=1

(zi − 1)

(
K s

ii G+
s∑

j=1

(K con
i j + K cat

i j zj − K d
i j )G j

)
. (25)

Alternatively, and somewhat more directly, one can use a backward equation to obtain
Eq. (25) (see theAppendix).

For simple network topologies with a small number of nodes, (25) can be solved analyt-
ically to get the complete characterization of the evolution of the probability distribution
function P(n). We shall later derive such expressions for systems where only conversion
reactions occur. However, this is not feasible for an arbitrary network structure, and there-
fore we first outline the procedure for obtaining the evolution equation for the moments,
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and then we focus on the first two moments. Differentiating Eq. (25) with respect tozk, we
obtain

Gk,t =
s∑

i=1

(zi − 1)

(
K s

ii Gk +
s∑

j=1

(K con
i j + K cat

i j zj − K d
i j )G jk + K cat

ik Gk

)

+
(

K s
kkG+

s∑
j=1

(K con
kj + K cat

kj zj − K d
kj )G j

)
. (26)

Therefore the evolution equation for the mean of thekth component is

E[Nk]′ =
s∑

j=1

(K con
kj + K cat

kj − K d
kj )E[Nj ] + K s

kk

or in matrix form

M(t)′ = (K con+ K cat− K d)M(t) + K s1 (27)

= KM(t) + K s1, (28)

where M(t) = [E[N1(t)], . . . , E[Ns(t)]]T and K is defined by the second equality.
From this one sees that the explicit inputs contained in the last term serve as a
nonhomogeneous forcing term for the evolution of the mean. This equation is identical
to Eq. (23) given earlier for the evolution of the deterministic first-order system. Therefore
a general stochastic system of first-order interactions is “consistent in the mean” with the
corresponding system for systems comprised of catalytic and conversion reactions, as is
well known (Darvey and Staff, 1966).

Higher moments of the distribution are obtained by successive differentiation of (25).
For the second moment we obtain

Glk,t =
s∑

i=1

(zi − 1)

(
K s

ii Gkl +
s∑

j=1

(K con
i j + K cat

i j zj − K d
i j )G jkl + K cat

ik Gkl

+ K cat
il Glk

)
+

(
K s

ll Gk +
s∑

j=1

(K con
l j + K cat

l j zj − K d
l j )G jk + K cat

lk Gk

)

+
(

K s
kkGl +

s∑
j=1

(K con
kj + K cat

kj zj − K d
kj )G jl + K cat

kl Gl

)
.

Thus the matrix containing the second-order moments can be written as

V(t)′ = KV(t)+ (KV(t))T + Γ (t)+ Γ T (t) (29)

where

Γi j (t) ≡ (K cat
i j + K s

ii )Mj (t).

It is noteworthy that in this equation both the implicit and explicit inputs, as well as the
mean, appear in the forcing term for the evolution of the second moments. In the equation
for the mean the forcing is time-independent, but here the forcing is time-dependent via the
appearance of the mean in this term. Later we will see how this time-dependence is filtered
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via the action of the kinetic matrix. The somewhat unusual structure on the right-hand side
arises from the fact thatV is a symmetric matrix, and thus the evolution equation for it
must be symmetric as well.

The equations for the mean and the second moments can be integrated to get the first
two moments of the distribution. Thus we now have an algorithm to compute both the
steady-state and time-dependent behavior of the mean and variance of every species in a
general first-order network. Next we analyze this behavior in detail.

3.1. The steady-state and time-dependent solution for the mean

The steady-state solutionMs for the mean is the solution of

KMs = −K s1 = −ks (30)

whereks = (ks
1, . . . , ks

s). The nature of the reaction types and rates, as reflected in the
spectral structure ofK, dictates the steady-state mean. In general, ifK is singular then
K s1 must lie in the range ofK, and in particular, if there are no explicit inputs(K s = 0)

thenMs
1 is given by an eigenvector corresponding to a zero eigenvalue ofK. On the other

hand, if degradation reactions are the only type present, and all species react, thenK is
nonsingular andMs

1 = 0 is the only solution. This case is of little interest and will be
excluded in what follows. Results concerning the localization of the spectrum ofK are
summarized in the following theorem.

Theorem 1. The eigenvalues ofK have non-positive real parts if either of the following
conditions hold.

(a) The sum of the specific rates of formation for each speciesMi by conversion and
catalytic reactions does not exceed the sum of the specific rates of loss ofMi by
conversion reactions and degradation (this implies that the column sums ofK are non-
positive).

(b) The sum of the specific rates of formation catalyzed by each speciesMi is less than
or equal to the sum of the specific rates of degradation of that species.

Proof. The statement in (a) can be translated into the inequality∑
j 
=i

K con
i j +

∑
j

K cat
i j ≤

∑
j 
=i

K con
j i + K d

ii . (31)

Since all the terms are non-negative,each of the terms on the left-hand side of the inequality
is less than the right-hand side. In particular,

K cat
ii ≤

∑
j 
=i

K con
j i + K d

ii , (32)

and therefore

Ki i = K con
ii + K cat

ii − K d
ii (33)

= −
∑
j 
=i

K con
j i + K cat

ii − K d
ii (34)

≤ 0. (35)



916 C. Gadgil et al. / Bulletin of Mathematical Biology 67 (2005) 901–946

Using the definition ofK con
ii andKi i , we can rewrite (31)∑

j 
=i

[K con
i j + K cat

i j ] ≤ −[K con
ii + K cat

ii − K d
ii ] (36)

∑
j 
=i

Ki j ≤ −Ki i . (37)

Now, bounds on the eigenvalues ofK are given by the Levy–Hadamard theorem (Bodewig,
1959), which states that for every eigenvalueλ of K,

|λ− Ki i | ≤
∑
j 
=i

|Ki j |.

Since the off-diagonal elements ofK are non-negative, this can be written as

|λ− Ki i | ≤
∑
j 
=i

Ki j ≤ −Ki i (38)

where the second inequality follows from (37). SinceKi i < 0, it follows thatRe(λ) ≤ 0,
which proves (a).

To prove (b) we do a similar analysis, using the Levy–Hadamard theorem expressed in
terms of a sum over the columns ofK. The constraint (b) can be written as∑

j

K cat
j i ≤ K d

ii .

By reasoning similar to that used in the proof of (a), this constraint leads to the relations

Ki i ≤ 0∑
j 
=i

K j i ≤ −Ki i .

The Levy–Hadamard theorem applied to the columns ofK states that

|λ− Ki i | ≤
∑
j 
=i

K j i ,

and the proof of (b) now follows as before. �

Remark 2. (i) A special case of (a) shows that in a closed system the eigenvalues have
non-negative real parts, for in that caseK d

ii = 0, K cat
ii = 0 andK con

j j = −∑
i 
= j K con

i j . In
fact in that case it is known that the eigenvalues are all real as well if the system satisfies
detailed balance (Gans, 1960; Wei and Prater, 1962). If the underlying graph is strongly
connected, then there is exactly one zero eigenvalue (Othmer, 1979).

The theorem gives conditions for the stability of an arbitrary first-order system of
reactions in terms of the specific rates of the reactions. The first sufficient condition for
stability is easily understood, as it is expected that for stability of a system the specific
rates of production for all species should be less than the specific rates of degradation for
every component of the system. The second criterion, which requires that the rate at which
any component catalyzes the formation of other species is less than its degradation rate,
is less immediately obvious. This is however an important relationship that can be used
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to guarantee stability of the mean of artificial transcriptional networks. In particular, once
the inequality between the catalytic and degradation rates is satisfied, the system will be
stable irrespective of the conversion reactions in the system, and may be used in the design
of such networks. In the theory of branching processes condition b is equivalent to the
assumption that the offspring distribution has mean less than or equal to 1.

Further information about the structure of the solution can be gotten from a spectral
representation ofK. Hereafter we assume thatK is semisimple (i.e., it has a complete set
of eigenvectors), which is the generic case, and then it has the spectral representation

K =
∑

i

λi Pi (39)

whereλi is the i th eigenvalue ofK and Pi is the associated projection onto the span of
the eigenvectors associated withλi . SinceK is assumed to be semisimple, they have the
property that

∑
i Pi = I .

