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Movement of biological organisms is frequently initiated in response to a diffusible or

otherwise transported signal, and in its simplest form this movement can be described by

a diffusion equation with an advection term. In systems in which the signal is localized in

space the question arises as to whether aggregation of a population of indirectly-interacting

organisms, or localization of a single organism, is possible under suitable hypotheses on

the transition rules and the production of a control species that modulates the transition

rates. It has been shown [25] that continuum approximations of reinforced random walks

show aggregation and even blowup, but the connections between solutions of the continuum

equations and of the master equation for the corresponding lattice walk were not studied.

Using variational techniques and the existence of a Lyapunov functional, we study these

connections here for certain simplified versions of the model studied earlier. This is done

by relating knowledge about the shape of the minimizers of a variational problem to the

asymptotic spatial structure of the solution.

1 Introduction

Living systems sense and respond to their environment, and frequently this involves

changes in the pattern of movement in response to an external stimulus. One type of

response is called a taxis, which is a behavioural response in which a motile cell or

organism alters its direction of motion in response to an external stimulus, without

changing its speed or turning rate. Many stimuli have been shown to elicit a taxis

response, such as chemicals (chemotaxis), adhesiveness of the substrate (haptotaxis),

oxygen (aerotaxis), and electric fields (galvanotaxis). Another type of response is called a

kinesis, which is a behavioural response in which a motile cell or organism changes its

rate of locomotion or turning in response to the intensity, but not the direction, of an

external stimulus. Examples of kinesis occur in swimming organisms such as E. coli [33].

Both taxis and kinesis can be characterized as positive or negative, depending on whether
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the external stimulus triggers movement towards or away from the source. Often the

distinction between taxis and kinesis is ignored, particularly in population-level descrip-

tions of phenomena such as aggregation. The mechanisms leading to a taxis response

involve sensing the external signal, transducing it into an internal signal, and modifying

movement appropriately. While many instances involve detection and response without

alteration of the signal field, often the signal itself is modified as part of the response,

thus resulting in a coupling between the local density of individuals and the intensity of

the signal. A classical example of the latter occurs in cellular slime molds such as Dicty-

ostelium discoideum which, upon detection of extracellular cyclic adenosine monophosphate

(cAMP), both secrete cAMP and respond chemotactically by moving toward the source

of cAMP. This process of signal relay to more distant cells and chemotactic movement

produces aggregation, or concentration, of individuals in large fields of initially-dispersed

cells [24].

Frequently the external signal is transported by diffusion, convection, or other means,

but in other instances the signal is strictly local, with little or no transport. Examples

include the myxobacteria, which produce a non-diffusible ‘slime’ over which their co-

horts can move more readily, and ants, which follow trails left by predecessors [6, 13].

The myxobacteria are ubiquitous soil bacteria which glide on suitable surfaces or at

air-water interfaces. Under starvation conditions they demonstrate an increased tend-

ency to glide closer to one another, eventually aggregating to form what are called

fruiting bodies. Inside the fruiting bodies they survive as dormant myxospores. Dur-

ing gliding the myxobacteria produce slime trails on which they prefer to glide, and

when they encounter a slime trail they typically alter their direction so as to glide on

it. Once on the slime trail, the gliding velocity increases. The mechanisms by which

myxobacteria propel themselves on the substrate and aggregate are still not under-

stood, and thus theoretical analyses provide a framework for exploring different mech-

anisms. Here we analyze a class of space-jump processes [23] that may describe their

aggregation; elsewhere velocity jump processes have been used for this purpose [20].

Other work on the relationship between space- and velocity-jump processes to the clas-

sical chemotaxis equations can be found elsewhere (see [3, 12, 26] and the references

therein).

It is known that in the classical chemotaxis problem individuals can concentrate in

space in response to a diffusible signal produced by the individuals, and in Othmer &

Stevens [25] it was shown numerically that aggregation can occur even in the absence

of signal transport. The aggregation demonstrated in Othmer & Stevens [25] for an

immobile signal is based on the continuum limit of a spatially discrete model in which

the walker modifies the local transition probabilities. Since the aggregation solutions can

be sharply concentrated, the a priori bounds on higher derivatives needed to justify the

continuum limit may not hold, and the question arises as to what the relationship is

between solutions of the spatially discrete model and those of the partial differential

equation that arises in the continuum limit. Some preliminary results on this question are

given in Painter et al. [27]. A general overview of related results on chemotaxis equations

is given in Horstmann [14]. There one can find a short introduction to the different

approaches modelling chemotactic movement of a mobile species and results on blowup

of the solution of the classical chemotaxis model.
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2 The dynamics of movement

We begin with a master equation for a continuous-time, discrete-space random walk. In

this paper we consider only one dimensional problems, but the structure of the continuum

equations extends to higher dimensions as well. Whether the localization results also carry

over remains to be determined rigorously, but numerical results strongly suggest that the

conclusions do not depend on the dimension of the underlying space. As in Othmer &

Stevens [25], we consider a spatially discrete problem in which the transition rates depend

on the density of a control species that modulates the transition rates. We restrict attention

to one-step jumps, although it is easy to generalize this [5]. However, usually one does

not obtain diffusion equations in the continuum limit.

Suppose that the conditional probability pi(t) that a walker is at i ∈ ZZ at time t,

conditioned on the fact that it begins at i = 0 at t = 0, evolves according to the

continuous time master equation

∂pi
∂t

= T̂+
i−1(W ) pi−1 + T̂−

i+1(W ) pi+1 − (T̂+
i (W ) + T̂−

i (W )) pi. (2.1)

Here T̂±
i (·) are the transition probabilities per unit time for a one-step jump to i± 1, and

(T̂+
i (W ) + T̂−

i (W ))−1 is the mean waiting time at the ith site.1 We assume throughout

that these are nonnegative and suitably smooth functions of their arguments. As in [25],

the vector W is given by
W = (. . . , w−1, w0, w1, . . .). (2.2)

As (2.1) is written, the jump probabilities may depend on the entire state and on the entire

distribution of the control species. Since there is no explicit dependence on the previous

state the process may appear to be Markovian, but if the evolution of wi depends on

pi then there is an implicit history dependence, and thus the jump process by itself is

not Markovian. However, the composite process for the evolution of the pair (p, w) is a

Markov process.