The projections have the representation

Pi =
mi∑

p=1

φp ∗ φ∗p (40)

wheremi is the algebraic multiplicity of thei th eigenvalue, ‘∗’ represents the dyad product,
and theφ’s andφ∗’s are the corresponding eigenvectors and adjoint eigenvectors, defined
via

Kφp = λi φp for p = 1, mi (41)

KT φ∗p = λi φ
∗
p for p = 1, mi . (42)

They can be chosen to satisfy the orthogonality relations

〈φ∗p, φq〉 =
mi∑
i=1

(φ∗p)i (φq)i = δpq

and the projection of any vector is defined as

Pi u ≡
(

mi∑
p=1

φp ∗ φ∗p

)
u =

mi∑
p=1

〈φ∗p, u〉φp.

WhenK is invertible the steady-state mean can be written as

Ms
1 = −

(∑
i

Pi

λi

)
ks = −

∑
i

mi∑
p=1

〈φ∗p, ks〉
λi

φp. (43)

Thus in the nonsingular case the steady-state mean is the weighted sum of projections
onto thei th eigenspace ofK, weighted by the corresponding eigenvalue. In particular,
projections corresponding to eigenvalues of large modulus contribute less to the sum
than those of small modulus. IfK has ad-dimensional null space there are vectors
{η1, η2, . . . , ηd} with the property that the functionals〈η, M〉 are time-invariant, and this
restricts the dynamics and steady-state solution to a lower-dimensional set. We leave the
details of this case to the reader.
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The transient solution of (28) is given by

M(t) = eKt M(0)+
(∫ t

0
eK(t−τ )dτ

)
K s1

=
(∑

i

eλi t Pi

)
M(0)+

(∫ t

0

∑
i

eλi (t−τ )Pi dτ

)
K s1

=
(∑

i

eλi t Pi

)
M(0)−

∑
i

(1− eλi t )
Pi

λi
K s1. (44)

Since eKt is non-negative, i.e. all its entries are non-negative, the solution remains non-
negative ifM(0) is non-negative. Therefore if there are no eigenvalues with a positive real
part the solution converges to a non-negative steady state. If the real part of all eigenvalues
is negative, the solution is globally asymptotically stable. However these conditions do
not guarantee that the solution has strictly positive components, i.e. that it does lie on the
boundary of the positive ‘orthant’ ofRs. Under stronger hypotheses one can guarantee that
the solution lies in the interior of the orthant, as shown in the following theorem.

Theorem 3. Suppose that the graphG associated with the reactions is strongly connected,
and that the eigenvalues ofK have negative real parts. ThenK−1 < 0 and if there is at
least one species produced by a source then the solution(30) is component-wise positive.

Proof. Notice thatK is irreducible since the graphG is strongly connected. WriteK =
K+ − κ I , whereK+ ≥ 0 andκ > 0. Observe thatK+ is also irreducible. Let

Q = −K = κ I − K+. (45)

Since the eigenvalues ofK have negative real parts by hypothesis, the eigenvaluesλ(Q)

of Q have positive real parts and

λ(Q) = κ − λ(K+).

Let ρ(K+) be the spectral radius ofK+; then by Perron–Frobenius theoremρ(K+) is
a simple positive real eigenvalue ofK+ and κ − ρ(K+) is an eigenvalue ofQ. Thus
κ − ρ(K+) > 0, i.e.,ρ(K+)/κ < 1. Sinceρ(K+)/κ < 1, the series

I + K+
κ
+

(K+
κ

)2

+ · · ·

converges, and so(
I − K+

κ

)−1

=
∞∑

n=0

(K+
κ

)n

.

Since(I + K+
κ

) is ans×s irreducible non-negative matrix with positive diagonal elements,
it can be obtained that(

I + K+
κ

)s−1

> 0,
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which implies that

I + K+
κ
+

(K+
κ

)2

+ · · · +
(K+

κ

)s−1

> 0.

Therefore

Q−1 = κ−1
(

I − K+
κ

)−1

= 1

κ

(
I + K+

κ
+

(K+
κ

)2

+ · · ·
)

> 0.

Thus Q−1 > 0, soK−1 < 0 and finally, if there is at least one species produced by a
source, i.e.,ks

i > 0 for at least onei , then

Ms = −K−1ks > 0.

Next we analyze the evolution of the second moment, and find that the conditions (a)
and (b) inTheorem 1will also guarantee the stability of the second moments.

3.2. Evolution of the second moment

One can show (cf.Appendix) that the evolution equation for the second moment (29)
can be written in the form5

dv

dt
= V v + γ (46)

where

v(t) = col(V(t)) V = (K⊗ In + In ⊗K) and γ (t) = col(Γ (t)+ Γ (t)T ).

Here the notationcol(A) denotes a vector of lengths2 whose elements are the columns of
A stacked in order (cf.Appendix). By the definition of the tensor product

V (φi ⊗ φ j ) = (K⊗ In + In ⊗K)(φi ⊗ φ j ) = Kφi ⊗ Inφ j + Inφi ⊗Kφ j

= (λi + λ j )(φi ⊗ φ j ), (47)

and thereforeφi ⊗ φ j are the eigenvectors ofK⊗ In + In ⊗ K corresponding toλi + λ j .
It follows that if Pi andPj are the projections associated with thei th and j th eigenvalues,
respectively, then

Pi j ≡ Pi ⊗ Pj =
(

mi∑
p=1

φp ∗ φ∗p

)
⊗

( mj∑
p=1

φp ∗ φ∗p

)
(48)

5 A reviewer has pointed out that the equation for second moments in the form (29) is solved formally i.e.
converted to an integral equation, inAthreya and Ney (1972)and estimates of the growth rate derived from this.
However, an explicit solution is not given.
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is the projection associated withλi + λ j . Consequently

V =
∑
i, j

(λi + λ j )Pi j .

After some simplification one finds (cf.Appendix) that the solution for the second moment
is

v = eV tv(0)+
∫ t

0
eV(t−τ )γ (τ )dτ

=
∑
i, j

e(λi+λ j )t Pi j v(0)+
∑
i, j

∫ t

0
e(λi+λ j )(t−τ )Pi j γ (τ)dτ

=
∑
i, j

e(λi+λ j )t Pi j v(0)+
∑
i, j

(
e(λi+λ j )t − eλi t

λ j
(Pi M0⊗ Pj )

+
(

1

λi λ j
(e(λi+λ j )t − eλi t )− 1

λi (λi + λ j )
(e(λi+λ j )t − 1)

)
(Pi S⊗ Pj )

+ e(λi+λ j )t − eλ j t

λi
(Pi ⊗ Pj M0)+

(
1

λi λ j
(e(λi+λ j )t − eλ j t )

− 1

λ j (λi + λ j )
(e(λi+λ j )t − 1)

)
(Pi ⊗ Pj S)

)
colKs

+
∑
i, j

∫ t

0
e(λi+λ j )(t−τ )(Pi K

cat⊗ Pj + Pi ⊗ Pj K cat)colMddτ, (49)

where M0 = [M(0)|M(0)| · · · |M(0)], S = [ks|ks| · · · |ks] and Md =
diag{M1(t), M2(t) · · ·Mn(t)}. From (49) and (47) it is clear that the time-dependent
behavior of the covariance is governed by the set of eigenvaluesλKi + λKj , and if the
eigenvalues ofK have negative real parts, so do the eigenvalues ofV . Thus the sufficient
conditions for the stability of the mean derived in the preceding section also guarantee the
stability of the second moment. For a closed system, one of the eigenvalues is zero and
hence the longest characteristic time for the evolution ofM andV will be identical. For an
open system, the characteristic time for the evolution of the second moment will be twice
as large as that for the evolution ofM. Note however thatVii = (E[Ni (t)2] − E[Ni (t)]),
and therefore this should not be interpreted to imply that the variance of the number of
molecules of a particular species evolves twice as rapidly as the mean.

From the expression forv, one obtains the variance of thel th species (cf.Appendix)
explicitly as

σ 2
l (t) = −

∑
i, j

e(λi+λ j )t (Pi � Pj M(0))l

+
∑

i

eλi t
[
(Pi M(0))l + (Pi ks)l

λi

]
−

∑
i

1

λi
(Pi k

s)l
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+
∑
i, j

∑
k

D(l , k, j )

[∑
r

(
(Pr M(0))k + (Pr ks)k

λr

)
fr,i, j (t)

− (Pr ks)k

λr (λi + λ j )
(e(λi+λ j )t − 1)

]
,

where

D(l , k, j ) = ((Pj )lkC(l , k, i )+ (Pi )lkC(l , k, j )),

C(l , k, i ) =
n∑

m=1

(Pi )lmK cat
mk

fr,i, j (t) =




1

λr − λi − λ j
(eλr t − e(λi+λ j )t ) if λr 
= λi + λ j

te(λi+λ j )t if λr = λi + λ j

and� denotes element-wise multiplication. Using the expression for the mean of the
l th reactant given in (44), we obtain the relationship between the mean and variance of
every species in the reaction network.