There are three distinct types of models that are considered in Othmer & Stevens [25],

which differ in the dependence of the transition rates on w: (i) strictly local models, (ii)

barrier models, and (iii) gradient models. Here we focus on the first of these. We assume

that the transition rates T̂±
i depend only on wi and we write T̂±

i = T̂(wi). That is, we

assume that the mean waiting time at site i depends only on the density of the control

species at that site. This describes a myopic walker who bases his decisions entirely on

local information, and in this scheme (2.1) becomes

∂pi
∂t

= T̂+(wi−1) pi−1 + T̂−(wi+1) pi+1 − (T̂+(wi) + T̂−(wi)) pi. (2.3)

Since the transition probabilities are independent of the lattice site and depend only on

the local densities, there is no source of spatial bias in the walk and we must assume that

1 Since the walkers do not interact directly, we can regard (2.1) either as an equation for the

probability distribution of a single individual, or for the density of a population, and we use the

two interchangeably. To be precise, we should speak of localization when referring to an individual,

and aggregation or concentration when referring to a population.
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T̂+ = T̂− ≡ T̂. Then (2.3) becomes

∂pi
∂t

= T̂(wi−1) pi−1 + T̂(wi+1) pi+1 − 2T̂(wi) pi. (2.4)

We set x = ih, then reinterpret it as a continuous variable, and extend the definition of pi
accordingly. Expansion of the right-hand side as a function of x up to second order in h

gives

∂p

∂t
= h2 ∂2

∂x2

(
T̂(w) p

)
+ O(h4). (2.5)

We suppose that there is a scaling of the transition rates such that T̂(w) = λT(w) and

such that limh→0,λ→∞ λh2 = constant ≡D exists. Then the diffusion limit of (2.4) is

∂p

∂t
= D

∂2

∂x2
(T1(w) p). (2.6)

We suppose for simplicity that the production of the signal or control substance w

depends quadratically on the local density of individuals, and decays via first-order

kinetics. Then the evolution of w is given by

dw

dt
= p2 − µw. (2.7)

Other combinations of production and decay are possible, and whether or not aggrega-

tion occurs depends on the interplay between these processes and the sensitivity of the

transition rates to w [25] . The forms chosen here and later allow much of the analysis to

be carried out in complete detail. If we further assume that the production of the signal

occurs on a much faster time scale than movement, then the first term in the solution of

the resulting singularly-perturbed version of (2.7) is w = p2/µ, and we obtain the master

equation

∂p

∂t
= D

∂2

∂x2
(T(p) p). (2.8)

for a new function T(p) = T1(p
2/µ). We impose no-flux boundary conditions to guarantee

the conservation of the total probability density or population density, since there are

no birth-death or immigration processes in the model. Throughout this paper we shall

refer to this problem as the singular model. Our goal is to compare the behaviour of

solutions of the continuum problems, both for the nonsingular problem (2.6) & (2.7) and

the singular problem (2.8), with solutions of the corresponding discretized problems. Some

results on this problem are given in Painter et al. [27], and in this paper we focus mainly

on the continuous aspects of this comparison. The numerical aspects are studied in more

detail in Painter et al. [28]
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3 Analysis of the singular problem

We begin with the singular problem, which is (2.8) with Neumann boundary conditions

and suitable initial conditions:

pt = (T(p)p)xx, in QT := Ω × (0, T )

(T(p)p)x = 0, on ΓT := ∂Ω × (0, T )

p(x, 0) = p0(x), in Ω,


 (3.1)

Here Ω denotes a bounded interval in IR, which after translation and rescaling of x, could

be set to [0, 1]. The no-flux boundary condition implies that∫
Ω

p(x, t) dx =

∫
Ω

p0(x) dx ∀t � 0. (3.2)

We suppose that T : IR → IR in C2(0,∞) is such that T(p)p� 0 for all p∈ IR+, (T(p)p)′ �
const, and (T(p)p)′ changes sign exactly once on [0,∞). Two examples that satisfy these

conditions are T(p)p = p/(K + p2) and T(p)p = pe−p. Such T(p) in (3.1) can lead to a

backward parabolic equation for suitable initial data.

3.1 The dependence of well-posedness on the initial data

Because (3.1) may be a forward-backward problem, we must determine whether the

problem is well-posed. The following shows that it is well-posed for sufficiently small

initial data, and that for these initial data the solution exists globally in time.

Theorem 3.1 Suppose that (T(p)p)′ = 0 at p= s0 and that (T(p)p)′ > 0 for p∈ [0, s0) and

(T(p)p)′ < 0 for p> s0. Then there exists a nonnegative classical solution in C1,2(QT ) of

problem (3.1) for all T > 0, provided p0(x) ∈C2,β(Ω) (β ∈ (0, 1)), 0 � p0(x)<s0 for all x∈Ω

and satisfies the compatibility condition (T(p0)p0)x = 0 on ∂Ω.2

Proof First we rewrite (3.1) as

pt = ((T(p) + pT′(p)))xpx

= (b(p)px)x, in QT

b(p)px = 0, on ΓT

p(x, 0) = p0(x), in Ω.




(3.3)

Since Ω is bounded there exists a constant s1 such that |p0(x)| � s1 < s0 in Ω. Thus we

can consider the modified problem

pt = (a(p)px)x, in QT

a(p)px = 0, on ΓT

p(x, 0) = p0(x), in Ω.


 (3.4)

2 The notation for the various Banach spaces used throughout the paper is given in some of

Appendix A.
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where a(p) is defined as b(p) for p� s1, and for p> s1 as a C1-continuation b1(p) of b(p)

satisfying the following conditions: b1(p) � c> 0, p> s1, b
′
1(p) � 0, p > s1. Problem (3.4) is

uniformly parabolic and according to Ladyzenskaya et al. [19, Chapter V, Theorem 7.4]

there exists a classical solution p∈C1 + β
2 ,2+ β(QT ) of (3.4) for every T > 0. By a standard

argument (define u= T(p)p and redefine the time), the solution is nonnegative for non-

negative initial data.

Furthermore, we see that this classical solution of the modified problem satisfies the

following Lr-estimates:

d

dt

∫
Ω

|p|r = r

∫
Ω

ptp|p|r−2 dx = r

∫
Ω

p|p|r−2(a(p)px)x dx

= −r(r − 1)

∫
Ω

a(p)|p|r−2|px|2 dx � −cr(r − 1)

∫
Ω

|p|r−2|px|2 dx � 0.

It follows from these inequalities that the modified problem Lr-norm can be bounded for

every r ∈ [1,∞) in terms of the corresponding Lr-norm of the initial data by:
∫

Ω

|p(x, t)|r dx




1
r

�


∫

Ω

|p0(x)|r dx




1
r

∀r ∈ [2,∞). (3.5)

Thus, as r → ∞, we see that ‖p(·, t)‖L∞(Ω) � ‖p0(·)‖L∞(Ω) � s1 ∀t > 0. Thus the L∞-norm

of the modified problem remains uniformly bounded by the L∞-norm of the initial data

for all times, and consequently, the solution p of the modified problem is also a classical

solution of the original problem. �

Theorem 3.1 and its proof go along the lines of Theorems 2.1 and 6.1 in Kawohl &

Kutev [16].

These conditions on the initial data lead us to the following definition.

Definition 3.2 We say that the initial data p0(x) for problem (3.1) is subcritical if

(T(p0)p0)
′(x) > 0 in Ω. We call p0(x) supercritical if there exists an Ω0 ⊂ Ω such that

(T(p0)p0)
′(x) < 0 for all x ∈ Ω0.

Thus there exists a unique classical solution of (3.1) for initial data that is sufficiently

smooth and subcritical. Furthermore, an energy argument shows that the solution must

converge to the homogeneous distribution in this case. To prove this, let Φ(p) =
∫
T (p)pdp

be an indefinite integral of T (p)p, and consider the energy functional

Ec(t) :=

∫
Ω

Φ(p(x)) dx. (3.6)

Along trajectories of (3.1)

d

dt
Ec(t) = −

∫
Ω

|(T(p(x, t))p(x, t))x|2 dx � 0, (3.7)
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Figure 1. The time evolution of the discretised singular model (master equation) for T(p) =

1/(1 + p2) and different initial distributions. For this T the critical value is p = 1. (a) p(x, 0) =

0.6 − 0.4 cos(2πx). Initial particle density is supercritical, and a single high density peak forms.

(b) p(x, 0) = 0.6 − 0.39 cos(2πx). Initial conditions are subcritical, and the homogeneous solution

results. (c) and (d) While max p(x, 0) < 1.0 is a sufficient criterion for the homogeneous solution

to develop, max p(x, 0) > 1.0 is not sufficient for the heterogeneous solution to form. Two different

sets of initial data for the same initial mass, M, can lead to either homogeneous or heterogeneous

solutions.

and vanishes only when (T(p(x, t))p(x, t))x vanishes, and therefore Ec is strictly non-

increasing along solutions of (3.1). Since p(x, t) exists globally in time, and is a classical

solution for subcritical initial data, we conclude that∫
Ω

|(T(p(x, t))p(x, t))x|2 dx → 0, as t → ∞. (3.8)

Therefore, T(p(x, t))p(x, t) → const as t → ∞, which implies that p(x, t) → const, as

t → ∞. The mass conservation condition implies that this constant is given by

M :=
1

|Ω|

∫
Ω

p0(x) dx. (3.9)

Thus the case of subcritical initial data is completely understood.

However we do not have a proof for the local existence of a solution of (3.1) for

arbitrary supercritical initial data, and numerical computations indicate why this is a

difficult issue to resolve. In Figure 1 we show numerically-computed solutions for various

sub- and supercritical initial data. As we can see from Figures 1(c) and (d), the asymptotic

behaviour of solutions for supercritical initial data can be either numerical blow-up or

convergence to the homogeneous solution, and of course the latter implies the global

existence of the solution.
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Remark 3.3 At this point, we remark on the simulation method employed throughout

this paper. The PDE is discretised in space, and the resulting system is solved using the

Livermore solver for stiff ODE systems (LSODE). We thus note that for the singular

problem, simulations represent the evolution of the master equation, rather than the PDE

model. Numerics were tested under a variety of space and time discretisations to ensure

(where applicable) consistency in, for example, blow-up time. It is important to note that

while the same phenomena were observed, the sensitivity to the initial data in the singular

problem can result in different coarsening evolutions/blow-up locations (see Figure 4 for

a typical coarsening scenario).

Remark 3.4 In regard to the simulations of Figure 1, an intuitive argument for the

contrasting behaviour observed for two sets of initial data can be derived via a stability

analysis of the steady states for the corresponding Master Equation of the singular

problem [27]. For the parameters chosen, both the uniform and single peak solutions are

stable, and thus which emerges depends on their relative domains of attraction.

The results for a related problem introduced in Perona & Malik [30] can be used to

show that a solution of (3.1) can only exist, even locally in time, if the initial data is

infinitely differentiable. To see this, let

u(x, t) :=

x∫
0

p(s, t) ds. (3.10)

and thereby transform (3.1) into the following Dirichlet problem:

ut = (T(ux)ux)x, in (0, 1) × (0, T ) (3.11)

u(0, t) = 0, u(1, t) =M =

1∫
0

p0(x) dx, u(x, 0) =

x∫
0

p0(s) ds. (3.12)

Equation (3.11) with homogeneous Neumann boundary data and T(ux) as described above

is used in image enhancement processes and is known as the Perona–Malik [30] equation.

In Kichenasssamy [17] it is shown that a weak solution of this equation satisfying

T∫
0

∫
Ω

(ϕtu − ϕxT(ux)ux) dx dt= 0 (3.13)

for all ϕ ∈ C1
0 (QT ) can only exist locally if the initial data is infinitely differentiable.

Furthermore, in Kawohl & Kutev [16] it is shown that if a solution of the Perona-

Malik equation with homogeneous Neumann boundary data exists for initial data with

|ux(x, 0)| > 1 in some region of Ω, then the gradient of this solution blows up in finite

time. Figures 1(c) and (d) suggest that finding criteria for global existence vs. blowup is

more subtle in the present problem.
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3.2 Least energy solutions and connections with the discrete steady state analysis

For the rest of the paper we use the particular form T(p) = 1/(1 + p2) for the transition

rate function. According to (3.7), we know that the energy decreases whenever the solution

of (3.1) exists, and thus we begin by studying the minimizing problem

inf
p∈D

Ec(p) (3.14)

where now Ec(p) =
∫
Ω

1
2
log(1 + p2) dx and

D :=


p ∈ L1(Ω) | p � 0,

∫
Ω

p(x) dx = M|Ω|


 .

We know from the calculus of variations that either convexity or coercivity and lower

semicontinuity of the functional Ec is sufficient to ensure the existence of a minimizer,

but Ec is neither coercive nor convex. Consequently we do not know whether or not a

minimizer exists, and if one does, whether it is unique (see, for example, Evans [10, Chapter

8, pp. 431–490] on the theory of when a minimization problem achieves its infimum).

Remark 3.5 We see that for Ω = (0, 1) the sequence

{pµ(x)}µ�0 :=

{
1

x + µ

}
µ�0

satisfies ‖pµ‖L1(Ω) → ∞ as µ → 0 and

∫ 1

0

log
(
1 +

(
pµ(x)

)2
)
dx < ∞ for all µ.

Furthermore, we see that the sequence {qµ(x)}µ�0 with

qµ(x) := M
pµ(x)∫ 1

0 pµ(x)dx

satisfies the mass constraint and is a minimizing sequence of the functional in our

considered set since∫ 1

0

log
(
1 +

(
qµ(x)

)2
)
dx → 0 as µ → 0 and

∫ 1

0

qµ(x) dx = M for all µ.

However one easily can also construct a minimizing sequence with maximum in the other

corner of the interval. Therefore one should expect the non uniqueness of a minimizer.

Thus we have to look to previous results for the discretized version of (3.1) for guidance.

The steady state analysis for the discrete formulation

dP

dt
= ∆d(T(P )P ) (3.15)

of (3.1) done in Painter et al. [27] shows that stationary solutions P s of this equation are

piecewise constant solutions, where P s can take only two values p±
q and p∓

n−q . Analysis of
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the corresponding discrete energy functional

Ed(P ) :=
1

2

N∑
i=1

log
(
1 + p2

i

)
(3.16)

shows the following:

(1) For any M (the mean density) there are at most two asymptotically stable steady

states, one of which is spatially uniform.

(2) The uniform solution is a local minimum (maximum) of Ed when M < 1 (M > 1).

(3) When it exists, the single peak solution is a local minimizer of Ed. When M > 1 it

is the only minimizer and hence attracts the flow for almost all initial data.

Here a ‘single-peak’ solution is one for which most of the mass is concentrated on

one lattice site. These results show that on any finite-dimensional lattice the only stable

solutions are the single-peak solution and possibly the uniform solution, and they show

why one expects either a numerical blowup, as in Figure 1(d), or convergence to a uniform

solution for the PDE.