σ 2
l (t) = −

∑
i, j

e(λi+λ j )t
(
Pi � Pj M(0)

)
l + Ml (t)

+
∑
i, j

∑
k

D(l , k, j )

[∑
r

(
(Pr M(0))k + (Pr ks)k

λr

)
fr,i, j (t)

− (Pr ks)k

λr (λi + λ j )
(e(λi+λ j )t − 1)

]
. (50)

From this expression one can calculate the evolution of the Fano factorF = σ 2
l /Ml and

CV = σl /Ml for every species, and thus determine the effect of various network structures
and reaction types on the noise. We study several examples in the following section.

4. The effect of network structure on the dynamics

The master equation for a system of first-order chemical reactions reflects three major
characteristics of the system, (i) whether it is open or closed, (ii) the topology of the
network of the chemical interactions, and (iii) whether or not the reacting mixture is
spatially uniform, i.e., whether or not diffusive or other transport mechanisms play an
important role. The effect of each of these factors on the distribution of species undergoing
first-order catalytic and conversion reactions can be studied using the general results of the
preceding section.

4.1. Open and closed conversion systems

In the context of first-order reaction dynamics, catalytic systems are necessarily open
because they involve production from a source catalyzed by a time-dependent species
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(cf. Table 1). Thus the comparison of open and closed systems can only be made for those
in which there are no catalytic reactions. Therefore we compare open conversion networks
in which there is at least one Type I reaction and one Type II reaction, with closed networks
in which all reactions are type III and thus the total mass is constant.

The equation for the MGF for a system of stochastic conversion reactions can be
solved analytically (Gans, 1960; Darvey and Staff, 1966), and for closed conversion
networks it has been shown that the distribution is multinomial when the eigenvalues are
distinct (Darvey and Staff, 1966). We derive the general result via a backward equation.
For open systems we prove that the distribution is Poisson, and we demonstrate how the
choice of the noise measure leads to differing conclusions about the noise in open and
closed conversion networks.

4.1.1. Closed conversion systems
In a closed system of linear reactions the molecules independently execute a random

walk through the states, where the state of a molecule is the property of being a molecule
of type i ; i = 1, s, wheres is the number of species or states. We letX(t) be the random
process whose value att is the state of a given molecule. LetPi j be Pr{X(t) = j |
X(0) = i }; then the matrixP of transition probabilities satisfies the backward Kolmogorov
differential equation

dP(t)

dt
= K T P(t), (51)

whereK = K con. SinceP(0) = I , this has the solution

P(t) = eK T t .

If we denote bypi (t) the probability that the molecule is of typei at time t , then
p(t) = (p1(t), . . . , ps(t))T is the solution of

dp

dt
= K p

and therefore

p(t) = P(t)T p(0) = eK t p(0). (52)

Assume that the graph of the underlying network is strongly-connected; thenK has exactly
one zero eigenvalue and the equilibrium probability distribution is given by

πi = φ1,i∑
j

φ1, j
(53)

whereφ1 is the unique positive eigenvector ofK corresponding to the zero eigenvalue.
Now if there are a total ofN molecules in the system, the joint equilibrium distribution

is the multinomial distribution

π(n1, n2, . . . , ns) = N!
n1!n2! · · ·ns!

s∏
i=1

π
ni
i , (54)
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since there ares classes to put theN molecules into, and the probability of thei th class
is πi . In particular, the number of individuals of thei th species is binomially distributed
according to

π(ni ) =
(

N

ni

)
π

ni
i (1− πi )

N−ni . (55)

If in addition the joint distribution of molecular numbers of two species is multinomial
initially, then the joint distribution at any timet is also multinomial. First suppose there are
only two molecular species andN molecules initially. Then for 0≤ m ≤ N, one can show
that (see theAppendixfor details)

Pr(N1(t) = m, N2(t) = N −m)

=
N∑

i=0

Pr(N1(t) = m, N2(t) = N −m|N1(0) = i , N2(0) = N − i )

·Pr(N1(0) = i , N2(0) = N − i )

=
m∑

k=0

N−m+k∑
i=k

(
i

k

)(
pk

t (1, 1)pi−k
t (1, 2)

)(
N − i

m− k

)

×
(

pm−k
t (2, 1)pN−i−m+k

t (2, 2)
)(

N

i

)
p1(0)i p2(0)N−i

=
(

N

m

)
(p1(t))

m(p2(t))
N−m

where the last step follows from (52). Thus{N1(t), N2(t)} has a binomial distribution if
initially it has a binomial distribution. By induction, it follows that the joint distribution of
{N1(t), N2(t), . . . , Ns(t)} is multinomial if the initial distribution is multinomial. That is
to say, if the initial joint distribution of molecular numbers of species is multinomial, i.e.,

P(n, 0) ≡ Pr(N1(0) = n1, . . . , Ns(0) = ns) = N!
n1! · · ·ns! (p1(0))n1 · · · (ps(0))ns,

then the joint distribution at any timet is also multinomial and the density function is given
by

P(N1(t) = n1, . . . , Ns(t) = ns) = N!
n1! · · ·ns! (p1(t))

n1 · · · (ps(t))
ns,

where the probabilitiespi (t), 1 ≤ i ≤ s are given by (52).
It follows from (55) that the mean and variance for themth species at the steady state

are given by

Mm = Nπm = E[Nm]
σ 2(Nm) = Nπm(1− πm) = E[Nm]

(
1− E[Nm]

N

)
. (56)

Notice thatπm is the steady-state fraction of themth molecular species in a deterministic
description, and since this is fixed by the reaction rates, the varianceσ 2(Nm) does not
approach the mean even asN → ∞. Thus the distribution is never Poisson in a closed
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conversion network. The maximum variance is attained for that species for whichπm

is closest to 1/2. The Fano factorFm = 1 − πm is always less than 1 for allm, it is
independent ofN, and it is fixed entirely by the network topology and reaction rates. Thus
it is an inappropriate measure of stochastic fluctuations in these networks.

In contrast,

CVm = 1√
N

√
1− πm

πm
=
√

1− πm√
Mm

(57)

varies as 1/
√

N, while for fixed N it is monotone decreasing withπm. In both cases the
measures are smallest for the most-abundant species in the system.

4.1.2. Open conversion systems
Next we derive the steady-state distribution of species in an open conversion network.

HereK = K con− K d, and (25) can be written as

∂G

∂ t
−

s∑
j=1

s∑
i=1

Ki j (zi − 1)
∂G

∂zj
=

s∑
i=1

K s
i (zi − 1)G.

We find the solution of this PDE using the method of characteristics, analogous to the
procedure outlined byGans (1960). The result is that

G = exp

(
1

detΦ

s∑
i

K s
i

s∑
k

1

λk
Φki (eλkt − 1)

s∑
j

φkj (zj − 1)

)

·
∏

i

(
1+ 1

detΦ

∑
k

Φki
∑

j

φkj (zj − 1)eλkt

)mi

,

whereΦ is the matrix whose rows are the eigenvectorsφk, Φkj is the cofactor ofφkj , and
mi is the number of molecules of speciesi present initially. Therefore at steady state

G(z,∞) = exp

(
− 1

detΦ

∑
i

K s
i

∑
k

1

λk
Φki

∑
j

φkj (zj − 1)

)
,

and the steady-state value of the mean is given by

Mm = E(Nm) = ∂G(z,∞)

∂zm
= − 1

detΦ

s∑
i

K s
i

∑
k

1

λk
Φki φki .

To obtain the probability distribution, we differentiatek times to get

∂kG(z,∞)

∂zk
m

=
(
− 1

detΦ

∑
i

K s
i

∑
k

1

λk
Φki φkm

)k

× exp

(
− 1

detΦ

∑
i

K s
i

∑
k

1

λk
Φki

∑
j

φkj (zj − 1)

)
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and then

PNm(k,∞) = 1

k!
∂kG(z,∞)

∂zk
m

∣∣∣∣
zm=0,zj=1, j 
=m

= 1

k!M
k
me−Mm.