For the continuum problem we proceed as in the discrete problem, albeit formally since

the existence of a minimizer is not proven. We first calculate the variational equation

for Ec (note that Ec is continuously Fréchet-differentiable in L1(Ω)). In view of the mass

constraint, the Lagrange multiplier rule implies that there exists a parameter λ ∈ IR such

that a critical point p ∈ D satisfies the equation∫
Ω

[T(p)p − λ ]ϕdx=

∫
Ω

[
p

1 + p2
− λ

]
ϕdx = 0

for all test functions ϕ ∈ C∞(Ω). According to the Fundamental Lemma of the calculus

of variations [4, Folgerung 2.11, p. 75], a critical point of the minimizing problem (3.14)

solves the Euler–Lagrange equation

T(p)p =
p

1 + p2
= λ (3.17)

almost everywhere in Ω. If a solution of problem (3.1) evolves to a critical point of Ec this

equation is equivalent to stating that T(p)p becomes proportional to the eigenfunction

Ψ ≡ 1 of d2/dx2 with Neumann data. The solutions of (3.17) are

p∗(λ) =
1

2λ
+

√
1

4λ2
− 1, p∗(λ) + p∗(λ) = λ−1 and p∗(λ) · p∗(λ) = 1. (3.18)

Thus critical points of the minimizing problem (3.14) must be piecewise-constant functions

taking either of the values p∗(λ) and p∗(λ) = 1/p∗, with p∗(λ) � 1 � p∗(λ) where the λ

in the argument indicates the dependence of these values on the Lagrange multiplier. By

integrating (3.17) one finds that λ ∈ (0,M/(1 + M2)] ⊂ (0, 1/2], and for every λ in this

interval there is a corresponding critical point of the constrained energy functional. Since

T(p)p is continuous at jumps in p, the corner conditions which demand that Φ(p) − λp

be continuous at jumps are automatically satisfied.
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Let ω1 be the fraction of Ω where p = p∗(λ) and let ω2 = 1 − ω1 be the fraction of

Ω where p = p∗(λ). Then p∗ω1 + p∗ω2 = M, ω1 = (M − p∗)/(p
∗ − p∗), and ω2 = (M −

p∗)/(p∗ − p∗). The unique spatially uniform solution that exists for all M ∈ (0,∞) is p∗ =

1/M, p∗ = M,ω1 = 0, ω2 = 1, λ = M/(1 + M2). Note that p∗ → ∞ and p∗ → 0 as λ → 0

The variational problem (3.14) now reads

inf
0<λ� M

1+M2

Ê(λ) = inf
0<λ� M

1+M2

|Ω|
2

log
((

1 + (p∗)2
)ω1

(
1 + p2

∗
)ω2

)
, (3.19)

where Ê(λ) ≡ Ec(p(λ)). The first derivative of Ê(λ) with respect to λ is

∂

∂λ
Ê(λ) =

4|Ω|(2λ − M)√
1 − 4λ2(2(1 +

√
1 − 4λ2))(4λ2 − 1 −

√
1 − 4λ2)2

×
[
2 + 8λ4 − 10λ2 +

(
2 − 6λ2

)
log 2

+
(
2λ2

√
1 − 4λ2 − 2

√
1 − 4λ2

)
log

(
1 +

√
1 − 4λ2

)
−

(
6λ2 − 2 + 2λ2 log 2 + 2 log 2

) √
1 − 4λ2

−
(
λ2

√
1 − 4λ2 −

√
1 − 4λ2 + 3λ2 − 1

)
log

(
λ2

)
+

(
6λ2 − 2

)
log

(
1 +

√
1 − 4λ2

) ]
, (3.20)

and from this we see that the first factor vanishes at λ = M/2, and second factor vanishes

at λ = 0.5. The latter is not attainable for M � 1 with M < ∞, and therefore Ê(λ) has

a unique critical point at λ = M/2. Note that M/2 ∈ (0,M/(1 + M2)] if M � 1, but

M/2 � (0,M/(1 + M2)] if M > 1, and thus Ê(λ) has a critical point only when M < 1.

From the expression for Ê(λ) we see that

2Ê(λ)

|Ω| = log


1 +

(
1

2λ
+

√
1

4λ2
− 1

)2



λ(M+M

√
1−4λ2−2λ)

1+
√

1−4λ2−4λ2

+ log

(
1 +

(
2λ1

1 +
√

1 − 4λ2

)2
) (1+

√
1−4λ2−2Mλ) (1+

√
1−4λ2)

1+
√

1−4λ2−4λ2

. (3.21)

Therefore

lim
λ→0

log


1 +

(
1

2λ
+

√
1

4λ2
− 1

)2



λ(M+M

√
1−4λ2−2λ)

1+
√

1−4λ2−4λ2

= 0 (3.22)

and

lim
λ→0

log

(
1 +

(
2λ

1 +
√

1 − 4λ2

)2
) (1+

√
1−4λ2−2Mλ) (1+

√
1−4λ2)

1+
√

1−4λ2−4λ2

= 0. (3.23)
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Consequently, limλ→0 Ê(λ) = 0, and

Ê
(

M

1 + M2

)
= Ec(M) =

|Ω|
2

log(1 + M2) > Ê(ε) (3.24)

for sufficiently small ε > 0. Therefore we have the following result.

Lemma 3.6

(1) If M < 1, then Ê(λ) is monotone increasing on the interval (0,M/2] and monotone

decreasing on (M/2,M/(1 + M2)].

(2) If M > 1, then Ê(λ) is monotone increasing on the interval (0,M/(1 + M2)].

Since p∗ → ∞ and p∗ → 0 as λ → 0, we conclude that as λ → 0 the ‘least energy

solution’ for the continuum case approaches a distribution that is zero almost everywhere

in Ω and equal to ∞ on a set of zero measure, i.e. a single δ-function as we will conclude

from the results of the upcoming section. In Painter et al. [27] we reached a similar

conclusion beginning from the discretized version of the problem.

3.3 The shape of the minimizers in a regularized problem

To further understand the qualitative behaviour of the least energy solution of (3.1)

or more precisely, the critical point for the minimizing problem (3.14), we consider the

following Cahn–Hilliard regularization of the minimizing problem:3

min
p∈D0

∫
Ω

γ2|px|2 +
1

2
log(1 + p2) dx. (3.25)

Here the energy functional is defined on a set of smoother functions

D0 :=


p ∈ H1(Ω) | p � 0,

∫
Ω

p(x) dx = M|Ω|


 . (3.26)

and jumps in the density are not allowed, but p may vary rapidly over small intervals.

Such changes are penalized in the energy by the term γp2
x. The existence of a minimizer of

(3.25) follows by the direct method of the calculus of variations, and it follows from elliptic

regularity theory (see, for instance, Ladyzenskaya & Ural’ceva [18]) that this minimizer

satisfies the Euler–Lagrange equation

2γ2pxx =
p

1 + p2
− λγ, in Ω

px = 0, on ∂Ω∫
Ω
p(x) = M|Ω| =

∫
Ω
p0(x) dx,


 (3.27)

3 The corresponding evolution equation will be treated later.
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whereas before, λγ � M
1+M2 . Now we assume without loss of generality that Ω = (−1, 1),

and following Carr et al. [7], we define x= γs, z(s) = p(γs). Then we can write (3.27) as

2z′′ =
z

1 + z2
− λ, in (−γ−1, γ−1)

z′(±γ−1) = 0∫
Ωγ

p(s) ds = 2γ−1M.




(3.28)

Any solution of this problem gives rise to a trajectory in the (z, z′) phase plane which

begins and ends on the z axis and has duration 2γ−1. Furthermore we see that non-

constant solutions of (3.28) lie on closed orbits and, thus, they are either monotonic or

periodic.

In the new variables problem (3.25) becomes

min
z∈Dγ

Eγ(z) := min
z∈Dγ

γ

γ−1∫
−γ−1

|z′|2 ds +
γ

2

γ−1∫
−γ−1

log(1 + z2) ds, (3.29)

where

Dγ :=


z ∈ H1(Ω) |

∫
Ω

z(s) ds = 2γ−1M


 . (3.30)

Following Struwe [34], we say that a function u is a relative minimizer of (3.29) if there

is a neighborhood N of u in Dγ such that

γ

γ−1∫
−γ−1

|u′|2 ds +
γ

2

γ−1∫
−γ−1

log(1 + u2) ds � γ

γ−1∫
−γ−1

|v′|2 ds +
γ

2

γ−1∫
−γ−1

log(1 + v2) ds

for all v ∈ N ∩ Dγ . If the above relation holds for all v ∈ Dγ then u is called an absolute

minimizer. The next result shows that non-monotonic solutions of (3.28) are not absolute

or relative minimizers of (3.29).

Theorem 3.7 Relative minimizers of (3.29) are either constant or monotonic.

Proof We assume that there is a non-monotonic relative minimizer of (3.29) and we

denote that minimizer by u. The second variation of Eγ at u is given by

1

γ

d2

dξ2
Eγ(u + ξη)|ξ=0 =

γ−1∫
−γ−1

2(η′)2 +
(1 − u2)

(1 + u2)2
η2 ds, (3.31)

where η ∈ H1(−γ−1, γ−1) and
∫ γ−1

−γ−1 η ds = 0. Since non-constant solutions of (3.28)

lie on closed orbits and u is non-monotonic, there is an S ∈ (−γ−1, γ−1] such that
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u(S) = u(−γ−1), u′(S) = 0 (= u′(−γ−1)). Now let

η0 =

{
u′(s), −γ−1 � s � S

0, S � s � γ−1

and η1(s) ∈ H1(−γ−1, γ−1) satisfying
∫ γ−1

−γ−1 η1 ds = 0 and η1(−γ−1) = 1, η1(s) = 0 for

S � s � γ−1. Set

η(s) = η0(s) + χη1(s)

with a constant χ that we specify later. We see that η ∈ H1(−γ−1, γ−1) and
∫ γ−1

−γ−1 η ds = 0

holds and

1

γ

d2

dξ2
Eγ(u + ξη)|ξ=0 =

S∫
−γ−1

2(u′′)2 +
(1 − u2)

(1 + u2)2
(u′)2 ds

+ 2χ

S∫
−γ−1

2u′′η′
1 +

(1 − u2)

(1 + u2)2
u′η1 ds + O(χ2). (3.32)

Using the fact that u is a solution of (3.28) we see that

2u′′′ =
1 − u2

(1 + u2)2
u′.

If we now replace 1−u2

(1+u2)2
u′ by 2u′′′ in (3.32) and integrate by parts we see that

1

γ

d2

dξ2
Eγ(u + ξη)|ξ=0 = −4χu′′(−γ−1) + O(χ2). (3.33)

Since u is not constant we know that u′′(−γ−1) � 0 and we can choose the constant χ

sufficiently small such that

1

γ

d2

dξ2
Eγ(u + ξη)|ξ=0 < 0 (3.34)

which contradicts our assumption that u is a relative minimizer. �

If a relative minimizer is constant, it must be equal to M to satisfy the constraint.

However, for sufficiently small γ the constant solution is not the absolute minimizer of the

variational problem (3.25), and thus the absolute minimizer must be strictly monotonic. If

we denote by (pγ)γ>0 the sequence of absolute minimizers of (3.25), we see that as γ → 0

the limit p∗ is also monotonic. This limit is in the sense of measure, since according to

Smoller [32, p. 571] there exists a subsequence of the (pγ), for simplicity again denoted by

(pγ), such that

1∫
−1

pγφ dx → 〈µ, φ〉 (3.35)

for every bounded φ ∈ C(−1, 1) as γ → 0, where µ is a Radon measure on (−1, 1). In
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view of the previous analysis we see that the measure µ is a δ-distribution, concentrated

on boundary points of the interval [−1, 1]. We can also use these conclusions to describe

the shape of the least energy solution when we restrict ourselves to periodic solutions. In

particular, we see that the number of peaks of the least energy solution is given by the

periodicity of the class of functions that we study, as can be seen by using a reflection

argument and repeating the preceding arguments on the subinterval [1 − 2
l
, 1], where l

denotes the period of the functions considered.

3.4 Finite time blowup of weak solutions

We now return to the time dependent problem, and define a weak solution of (3.1) as

follows.

Definition 3.8 A function p(x, t) with

p ∈ L∞(L∞
+(Ω); (0, T )) ∩ L2(H1(Ω); (0, T )), pt ∈ L2((H1(Ω))∗; (0, T ); )

is called a weak solution of (3.1) if for all h ∈ L2(H1(Ω); (0, T )) the following identity

holds:

0 =

T∫
0

〈pt, h〉 dt +

T∫
0

∫
Ω

(T(p)p)xhx dx dt.

(Here 〈·, ·〉 denotes the dual product between H1(Ω) and its dual space (H1(Ω))∗).)

Even though we have no rigorous existence result in the case of supercritical initial

data, let us assume that a weak solution of (3.1) exists locally, and formulate a finite time

blow-up result for such solutions of (3.1) in the case of one space dimension.

Theorem 3.9 Let Ω ⊂ IR, and suppose that for sufficiently smooth initial data p0(x) there

exists a weak solution of (3.1) locally in time. Furthermore, assume that

Ec(p0) < Ec(M) (3.36)

where M is the mean density of p0(x). Then the weak solution of (3.1) must blow up in finite

time, i.e., there exists a maximal time Tmax < ∞ such that ‖p(·, t)‖H1(Ω) → ∞ as t → Tmax.

Proof of Theorem 3.9 The proof is a simple consequence from the properties of the

functional Ec(t) and the Sobolev embedding for H1(Ω) ⊂ Cβ(Ω) with β ∈ (0, 1). First,

we recall that Ec(t) is bounded below. If we suppose that a weak solution of (3.1) exists,

we can multiply (3.1) with T(p)p ∈ L2((0, T );H1(Ω)) and integrate the equation by parts

over Ω. From this we see that

d

dt
Ec(t) = −

∫
Ω

| (T(p)p)x|2 dx
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also holds for a weak solution, not only for classical solutions, of (3.1). If we now assume

that Tmax = ∞ one can conclude that

lim
t→∞

∫
Ω

|(T(p(x, t))p(x, t))x|2 dx= 0.