This defines the density for a Poisson distribution, and as in any Poisson distribution, the
variance is equal to the mean. This shows that the steady-state distribution of any species
in an open first-order conversion network is a Poisson distribution, but this does not extend
to the transient dynamics unless one assumes that the initial distribution of molecules is a
Poisson distribution, rather than the Dirac distribution generally used.6

4.1.3. The noise during transients in conversion systems
The time-dependent variance in an open conversion system is given by (50) wherein

K cat = 0. In that caseC(l , k, i ) = 0 and (50) reduces to

σ 2
m(t) = −

∑
i, j

e(λi+λ j )t (Pi � Pj M(0))m + Mm(t).

Evidently limt→∞ σ 2
m(t) = limt→∞ Mm(t) and if M(0) = 0, thenσ 2

m(t) = Mm(t). Thus
Fm will always be 1 for open conversion systems when no species is present initially
(M(0) = 0, which is by definition a Poisson initial distribution), and for more general
initial conditions,Fm = 1 for all species at the steady state. On the other hand, it is easy
to see that theCVm is always inversely proportional to the square root of the mean for all
these situations whereFm is a constant. There is thus a clear difference in the qualitative
estimation of the noise predicted by the two factors during transients as well as at steady
state.

For closed systems,Fm = 1− pm at steady state, whileCVm is given by (57). When
Mm ∼ N for somem, pm ∼ 1 andFm andCVm are both small. However whenN ! Mn,
Fm → 1, whileCVm is inversely proportional to

√
Mm. We illustrate this and the transient

behavior of the noise measures with an example of a closed three-component system shown
in the following figure, where arrows indicate conversion reactions, and the symbols on the
arrows indicate the specific rate constant associated with that reaction.

Using the procedure given earlier, one can find the means and covariances by solving

M(t)′ = KM(t) (58)

V(t)′ = KV(t)+ (KV(t))T , (59)

6 A reviewer has remarked that the distribution in an open system is Poisson at timet if the initial distribution
is Poisson.
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where

K =

−k21− k31 k12 0

k21 −k12− k32 k23
k31 k32 −k23


 .

The eigenvalues ofK are given by
λ1 = 0

λ2,3 = 1

2

[
− k12− k21− k23− k31− k32

±
√

(k12+ k21+ k23+ k31+ k32)
2 − 4(k12k23+ k21k23+ k12k31+ k23k31+ k21k32+ k31k32)

]

and because

(k12+ k21+ k23+ k31+ k32)
2

− 4(k12k23+ k21k23+ k12k31+ k23k31+ k21k32+ k31k32) > 0,

the eigenvalues are distinct andK is semisimple. Thus,

M(t) = eKt M(0)

=
3∑

i=1

eλi t (Pi M(0))k

and furthermore

σ 2
k (t) =

∑
i, j

e(λi+λ j )t
(−Pi � Pj M(0)

)
k +

3∑
i=1

eλi t (Pi M(0))k.

Assuming that only one speciesMl for l ∈ {1, 2, 3} is present initially with N
molecules, we find that fork = 1, 2, 3,

Mk(t) = N
3∑

i=1

eλi t (Pi )kl

and so

σ 2
k (t) =

3∑
i, j=1

e(λi+λ j )t
(−Pi � Pj M(0)

)
k + Mk(t)

= Mk(t)−
3∑

i, j=1

e(λi+λ j )t (Pi )kl(Pj )kl N

= Mk(t)

(
1− Mk(t)

N

)
.

Fig. 1shows the evolution of the Fano factor and CV for two components of the network.
Since the sum of the number of molecules of all components at any instant is equal to the
sum of the initial number, the mean and variance of the first component can be calculated
from the mean and variance of the other two. It is clear that for these values of the
rate parameters, which produce a steady state in which most of the total molecules exist
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Fig. 1. Time-evolution (x-axis) of the mean scaled to the total number of molecules (-.-.-.), Fano factor (solid
line) and CV (dashed line) for Species 2 (left) and Species 3 (right) for two values ofN = 100 andN = 1000.
Profiles for the fraction in each state and the Fano factor are independent ofN. These plots illustrate the fact that
use of the Fano factor leads to the conclusion that the noise of both species does not change on increasingN,
whereas use of the CV predicts that increasingN reduces the noise in Species 2, whereas the noise in Species 3
remains essentially unchanged at steady state. The values of the rate constants are (in units of time−1) k21 = 100,
k31 = 100,k12 = 1, k23= 1, k32 = 100 and allN molecules exist asM1 initially.

as Species 3 and the steady-state value of the mean for Species 2 is a small fraction of the
total number of molecules, the Fano factor for species 2 is close to one at steady state, and
does not change as the total number of molecules is increased 10-fold. For Species 3 the
steady-state value of the mean is almost equal to the total number of molecules, and both
the Fano factor and the CV predict that the steady-state noise will not change appreciably
when the total number of molecules in the system is changed.

4.2. The effect of network topology on stochastic reaction networks

The structure of the graph of interactions among the network components influences
the transient stochastic evolution of the network through its effect on the eigenvalues and
eigenvectors ofK. However, we have shown that the steady-state distribution is always
multinomial for a closed conversion system and Poisson for an open conversion system,
and these conclusions are independent of the topology of the network. In both cases
the distribution is completely characterized by the mean, and the effect of topology on
the mean of the various species can be derived from an analysis of the structure of the
vertex–edge incidence matrixE (Othmer, 1979). We illustrate the effects of a change in
network topology on the steady-state distribution of a simple catalytic network, and on the
evolution of the distribution to the steady state for general conversion or catalytic networks
through a simple example.

We consider reaction networks that either form closed “loops” (Fig. 2(b)), with either
a feedforward or feedback interaction, and compare the results with the evolution of the
distribution in linear reaction networks of the form shown inFig. 2(a). In general, for a
conversion chain thei th species is formed from the(i − 1)st species and is converted to
the(i +1)st species; and in a catalytic chain thei th species is formed from the source with
the reaction being catalyzed by the(i − 1)st species, and catalyzes the formation of the
(i + 1)st species. All species undergo first-order degradation. The conversion chain is an
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Fig. 2. Linear (a) and looped (b) reaction networks. The arrows represent the dependence of one species on the
rate of formation of the species at the head of the arrow: the reactions may be conversion (solid lines) or catalytic
(dashed lines).

Table 2
Mean and variance for a 2-component feedback network with either conversion or catalytic reactions

Species Meanconversion Meancatalytic Variancecatalytic

M1
ptks

1(kcon
12 +kd

2 )

(kcon
12 +kd

2 )(kcon
21 +kd

1 )−kcon
21 kcon

12

ptks
1kd

2

kd
1 kd

2−kcat
21 kcat

12

ptkd
1 kd

2 (kd
1+kd

2 )−kcat
21 kcat

12 (kd
1−kcat

12 )

(kd
1 kd

2−kcat
21 kcat

12 )(kd
1+kd

2 )
× M1

M2
ptks

1kcon
21

(kcon
12 +kd

2 )(kcon
21 +kd

1 )−kcon
21 kcon

12

ptks
1kcat

21

kd
1 kd

2−kcat
21 kcat

12

ptkd
1 kd

2 (kd
1+kd

2 )+kcat
21 kd

2 (kd
1−kcat

12 )

(kd
1 kd

2−kcat
21 kcat

12 )(kd
1+kd

2 )
× M2

example of an open conversion system, and we have shown that the distribution of the num-
ber of molecules of all components is a Poisson distribution. The analysis of the dynamics
of the mean for feedback networks has been carried out earlier (Tyson and Othmer, 1978).

Consider an example of a feedback loop withs = 2, where onlyM1 has a non-negative
rate of production from the source.Table 2gives the steady-state mean of both species for
conversion and catalytic reactions, and the steady-state variance for a network of catalytic
reactions (the variance is equal to the mean in the conversion case).

It is clear that the presence or absence (kcon
12 = 0) of a feedback loop in a conversion

network changes the mean value of bothM1 andM2, but the variance is always equal to
the mean and the Fano factor is always equal to one. In contrast, for a catalytic network
the presence of a feedback loop changes not only the mean, but also the steady-state
fluctuations, as is most clear from the change in the Fano factor forM1 from a value of
one in the absence of a feedback(kcat

12 = 0), to the value indicated inTable 2for a network
with feedback. We will further explore the differences in the variance of conversion and
catalytic networks in the following subsection.