This implies that limt→∞ T(p(x, t))p(x, t) = const a.e. in Ω. Since p ∈ H1(Ω), T(p)p ∈
H1(Ω) and as a consequence of the Sobolev embedding theorem [19, 1] T(p)p is continuous

and limt→∞ T(p(x, t))p(x, t) = const in Ω. It follows that limt→∞ pt(x, t) = 0, and therefore

T(p(x, t))p(x, t) must converge to an eigenfunction of the Laplacian with homogeneous

Neumann boundary conditions, i.e. to a constant. However, this implies that p(x, t) must

converge to a constant and consequently it converges to M as t → ∞. However, the fact

that Ê is non-increasing along orbits, together with the assumption (3.36), renders this

impossible. �

We can now begin to synthesize our understanding of the temporal evolution of

solutions for various initial data. We know that for subcritical initial data the solution

exists globally in time and converges to the constant solution p = M. Thus the energy

of such initial data must be greater than that of the uniform solution, which is Ec(M) =

|Ω| log(1 +M2)/2. If M > 1 a linear analysis shows that the constant solution is unstable.

In Figures 1(c) and (d) one sees that having supercritical initial data is not sufficient to

guarantee the blow-up of the H1-norm of the solution, but the energy condition (3.36)

provides a sufficient condition. In particular, we know from § 3.2 that if M < 1 there

is a λ1 ∈ (0,M/(1 + M2)] such that Ê(λ1) = Ec(M). In this case small perturbations of

step-functions satisfying

p

1 + p2
= λ < λ1 (3.37)

lead to finite time blow-up of the solution, while step-functions satisfying

p

1 + p2
= λ > λ1 (3.38)

can either lead to blow-up in finite time or convergence to the uniform distribution.4

However it is extremely complicated to calculate the dependence of λ1 on M and 1, as we

see from formula (3.21).

Since critical points exist for any λ ∈ (0,M/(1 + M2)], one expects that the evolution

will in general exhibit a complicated coarsening process en route to the minimum energy

solution, as was seen earlier for the finite-dimensional problem (cf. Figure 3 in Painter

et al. [27]). The evolution decreases the energy, but solutions may pass near critical

points and be transiently ‘trapped’ in the neighbourhood of a critical point near its stable

manifold, only to eventually leave in the direction of the unstable manifold. As long

as it exists the solution continues to decrease the energy, although not necessarily by

steepest descent, and may again be transiently trapped near a critical point having fewer

4 Our numerical experiments suggest that the L∞-norm of p(x, t) blows up in finite time, but the

theorem only gives us the finite time blowup in the H1-norm.
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Figure 2. Blow-up at the boundary for initial data p(x, 0) = 1.0 − 0.01 cos (πx), and M = 1.

Simulations use 101 lattice points.
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Figure 3. Interior blow-up for initial data p(x, 0) = 1.0 − 0.01 cos (2πx), and M = 1.

Simulation data as above.

maxima (we have seen in the discrete case that the energy decreases with a decreasing

number of peaks of the steady state (see Painter et al. [27]). However the least energy

solution of (3.14) is expected to be a δ-function concentrated either at the boundary, or for

symmetric solutions, at the center of the interval, and our numerical computations confirm

this expectation. A simulation demonstrating the former case is shown in Figure 2, while

the latter is shown in Figure 3. However in the discrete formulation the localization of

the peak at the boundary is not necessary since every single-peaked steady state solution

has the same energy.

4 The Cahn–Hilliard evolution

The gradient flow in (H1(Ω))∗ for the regularized energy functional (3.25) is the Cahn–

Hilliard-like equation

∂pγ
∂t

= ∆

(
pγ

1 + p2
γ

)
− 2γ2∆2pγ, in QT

∂

∂ν

(
pγ

1 + p2
γ

)
= 0,

∂

∂ν
(∆pγ) = 0, on ΓT

pγ(x, 0) = p0(x), in Ω.




(4.1)
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Figure 4. The coarsening effect for the singular model (left) and the Cahn–Hilliard regularization

(right). In both simulations, we used initial data p(x, 0) = 10.0 + 0.5 cos(πx) with K = 1 and 201

lattice points. For the Cahn–Hilliard regularization, γ was set at 10−6.

The local existence of a weak solution of this problem for every p0 ∈ H1(Ω) can be shown

for N � 3 by using a Galerkin approximation for the system

ut = ∆w, in QT

w =
u

1 + u2
− 2γ2∆u, in QT

∂w

∂ν
= 0 =

∂w

∂ν
, on ΓT

u(x, 0) = p0(x), in Ω.




(4.2)

This can be proven by a slight modifications of the method used for the standard Cahn-

Hilliard equation in Elliott [9]. The result is that there exists a weak solution of (4.2) such

that u ∈ L∞(H1(Ω); (0, T )), w ∈ L2(H1(Ω); (0, T )) and ut ∈ L2((H1(Ω))∗; (0, T )) such that∫
Ω

utϕ dx = −
∫
Ω

wxϕx, ∀ ϕ ∈ H1(Ω)∫
Ω

wϕ =
∫
Ω

u

1 + u2
ϕ + 2γ2uxϕx, ∀ ϕ ∈ H1(Ω)

u(0) = p0(x) ∈ H1(Ω).




(4.3)

The existence of the Lyapunov function∫
Ω

γ2|px|2 +
1

2
log(1 + p2) dx

implies that the solution exists globally in time and converges to a stationary solution

of (4.1), at least for a subsequence (tk)k∈IN with tk → ∞. Thus solutions cannot blow up,

but a comparison of the numerical results for the time asymptotics of the Cahn–Hilliard

regularization with the numerical results for the singular problem, shows that both systems

exhibit the coarsening effect, and the final steady state solutions of the Cahn–Hilliard

regularization have similar qualitative properties to the blow-up profile of the singular

model. Smaller values of γ in the Cahn–Hilliard problem of course result in ‘sharper’

aggregations.

However, the Cahn–Hilliard approach cannot be derived directly from the spatially

discrete model. The fourth order approximation obtained by retaining the next term in a
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Taylor expansion (using suitable scalings) is

pt = (T (p)p)xx + γ(T (p)p)xxxx. (4.4)

Here the fourth order term has the wrong sign whenever p(x, t) is subcritical and the right

sign where it is supercritical. Numerical simulations of this fourth order equation and its

effects are carried out in detail in Painter et al. [28]. It is known that if non-local effects

are included in the flux, rather than directly in the master equation, a Cahn–Hilliard-like

equation is obtained [22].

5 Analysis of the non-singular problem

In the derivation of the singular model (3.1) we assumed that the control substance evolves

on a faster time scale than the jump process, but if they occur on comparable scales we

obtain the following strongly coupled reaction-diffusion system consisting of a nonlinear

parabolic partial differential equation and an ordinary differential equation.

pt = (T(w)p)xx, in QT

εwt = p2 − µw, in QT

(T(w)p)x = 0, on ΓT

p(x, 0) = p0(x), w(x, 0) = w0(x), in Ω.




(5.1)

Here we use the form T(w) = 1/(1 + w) for the transition rates. Our main goal in this

section is to establish the local existence in time of a solution of this system. In effect, we

show that incorporating the finite evolution rate of w provides a different regularization of

the problem. As we showed elsewhere [28], one can expect that the asymptotic behaviour

of solutions to this regularized problem is similar to the asymptotic behaviour of the

solution to (3.1).

To prove the local existence of a classical solution for this model, we introduce the new

function

u(x, t) =
p(x, t)

1 + w(x, t)
.

We set µ = 1 hereafter, and thus obtain the problem

ut =
uxx − wtu

1 + w
=

uxx

1 + w
− 1

ε
(1 + w)u3 +

wu

ε(1 + w)
, in QT

εwt = (1 + w)2u2 − w, in QT

ux = 0, on ΓT

u(x, 0) =
p0(x)

1 + w0(x)
, w(x, 0) = w0(x), in Ω.




(5.2)

Under this transformation we lose the higher order terms in w in the first equation, but

pay for this simplification by obtaining a nonlinear equation for w. Since we are looking

for positive solutions of (5.1) (resp. (5.2)), the first equation of (5.2) implies that for such

a solution ∫
Ω

u(x, t) dx� const ∀ t � 0. (5.3)
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This inequality follows since the first equation can be written as ut + utw + wtu = uxx.

Thus we see that ∫
Ω

ut + (wu)t dx = 0.

If we integrate the equation over (0, T ), we see that for non-negative solutions∫
Ω

u(x, t) dx �

∫
Ω

(u(x, 0) + w(x, 0)u(x, 0)) dx.

Thus the L1-norm of a non-negative solution u is uniformly bounded for all t � 0. For the

remainder of this section we set ε = 1, but the existence result and all other statements

can be shown to be true for every ε > 0 by making the corresponding changes.

Theorem 5.1 Suppose that u0(x) belongs to the class C2,β(Ω) (β ∈ (0, 1)) satisfying

ux(x, 0) = 0 on ∂Ω and w0(x) ∈H2(Ω). Furthermore, assume that u0(x) and w0(x) are positive

in Ω. Then there is a time T > 0 such that there exists a solution (u(x, t), w(x, t)) of (5.2)

with

u ∈ L∞(L∞
+(Ω); (0, T )) ∩ L2(H2(Ω); (0, T )), ut ∈ L2(QT )

and w ∈ L∞(L∞
+(Ω); (0, T )) ∩ L2(H2(Ω); (0, T )), wt ∈ L2(H2(Ω); (0, T )).

Furthermore u(x, t) belongs to C1+ β
2 ,2+β(QT ), u(x, t) � 0 and w(x, t) � 0 for all t ∈ (0, T ).

Proof We prove the local (in time) existence of a solution of (5.2) by applying Schauder’s

fixed point theorem (see, for instance, Heuser [11]). Therefore, we define the mapping

A : L2(H2(Ω); (0, T )) → L2(H2(Ω); (0, T ))

f �→ u =: Af
(5.4)

where u is the solution of

ut =
uxx

1 + w
− (1 + w)u3 +

wu

1 + w
, in QT

wt = (1 + w)2f2 − w, in QT

ux(x, t) = 0, on ΓT

u(x, 0) =
p0(x)

1 + w0(x)
, w(x, 0) = w0(x), in Ω.




(5.5)

For f, w0 ∈ H2(Ω) (f ∈ L2(H2(Ω); (0, T ))), the second equation is an ODE in the Banach

space H2(Ω). There exists a solution of this ODE and we can assume that for a sufficiently

small time T0

sup
0�t�T0

‖w(·, t)‖H2(Ω) � C(‖f‖L2(H2(Ω);(0,T0)), ‖w0‖H2(Ω), T0). (5.6)



Aggregation under local reinforcement 565

Thus we can assume that

sup
0�t�T0

‖w(·, t)‖C1(Ω) � C(‖f‖L2(H2(Ω);(0,T0)), ‖w0‖H2(Ω), T0).

Since we are in the one dimensional case, the first equation becomes a quasi-linear

parabolic equation in QT with ellipticity function 1/(1 + w(x, t)) ∈ C1,β(Ω) for all 0 � t �
T0. From Theorem 7.4 in Ladyzenskaya et al. [19], we conclude that there exists a unique

solution u(x, t) ∈ C1+ β
2 ,2+β(QT0

) of the first equation. Thus the mapping A is well-defined.

The function v(x, t) = ux(x, t) solves the linear parabolic boundary value problem

vt = a1(w)vxx + a2(w,wx)vx + a3(u, w)v + a4(u, w, wx), in QT ,

v = 0, on ΓT , v(x, 0) = ux(x, 0), in Ω,

}
(5.7)

at least in a weak sense, wherein

a1(w) =
1

1 + w
, a3(u, w) =

w

1 + w
− 3(1 + w)u2,

a2(w,wx) = − wx

(1 + w)2
, a4(u, w, wx) = −

(
u3 − u

1 + w
+

wu

(1 + w)2

)
wx.

Using the regularity of the functions u(x, t) and w(x, t) we see that a1(w) is continuous

and bounded in QT , a2(w,wx), a3(u, w) ∈ L2(QT ) satisfy the conditions of Theorem 9.1 in

Ladyzenskaya et al. [19, Chapter IV] and a4(u, w, wx) ∈ L2(QT ). Since ux(0) = 0 on ∂Ω,

the theorem also implies the existence of a unique solution of problem (5.7) belonging

to the class L2(H2(Ω); (0, T )) with vt ∈ L2(QT ). Furthermore, this solution satisfies the

estimate

2∑
j=0

∑
2l+s=j


 T∫

0


∫

Ω

| ∂l

∂tl
∂s

∂xs
v(x, t)|2 dx







1/2

� const
(
‖a4(u, w, wx)‖L2(QT ) + ‖v(·, 0)‖H1(Ω)

)
. (5.8)

This unique solution coincides with ux(x, t) and we conclude that our solution u(x, t) of

problem (5.2) is in fact at least in L2(H3(Ω); (0, T )).

Let us now turn to the non-negativity of u(x, t) and w(x, t) for positive initial data.

The statement for w(x, t) follows directly from solving the second equation of (5.2). To

show non-negativity of u(x, t), we multiply the first equation with u− := max{−u, 0} and

integrate over Ω. We thus see that:

d

dt

∫
Ω

(u−)2 dx = −
∫
Ω

|u−
x |2

1 + w
dx +

∫
Ω

u−wxu
−
x

(1 + w)2
dx −

∫
Ω

(1 + w)(u−)4 dx +

∫
Ω

w(u−)2

1 + w
dx

�
C(‖w0‖H2(Ω), R, T0)

2

2

∫
Ω

(u−)2

(1 + w)3
dx +

∫
Ω

(u−)2 dx

� max

{
C(‖w0‖H2(Ω), R, T0)

2

2
, 1

}∫
Ω

(u−)2 dx.
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Using Gronwall’s Lemma [10, Appendix B, p. 624] and the positivity of the initial data,

we get that u(x, t) � 0 for all t ∈ (0, T0).