We can also compare the change in the evolution rates for these networks. For the
reaction networks inFig. 2, the matrix of reaction rates takes the form

K =




K11 0 0 . . . K1s

K21 K22 0 . . . 0
0 K32 K33 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . Kss−1 Kss


 .
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For the linear network, the value ofK1s is zero andKi i are its eigenvalues.
The characteristic equationf (λ) of K is given by

f (λ) = [(K11− λ)(K22− λ) · · · (Kss− λ)] + (−1)s+1K1sK21 · · ·Kss−1

= (−1)s

[
s∏

i=1

(λ−Ki i )− K1sK21 · · ·Kss−1

]
≡ (−1)sg(λ).

Consider a looped network that conforms to the stability condition (1) that the specific
rate of production of each species is less than the specific rate of degradation. This requires
that

K21 < −K11, K32 < −K22, . . . , Kss−1 < −Ks−1s−1, K1s < −Kss

and this implies that

K1sK21K32 · · ·Kss−1 <

s∏
i=1

(−Ki i ).

Hence, for allKkk, 1 ≤ k ≤ s we have

g(Kkk) = −K1sK21 · · ·Kss−1 < 0

and

g(0) =
s∏

i=1

(−Ki i )− K1nK21K32 · · ·Kss−1 > 0.

Therefore there is a real rootλr of g(λ) = 0 such that maxi Ki i < λr < 0, which implies
that in the loops there exists at least one real negative eigenvalueλr of K which is bigger
than maxi Ki i .

Thus the presence of a loop leads to a slowing down of the evolution of the moments
to the steady-state values. Notice that for a feed-forward looped network (i.e.Fig. 2(b)
with the the arrow fromM1 to Ms reversed), the corresponding reaction rateks1 is still
in the lower triangular part ofK and the eigenvalues will be identical to those of the
corresponding linear system.

4.3. Effect of the nature of the chemical reaction

Previous analyses of stochastic first-order reaction systems have been restricted to
either all-conversion or all-catalytic systems, but they have not been compared directly.
Let us consider reactions of the form shown inFig. 2(a) in which the first component is
produced from a source, and then is either converted to the second species (conversion
chain), or catalyzes the formation of the second species (catalysis chain). As we know, the
distribution of the number of molecules is a Poisson distribution for an open conversion
chain, the Fano factor is one for all species at steady state, and the CV is inversely
proportional to the square root of the mean. The results are quite different for a catalytic
chain. InFig. 3we show the Fano factor and CV for a catalytic chain with rate parameters
such that the means are identical3(a) and different3(b). It is clear that for a catalytic chain
with identical means(kcat

i (i−1) = kd
i ∀i ≥ 2), the variance reaches a limiting value as the
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Fig. 3. Fano factor (solid line) and CV (dashed line) at steady state for thei th species in a catalytic chain with
equal (a) and unequal (b) means. In (a) all species have a steady-state mean value of 3, resulting from setting
all catalysis and degradation rate constants to 2 and the production rate forM1 to 2, random parameters for
rate constants lead to mean values between 10−4 and 120 for species in (b). In both simulations, one molecule
of each species was assumed to be present initially: but the results do not depend on the choice of the initial
condition.

chain length is increased. This agrees with the results ofThattai and van Oudenaarden
(2001), who studied catalytic chains with hyperbolic activation functions. However, it is
important to note that variance may not saturate when the means are different, which is
almost always the case in biological systems. When the means are the same, the Fano
factor and CV give estimations of the noise that are qualitatively consistent, but when the
means are different the use of the two measures of noise give different predictions of the
effect of increasing the number of species in a catalytic chain on the level of fluctuations.

5. The effect of diffusion on stochastic reaction networks

Heretofore we have ignored the possible effects of spatial nonuniformity in the
distribution of species, but when transport is solely by diffusion we can analyze a suitably-
discretized spatial model within the preceding framework, because diffusion is a linear
process. As the reader will appreciate after the development of the equations, the same
analysis applies to compartmental models in which transport between compartments is
linear in the concentration of the species. Here we restrict the discussion to a closed
system containing an isotropic medium having no diffusive coupling between species,
but the general formulation of the corresponding deterministic linear equations allows for
bi-directional exchange with a reservoir, diffusive coupling, anisotropy in the transport
(Othmer and Scriven, 1971).

For simplicity of exposition we begin with a symmetric domain that is subdivided into
identical cubical compartments, and denote the number of molecules of speciesMi present
in the j th compartment asNji . Diffusive transport from compartmentj to compartmentk
can be represented as the reaction(Nj ,i , Nk,i ) → (Nj ,i − 1, Nk,i + 1) at a rate given by
Di /δ

2, whereδ is the length scale of each compartment andDi is the diffusion constant
for speciesi (Nicolis and Prigogine, 1977; Stundzia and Lumsden, 1996).
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Suppose that there areNc cells ands reacting species. As before,K is thes×s reaction
rate constant matrix= K cat+ K con− K d defined for reactions without diffusion. Let∆
be theNc × Nc structural matrix of the network of cells, whose elements∆ j k for j 
= k
are 1 or 0, resp., if cellk is connected to cellj , or not, resp., and−∆ j j is the number
of cells connected to cellj . ∆ encodes the connectivity of the network, and in the simple
case treated here simply reflects the discretization of the Laplace operator on the domain in
question. We defineD as thes×s diagonal matrix of diffusion ratesDi /δ

2 for the species.
The deterministic evolution of the system is governed by

dc
dt
= Ωc,

wherec is the composition vector for all cells and thens · Nc × ns · Nc matrix Ω ≡
INc ⊗ K + ∆ ⊗ D. It follows immediately that the equations for the means and second
moments are

M(t)′ = Ω M(t) + K s · 1

V(t)′ = ΩV(t)+ [ΩV(t)]T + C + CT .

Here the matrix of means is defined as

M(t) = diag[M11(t), M12(t), . . . M1s(t),

M21(t), . . . M2s(t), . . . MNc1(t), . . . MNcs(t)]
and K s is a matrix containing the rate constants for production of each of theNc × s
species, given by

K s = diag
[
ks

11, ks
12, . . . ks

1s, ks
21, . . . ks

2s, . . . ks
Ncs

]
,

whereks
i j is the rate of inflow of speciesj from sources.

The covariance matrixV(t) has matrix-valued elementsVi j defined as

Vi j (k, m) =
{

E[Nik (t)2] − E[Nik (t)] if i = j andk = m
E[Nik (t)Njm(t)] otherwise.

Finally, C = W + K s1 · M(t)T whereW is a block-diagonal matrix, with each block
defined asWkk(i , j ) = K cat

i j E[Nkj (t)].
It is clear from earlier sections that the evolution of the first and second moments

are formally known once the eigenvalues and eigenvectors ofΩ are known, and these
are known from earlier work. Letαk be an eigenvalue of the symmetric matrix∆;
then the eigenvaluesλkj of Ω are solutions of the family ofNc sth-order determinantal
equations

|K + αkD − λkIs| = 0 (60)

(Othmer and Scriven, 1971). It is known that wheneverK is not diagonal there may be
counter-intuitive effects of diffusion on the eigenvalues determined by (60), and this lies at
the heart of Turing’s mechanism of pattern formation (Turing, 1952; Othmer, 1969).

The foregoing has been formulated for a regular discretization of a domain, but it holds
whatever the topology of the connections between the compartments, as long as transport
depends only on the concentration difference between compartments. The advantage of
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the present formulation is that the effects of network structure in the reaction dynamics
can be separated to the maximal extent possible from the topology of the compartmental
connections, and effects due to spatial variations arise from the effect of theαk’s for
different spatial modes. It should be noted here that in our treatment of reaction–diffusion
systems there is an assumption that individual compartments are well-mixed, and for this
to be valid, the size of each compartment should be related to the diffusion coefficient
(and ultimately to the mean free path) of the diffusing species. However, the basis for
the choice of compartment size is not clear for a system containing species with very
different diffusion coefficients. On the one hand, if the size is based on the faster-diffusing
species the well-mixed assumption may not be true for species that diffuse slowly, but if the
size is computed using the slower-diffusing species, any solution algorithm will become
computationally inefficient. More generally, the problem of how to treat wide disparities
in time scales in the full master equation remains to be solved.

6. Discussion and conclusion

We have analyzed a general system of first-order reactions amongsts species that can be
produced from sources, converted to other species or degraded, and catalyze the formation
of other species. All previous stochastic analyses of systems of first-order reactions can
be formulated as special cases of the general model studied here. We have derived explicit
evolution equations for the mean and variance of the number of molecules of each reactant,
and have solved them explicitly in a number of cases when the rate matrixK is semisimple.
We find that the evolution of the second moments is completely determined by the spectral
properties ofK and the mean itself. To our knowledge this is the first report of a method to
analytically compute the first two moments for an arbitrary first-order network comprising
both conversion and catalytic reactions.

We have used the general framework to explore the effect of changes in the network
topology on the distribution of the number of reactant molecules, and the difference
between conversion and catalytic networks with the same topology. We prove that for an
open system of first-order conversion reactions, the distribution of the number of molecules
of every species is always a Poisson distribution. This is not the case for closed conversion
systems, since the total number of molecules is constant. This result can be directly applied
to the interpretation of experimental results on protein conformational-state transitions.
The folding of a protein from its unfolded state to the fully folded (“native”) state occurs
through a series of intermediates. The first-order rate constants governing the reversible
transitions from the unfolded state to the native state are calculated experimentally (Mayor
et al., 2003). The above theory suggests the distributions that the experimental data may
be fitted to in order to derive accurate estimates of the first-order transition rates. If
ingress and egress through flow is allowed for the measurement device, each of the protein
folding states will exhibit a Poisson distribution. If the system is closed, each state will be
characterized by a multinomial distribution with a mean that is lower than the variance.
A protein molecule undergoing conformational-state transitions is but one example of a set
of chemical reactions that may be carried out in a closed or batch process, where there is
no inflow or outflow of the chemical species, or in an open or continuous process, where
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one or more chemicals are introduced at a constant rate, or removed from the system. The
inflows may be modeled as production reactions of the formφ →Mi where speciesMi

is produced at a constant rate from a source. The outflows are modeled as degradation
reactions that result in a depletion of species at a rate proportional to their concentration,
with the specific rate constant corresponding to the dilution rate for the reactor. These
equations exactly describe the addition and removal of species in microfluidic devices
which may be modeled as continuous stirred-tank reactors. Our analysis of open and closed
systems may be used to distinguish between the effects of batch-mode operations and
continuous operations on the stochastic behavior of the chemical species undergoing the
same set of chemical conversion reactions.

Two measures are used to estimate the stochastic fluctuations of reactant concentrations:
the Fano factor and the coefficient of variance. We have shown that the equilibrium
distribution of all components is a Poisson distribution for open conversion networks, in
which case use of the Fano factor as the measure of noise leads to the prediction that the
fluctuations of all components in an open conversion reaction system are identical. Thus a
species that has a mean of 10 molecules will exhibit the same amount of noise as a species
that has a mean concentration of 1M. This is clearly not correct, and the use of the CV as
the measure of the noise will correctly predict that the noise is inversely proportional to
the square root of the mean value. The only instance when the use of the Fano factor has
a distinct advantage is when noise is defined as a deviation from the Poisson distribution.
Our work is the first instance where the two measures have been compared theoretically,
and we conclude that the only instance where either measure can be used to compare the
noise of two species is when the mean values are identical. We have also shown that the
use of the two measures leads to contradictory conclusions about the noise when the means
are not identical.

We use the example of a linear reaction chain with and without feedback to demonstrate
the effect of changes in the species interconnectivity on the dynamics of the evolution of the
moments of the distribution. For the same interconnectivity, the nature of the distribution
changes depending on whether the reactions are conversion reactions or catalytic reactions.
It has been shown for a catalytic chain whose mean values are equal at steady state that
the variance of the last species in the chain increases as the number of species in the
chain increases (Thattai and van Oudenaarden, 2001), but ultimately saturates for long
chains. We show with a counterexample that the ratio of the variance to the mean does not
show this saturation behavior when the steady-state mean values of all the components are
different.

The mathematical formulation that leads to a direct solution of the moment equations for
a well-stirred system can be extended to arbitrary networks of well-mixed compartments
that are coupled by diffusion. We demonstrate that the eigenvalues that govern the evolution
in such distributed systems are solutions of a one-parameter family of modified kinetic
matrices and thus one can formally display the solution for the first two moments in this
case as well. However much remains to be done for this case to develop computationally-
efficient algorithms.

We anticipate that the analytical framework presented here will be extended to the
stochastic analysis of nonlinear reaction networks, and our analysis of first-order reaction
network will lead to insights into the local linear behavior of such networks.



934 C. Gadgil et al. / Bulletin of Mathematical Biology 67 (2005) 901–946

Acknowledgements

This work was supported in part by NIH Grant #29123 to H.G. Othmer. C.J. Gadgil
acknowledges funding from the Minnesota Supercomputing Institute (Research Scholar
program). Computations were carried out using MSI and Digital Technology Center
resources. We thank one of the reviewers for an extremely thorough review and for pointing
out the connections to similar results in queuing theory and the theory of branching
processes.

Appendix

An alternate approach to the evolution equation for the MGF7

To obtain the generating function for the first-order network, one may use the
Kolmogorov backward equation instead of the master equation (24), which is generally
used in the field of chemical reaction networks.

The Kolmogorov backward equation is given by

d

dt
E[ f (N(t))] = E[A f (N(t))],

where

A f (n) =
∑

i

ks
i (S

+1
i f (n)− f (n))+

∑
i, j

kcon
i j n j (S+1

i S−1
j f (n)− f (n))

+
∑
i, j

kcat
i j n j (S+1

i f (n)− f (n))+
∑

i

kd
i ni (S−1

i f (n)− f (n)).

Notice thatG(z, t) = E[∏ zNi (t)
i ], and therefore, takingf (N(t)) =∏

zNi (t)
i ,

d

dt
G(z, t) = d

dt
E

[∏
zNi (t)

i

]
=

∑
i

ks
i (zi − 1)E

[∏
zNi (t)

i

]

+
∑
i, j

kcon
i j

(
zi

zj
− 1

)
E

[
Nj (t)

∏
zNi (t)

i

]

+
∑
i, j

kcat
i j (zi − 1)E

[
Nj (t)

∏
zNi (t)

i

]

+
∑

i

kd
i

(
1

zi
− 1

)
E

[
Ni (t)

∏
zNi (t)

i

]
.

Using the fact that

E
[
Nj (t)

∏
zNi (t)

i

]
= zj

∂

∂zj
E

[∏
zNi (t)

i

]
,

we obtain Eq. (24).

7 We thank a reviewer for pointing out this approach.
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Tensor products and the column operation

Here we record a few basic facts about tensor products and thecol operation that are
used throughout.

Let x = (x1, x2, . . . , xn)
T and y = (y1, y2, . . . , ym)T .Then we define the tensor

product ofx andy as (cf.Othmer and Scriven (1971)and references therein)

x ⊗ y = (x1y, x1y, ·, x1y)

= (x1y1, x1y2, . . . , x1yn, x2y1, x2, y2, . . . , x2yn, . . . , xnym)T .

For anyn× n matrix B = [bi j ] and anm×m matrixC, we define

(B⊗ C) =




b11C b12C . . . b1nC
b21C b22C . . . b2nC

...
...

. . .
...

bn1C bn2C . . . bnnC


 .

Let B(i ) be thei th column of an× n matrix B. Then define thecolumnoperation as

col B=




B(1)

B(2)
...

B(n)


 .

Then we have

col(BC) =




BC(1)

BC(2)
...

BC(n)


 =




B
B

. . .

B







C(1)

C(2)
...

C(n)


 = (In ⊗ B)colC.

Similarly

col(C B) = (BT ⊗ In)colC.

We can use these results to rewrite (29) as follows. We have

V(t)′ = KV(t)+ (KV(t))T + Γ (t)+ Γ T (t)

and therefore

col(V(t)′) = col(KV(t))+ col((KV(t))T )+ col(Γ (t)+ Γ T (t)).

We apply the above to the first term on the right-hand side by settingB = K andC = V ,
and to the second term by settingB = KT andC = V , and noting thatV is symmetric.
This leads to (46).

Evolution of the moments

We consider the differential equation for the second moment

dv

dt
= V v + γ
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where

v(t) = col(V(t)) V = (K⊗ In + In ⊗K) and γ (t) = col(Γ (t)+ Γ (t)T ).

Since

[Γ (t)]i j = K cat
i j E[Nj (t)] + ks

i E[Nj ]
andK s andMd are diagonal matrices,

γ (t) = col(Γ (t)+ Γ (t)T )

= col(K catMd(t)+ (K catMd(t))T )+ col(K sL(t)+ (K sL(t))T )

= (K cat⊗ In + In ⊗ K cat)colMd + (LT ⊗ In + In ⊗ LT )colKs.

Thus

Pi j γ (t) = Pi j col(K catMd + (K catMd)T + K sL + (K sL)T )

= (Pi ⊗ Pj )(K cat⊗ In + In ⊗ K cat)colMd

+ Pi j (LT ⊗ In + In ⊗ LT )colKs

= (Pi K
cat⊗ Pj + Pi ⊗ Pj K

cat)colMd

+ (Pi L
T ⊗ Pj + Pi ⊗ Pj L

T )colKs.

We have that

Pi M(t) = Pi

((∑
i

eλi t Pi

)
M(0)−

∑
i

(1− eλi t )

λi
Pi k

s

)

= eλi t Pi M(0)− (1− eλi t )

λi
Pi k

s

and

Pi L
T = Pi [M(t)| · · · |M(t)]
= [Pi M(t)| · · · |Pi M(t)]
= eλi t Pi M0 − (1− eλi t )

λi
Pi S,

whereM0 = [M(0)|M(0)| · · · |M(0)], andS= [ks|ks| · · · |ks]. Thus

Pi j γ (t) = (Pi K
cat⊗ Pj + Pi ⊗ Pj K

cat)colMd

+
[
eλi t (Pi M0⊗ Pj )− 1− eλi t

λi
(Pi S⊗ Pj )+ eλ j t (Pi ⊗ Pj M0)

− 1− eλ j t

λ j
(Pi ⊗ Pj S)

]
colKs
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and therefore

v = eV tv(0)+
∫ t

0
eV(t−τ )γ (τ )dτ

=
∑
i, j

e(λi+λ j )t Pi j v(0)+
∫ t

0

∑
i, j

e(λi+λ j )(t−τ )Pi j γ (τ)dτ

=
∑
i, j

e(λi+λ j )t Pi j v(0)+
∑
i, j

(
e(λi+λ j )t − eλi t

λ j
(Pi M0⊗ Pj )

+
(

1

λi λ j
(e(λi+λ j )t − eλi t )− 1

λi (λi + λ j )
(e(λi+λ j )t − 1)

)
(Pi K

s⊗ Pj )

+ e(λi+λ j )t − eλ j t

λi
(Pi ⊗ Pj M0)+

(
1

λi λ j
(e(λi+λ j )t − eλ j t )

− 1

λ j (λi + λ j )
(e(λi+λ j )t − 1)

)
(Pi ⊗ Pj K s)

)
colKs

+
∑
i, j

∫ t

0
e(λi+λ j )(t−τ )(Pi K

cat⊗ Pj + Pi ⊗ Pj K cat)colMddτ.

Using the fact thatcol(ABC) = (CT ⊗ A)col B, we obtain

V(t) =
∑
i, j

e(λi+λ j )t [Pj V(0)PT
i ] +

∑
i, j

[(
e(λi+λ j )t − eλi t

λ j

)
[Pj K

s(Pi M0)
T ]

+
(

e(λi+λ j )t − eλi t

λi λ j
− e(λi+λ j )t − 1

λi (λi + λ j )

)
[Pj K

s(Pi S)T ]

+ e(λi+λ j )t − eλ j t

λi
[Pj M0K sPT

i ]

+
(

e(λi+λ j )t − eλ j t

λi λ j
− e(λi+λ j )t − 1

λi (λi + λ j )

)
[Pj SKsPT

i ]
]

+
∑
i, j

∫ t

0
e(λi+λ j )(t−τ )(Pj Md(Pi K

cat)T + Pj K
catMd PT

i )dτ.

Thus

Vll (t) =
∑
i, j

e(λi+λ j )t [Pj V(0)PT
i ]ll +

∑
i, j

[(
e(λi+λ j )t − eλi t

λ j

)
[Pj K

s(Pi M0)
T ]ll

+
(

e(λi+λ j )t − eλi t

λi λ j
− e(λi+λ j )t − 1

λi (λi + λ j )

)
[Pj K s(Pi S)T ]ll

+ e(λi+λ j )t − eλ j t

λi
[Pj M0K sPT

i ]ll
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+
(

e(λi+λ j )t − eλ j t

λi λ j
− e(λi+λ j )t − 1

λi (λi + λ j )

)
[Pj SKsPT

i ]ll
]

+
∑
i, j

∫ t

0
e(λi+λ j )(t−τ )

(
Pj Md(Pi K

cat)T + Pj K catMd PT
i

)
ll

dτ.

We have

Pj Md =




Pj 11M1 Pj 12M2 · · · Pj 1nMn

Pj 21M1 Pj 22M2 · · · Pj 2nMn
...

. . .
. . .

...

Pjn1M1 Pjn2M2 · · · PjnnMn




(Pi K
cat)T =




∑
j

Pi1 j K cat
j 1

∑
j

Pi2 j K cat
j 1 · · ·

∑
j

Pinj K cat
j 1∑

j

Pi1 j K cat
j 2

∑
j

Pi2 j K cat
j 2 · · ·

∑
j

Pinj K cat
j 2

...
. . .

. . .
...∑

j

Pi1 j K cat
jn

∑
j

Pi2 j K cat
jn · · ·

∑
j

Pinj K cat
jn




.

Thus

[Pj Md(Pi K
cat)T ]ll = Pjl 1M1

(∑
j

Pil j K cat
j 1

)

+ Pjl 2M2

(∑
j

Pil j K cat
j 2

)
+ · · · + Piln Mn

(∑
j

Pil j K cat
jn

)

=
∑

k

Pj lk MkC(i , k, l )

where

C(i , k, l ) =
∑

j

Pil j K cat
jk .

Similarly

[Pj K
catMd PT

i ]ll =
∑
m

Pilm MmC( j , k, l ).

Thus ∫ t

0
e(λi+λ j )(t−τ )(Pj Md(Pi K

cat)T + Pj K catMd PT
i )ll dτ

= e(λi+λ j )t
∫ t

0
e−(λi+λ j )τ

(∑
k

(Pj )lk MkC(i , k, l )+
∑

k

(Pi )lk MkC( j , k, l )

)
dτ

= e(λi+λ j )t
∫ t

0
e−(λi+λ j )τ

[∑
k

(Pj )lk

(∑
r

eλr τ (Pr M(0))k
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−
∑

r

1− eλr τ

λr
(Pr ks)k

)
C(i , k, l )

+
∑

k

(Pi )lk

(∑
r

eλr τ (Pr M(0))k −
∑

r

1− eλr τ

λr
(Pr ks)k

)
C( j , k, l ))

]
dτ

= e(λi+λ j )t
∑

k

(Pj )lk

∑
r

C(i , k, l )

[
(Pr M(0))k

∫ t

0
e(λr−λi−λ j )τ dτ − (Pr ks)k

λr

×
(∫ t

0
e−(λi+λ j )τdτ −

∫ t

0
e(λr−λi−λ j )τdτ

)]

+ e(λi+λ j )t
∑

k

(Pi )lk

∑
r

C( j , k, l )

[
(Pr M(0))k

∫ t

0
e(λr−λi−λ j )τdτ

− (Pr ks)k

λr

(∫ t

0
e−(λi+λ j )τ dτ −

∫ t

0
e(λr−λi−λ j )τdτ

)]
=

∑
k

((Pj )lkC(i , k, l )+ (Pi )lkC( j , k, l ))

×

 ∑

r,λr 
=λi+λ j

(Pr M(0))k
1

λr − λi − λ j
(eλr t − e(λi+λ j )t )

− (Pr ks)k

λr

(
1

λi + λ j
(e(λi+λ j )t − 1)− 1

λr − λi − λ j
(eλr t − e(λi+λ j )t )

)

+
∑

r,λr=λi+λ j

(Pr M(0))kte(λi+λ j )t

− (Pr ks)k

λr

(
1

λi + λ j
(e(λi+λ j )t − 1)− te(λi+λ j )t

)
 ,

where

C(i , k, l ) =
n∑

m=1

Pilm K cat
mk.

Thus the(l , l ) component ofV is

Vll (t) =
∑
i, j

e(λi+λ j )t [Pj V(0)PT
i ]ll +

∑
i, j

[(
e(λi+λ j )t − eλi t

λ j

)
[Pj K

s(Pi M0)
T ]ll

+
(

e(λi+λ j )t − eλi t

λi λ j
− e(λi+λ j )t − 1

λi (λi + λ j )

)
[Pj K s(Pi S)T ]ll

+ e(λi+λ j )t − eλ j t

λi
[Pj M0K sPT

i ]ll
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+
(

e(λi+λ j )t − eλ j t

λi λ j
− e(λi+λ j )t − 1

λi (λi + λ j )

)
[Pj SKsPT

i ]ll
]

+
∑
i, j

∑
k

((Pj )lkC(i , k, l ) + (Pi )lkC( j , k, l ))

×

 ∑

r,λr 
=λi+λ j

(Pr M(0))k
1

λr − λi − λ j
(eλr t − e(λi+λ j )t )

− (Pr ks)k

λr

(
1

λi + λ j
(e(λi+λ j )t − 1)− 1

λr − λi − λ j
(eλr t − e(λi+λ j )t )

)

+
∑

r,λr=λi+λ j

(Pr M(0))kte(λi+λ j )t

− (Pr ks)k

λr

(
1

λi + λ j
(e(λi+λ j )t − 1)− te(λi+λ j )t

)
 .

Note that

E[Nl (t)] = [M(t)]l =
∑

i

eλi t (Pi M(0))l −
∑

i

1− eλi t

λi
(Pi k

s)l

and that

E[Nl (t)]2 = ([M(t)]l )2 =
∑
i, j

e(λi+λ j )t (Pi M(0))l (Pj M(0))l

+
∑
i, j

(1− eλi t )(1− eλ j t )

λi λ j
(Pi k

s)l (Pj k
s)l

− 2
∑
i, j

eλi t (1− eλ j t )

λ j
(Pi M(0))l (Pj k

s)l .

Therefore we have the variance ofl th species

σ 2
l (t) = Vll (t)+ [M(t)]l − ([M(t)]l )2

=
∑
i, j

e(λi+λ j )t (Pj V(0)PT
i )ll +

∑
i, j

[(
e(λi+λ j )t − eλi t

λ j

)
[Pj K s(Pi M0)

T ]ll

+
(

e(λi+λ j )t − eλi t

λi λ j
− e(λi+λ j )t − 1

λi (λi + λ j )

)
[Pj K s(Pi S)T ]ll

+ e(λi+λ j )t − eλ j t

λi
[Pj M0K sPT

i ]ll +
e(λi+λ j )t − eλ j t

λi λ j

− e(λi+λ j )t − 1

λ j (λi + λ j )
[Pj SKsPT

i ]ll
]
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+
∑
i, j

∑
k

((Pj )lkC(i , k, l ) + (Pi )lkC( j , k, l ))

×

 ∑

r,λr 
=λi+λ j

(Pr M(0))k
1

λr − λi − λ j
(eλr t − e(λi+λ j )t )

− (Pr ks)k

λr

(
1

λi + λ j
(e(λi+λ j )t − 1)− 1

λr − λi − λ j
(eλr t − e(λi+λ j )t )

)

+
∑

r,λr=λi+λ j

(Pr M(0))kte(λi+λ j )t − (Pr ks)k

λr

×
(

1

λi + λ j
(e(λi+λ j )t − 1)− te(λi+λ j )t

)


−
∑
i, j

e(λi+λ j )t (Pi M(0))l (Pj M(0))l

−
∑
i, j

(1− eλi t )(1− eλ j t )

λi λ j
(Pi k

s)l (Pj k
s)l

+ 2
∑
i, j

eλi t (1− eλ j t )

λ j
(Pi M(0))l (Pj k

s)l .

After some computation we get

σ 2
l (t) = −

∑
i, j

e(λi+λ j )t (Pi � Pj M(0))l +
∑

i

eλi t
[
(Pi M(0))l + (Pi ks)l

λi

]

−
∑

i

1

λi
(Pi k

s)l

+
∑
i, j

∑
k

D(i , j , k, l )

[∑
r

(
(Pr M(0))k + (Pr ks)k

λr

)
fr,i, j (t)

− (Pr ks)k

λr (λi + λ j )
(e(λi+λ j )t − 1)

]
,

where

C(i , k, l ) =
n∑

m=1

(Pi )lmK cat
mk,

D(i , j , k, l ) = ((Pj )lkC(i , k, l ) + (Pi )lkC( j , k, l )),

fr,i, j (t) =




1

λr − λi − λ j
(eλr t − e(λi+λ j )t ) if λr 
= λi + λ j

te(λi+λ j )t if λr = λi + λ j ,

and ‘�’ is componentwise matrix multiplication.
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If there is no catalysis in the system, then

D(i , j , k, l ) = 0

and we have

σ 2
l (t) = −

∑
i, j

e(λi+λ j )t (Pi � Pj M(0))l

+
∑

i

eλi t
[
(Pi M(0))l + (Pi ks)l

λi

]
−

∑
i

1

λi
(Pi k

s)l .

Details for the proof of the binomial distribution

P(N1(t) = m, N2(t) = N −m)

=
N∑

i=0

P(N1(t) = m, N2(t) = N −m | N1(0) = i ,

N2(0) = N − i ) · P(N1(0) = i , N2(0) = N − i )

=
m∑

k=0

N−m+k∑
i=k

(
i

k

)
(pk

t (1, 1)pi−k
t (1, 2))

(
N − i

m− k

)

(pm−k
t (2, 1)pN−i−m+k

t (2, 2))

(
N

i

)
p1(0)i p2(0)N−i

=
m∑

k=0

N−m+k∑
i=k

(
i

k

)(
N − i

m− k

)(
N

i

)

· (p1(0)pt(1, 1))k(p1(0)pt(1, 2))i−k(p2(0)pt(2, 1))m−k

× (p2(0)pt(2, 2))N−i−m+k

=
m∑

k=0

N−m∑
l=0

(
k+ l

k

)(
N − (k+ l )

m− k

)(
N

k+ l

)

· (p1(0)pt(1, 1))k(p1(0)pt(1, 2))l (p2(0)pt(2, 1))m−k

× (p2(0)pt(2, 2))N−m−l , by lettingl = i − k

=
m∑

k=0

N−m∑
l=0

(
N

m

)(m

k

)(
N −m

l

)
(p1(0)pt(1, 1))k(p1(0)pt(1, 2))l

× (p2(0)pt(2, 1))m−k(p2(0)pt(2, 2))N−m−l

=
(

N

m

)(
m∑

k=0

(m

k

)
(p1(0)pt(1, 1))k(p2(0)pt(2, 1))m−k

)

·
(

N−m∑
l=0

(
N −m

l

)
(p1(0)pt(1, 2))l (p2(0)pt(2, 2))N−m−l

)
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=
(

N

m

)
(p1(0)pt(1, 1)+ p2(0)pt(2, 1))m

× (p1(0)pt(1, 2)+ p2(0)pt(2, 2))N−m

=
(

N

m

)
(p1(t))

m(p2(t))
N−m, by (52)

where we used the fact that(
k + l

k

)(
N − (k+ l )

m− k

)(
N

k+ l

)

= (k+ l )!
k!l !

(N − (k+ l ))!
(m− k)!(N − l −m)!

N!
(k+ l )!(N − (k+ l ))!

= N!
m!(N −m)!

m!
(m− k)!k!

(N −m)!
l !(N −m− l )!

=
(

N

m

)(m

k

)(
N −m

l

)
.

Queuing theory and chemical reaction networks

There are formal similarities between chemical reaction networks and queuing networks
(Arazi et al., 2004) that can be used to translate results between the two contexts.
For example, the following shows that an open conversion network is equivalent to an
M/M/∞ queuing network.

Consider an irreducible or strongly connected network consisting ofM/M/∞ queues
with s stations. The notationM/M/∞ means Poisson arrivals, exponential service
time and an infinite number of servers. The scheme of this queuing network is as
follows:

• Each station hasM/M/∞ queuing scheme.
• ai = rate of arrivals from outside the network into stationi .
• When stationi hasn occupants, then individuals may depart the system at ratedi n.
• A customer leaving stationi goes to stationj with probabilityλi j , for i 
= j .

The connection between the network ofM/M/∞ queue and the open conversion
network is as follows.
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Network of M/M/∞ queues Open conversion network

Station Species
Customer Molecule
Number of customers in station Number of molecules of species
Arrival of a customer from outside the system Production of a molecule from source
Departure out of system Degradation
Transition fromi th to j th station Conversion fromi th species

to j th species

From this table we can see thatNi (t), the number of customers in thei th station at time
t , corresponds to the number of molecules of thei th species at timet , and the rateai can
be considered asks

i , di askd
i andλi j asK con

j i .
It can be shown that in a network ofM/M/∞ queues the stationary distribution is

Poisson. Furthermore, the distributions ofN1(t), . . . , Ns(t) for each timet are independent
Poisson if the system is empty initially (Durrett, 1999).
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