To apply Schauder’s fixed point theorem we have to show that the mapping A maps

the set B := {f : ‖f‖L2(H2(Ω);(0,T )) <R} for appropriate T � T0 and R into itself. Let f be

in B and recall that therefore (5.6) and thus

sup
0�t�T

‖w(·, t)‖C1(Ω) � C(‖w0‖H2(Ω), R, T ). (5.9)

Multiplying the first equation with u|u|r−1 gives us

1

r + 1

d

dt

∫
Ω

ur+1 dx � − 4r

(r + 1)2

∫
Ω

∣∣∣[u r+1
2

]
x

∣∣∣2
1 + w

dx + r

∫
Ω

uruxwx

(1 + w)2
dx +

∫
Ω

wur+1

1 + w
dx

� − 2r

(1 + ‖w‖L∞(Ω))(r + 1)2

∫
Ω

∣∣∣[u r+1
2

]
x

∣∣∣2 dx

+
rC(‖wx‖L∞(Ω)) + 2

2

∫
Ω

ur+1 dx

for all 0 � t � T . Using Alikakos’ method of the Moser iteration (see Alikakos [2]), we

get that

‖u(·, t)‖L∞(Ω) � C(‖w0‖H2(Ω), R, T ) max{1, ‖u0‖L1(Ω), ‖u0‖L∞(Ω)} (5.10)

for all 0 � t � T . Thus, we have that

‖u‖L2(L∞(Ω);(0,T )) � C(‖w0‖H2(Ω), R, T ) max{1, ‖u0‖L1(Ω), ‖u0‖L∞(Ω)}T 1/2. (5.11)

Next we obtain an estimate for
∫
Ω

|ux(x, t)|2 dx for all 0 � t � T . We see that:

−
∫
Ω

utuxx dx = −
∫
Ω

(uxx)
2

1 + w
dx +

∫
Ω

(
(1 + w)u3 − wu

1 + w

)
uxx dx

�
1

2

∫
Ω

(
(1 + w)3u6 +

w2u2

1 + w

)
dx � C(‖w0‖H2(Ω), ‖u0‖L∞(Ω), R, T ).

Integration of this inequality gives us

1

2

∫
Ω

|ux(x, t)|2 dx � tC(‖w0‖H2(Ω), ‖u0‖L∞(Ω), R, T ) +
1

2

∫
Ω

|ux(x, 0)|2 dx (5.12)

for all 0 � t � T , and thus

‖ux‖L2(QT ) �
√

2TC(‖w0‖H2(Ω), ‖u0‖L∞(Ω), R, T ) + ‖ux(·, 0)‖L2(Ω)T
1/2. (5.13)
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Finally, we estimate
∫
Ω
(uxx)

2 dx. Recall that the solution u(x, t) is in H3(Ω) and observe

that the boundary condition on u implies that utx = 0 on ∂Ω. As a result,∫
Ω

uxxtuxx dx = −
∫
Ω

uxtuxxx dx

=

∫
Ω

−|uxxx|2
1 + w

dx +

(
uxxwx

(1 + w)2
+

[
(1 + w)u3

]
x

−
[

wu

1 + w

]
x

)
uxxx dx

�

∫
Ω

1

4ε1

|wx|2|uxx|2
(1 + w)3

+
1

4ε2
(1 + w)

(
(1 + w)u3

)2

x
dx

+

∫
Ω

1

4ε3
(1 + w)

[
wu

1 + w

]2

x

dx,

where ε1 + ε2 + ε3 � 1. According to the boundary data (see Conway et al. [8,

Lemma A.1, p. 12]) ∫
Ω

|ux(x, t)|2 � ν1

∫
Ω

|uxx(x, t)|2, (5.14)

where ν1 denotes the first positive eigenvalue of the Laplacian with homogeneous Neu-

mann boundary data, we can see that∫
Ω

uxxtuxx dx � C1(‖w0‖H2(Ω), ‖u0‖L∞(Ω), R, T , ε1, ε2, ε3, ν1)

∫
Ω

|uxx(x, t)|2

+C2(‖w0‖H2(Ω), ‖u0‖L∞(Ω), R, T , ε1, ε2, ε3).

Thus ∫
Ω

u2
xx(x, t) dx �

(
‖uxx(·, 0)‖2

L2(Ω) +
C2

C1

)
e2C1t − C2

C1
, (5.15)

where

C1 = C1(‖w0‖H2(Ω), ‖u0‖L∞(Ω), R, T , ε1, ε2, ε3, ν1)

and

C2 = C2(‖w0‖H2(Ω), ‖u0‖L∞(Ω), R, T , ε1, ε2, ε3)

This gives us

‖uxx‖L2(QT ) �

[(
‖uxx(·, 0)‖2

L2(Ω) +
C2

C1

)
e2C1T − C2

C1

]1/2

T 1/2. (5.16)

As a consequence of the above we have that

‖ut‖L2(QT ) � C(‖w0‖H2(Ω), ‖u0‖H2(Ω), R, T )T 1/2, (5.17)

so we can conclude that for sufficiently small T and appropriate initial data u(x, t) ∈ B.

This implies that A maps B for sufficiently small T into B. Recalling (5.9) and (5.11) we

see that the left hand side of (5.8) can be bounded by a constant that only depends on
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R, T , ‖u0‖L∞(Ω and ‖w0‖H2(Ω). Thus A in fact maps

B0 :=
{
f ∈ L2(H3(Ω); (0, T )); ‖f‖L2(H2(Ω);(0,T )) � R, ‖fx‖L2(H2(Ω);(0,T )) � C1,

‖ft‖L2(H1(Ω);(0,T )) � C2, f(x, 0) = u0(x) in Ω
}

⊂ B (5.18)

(where C1 and C2 only depend on ‖u0‖H2(Ω), ‖w0‖H2(Ω), R and T and are not necessarily

the same as in (5.15)) into itself. To apply Schauder’s fixed point theorem we also have

to show that A is a weakly continuous mapping from B0 to B0, and for this we need

an H2-bound for the solution v(x, t) of problem (5.7). We are therefore trying to find a

L2-bound of vt. Differentiation of the equation (5.7) with respect to t yields

vtt = a1(w)vxxt + a2(w,wx)vxt + a3(u, w)vt + b(u, ut, w, wx, wtx, v, vx) (5.19)

with

b(u, ut, w, wx, wtx, v, vx) = vx

(
d

dt
a2(w,wx)

)
+ v

(
d

dt
a3(u, w)

)
+

d

dt
a4(u, w, wx).

Regarding our previous calculations and using the equation for w(x, t), one can check that

b(u, ut, w, wx, wtx, v, vx) ∈ L2(Ω) and that its L2(Ω)-norm can be bounded for all t ∈ (0, T )

by a constant depending only on R, T and the H2-norms of the initial data u0 and w0.

Testing equation (5.19) with vt we can also bound the L2-norm of vt for all t ∈ (0, T ) by a

constant depending only on these parameters. However this implies that after testing the

equation (5.7) with vt, we find a bound on ‖vxx‖L2(Ω) (= ‖uxxx‖L2(Ω)) for all t ∈ (0, T ) that

depends only on R, T and the H2-norms of the initial data u0 and w0.

This and the previous estimates for the functions u(x, t), ux(x, t) and uxx(x, t) together

with Sobolev’s embedding theorems for N = 1 guarantee the weak continuity of the

mapping A from B0 to B0. According to Schauder’s fixed point theorem there exists a

fixed point u ∈ B with u = Au. This completes the local existence proof.

The regularity of the solution follows directly from the regularity of the solution of

problem (5.5). �

Using this we obtain the local existence of a classical solution of equation (5.1), as

summarized in the following.

Corollary 5.2 Suppose p0(x) and w0(x) are positive functions from the class C2,β(Ω) (β ∈
(0, 1)) satisfying the compatibility condition ( p0

1+w0
)x = 0 on ∂Ω. Then there is a time T > 0

such that there exists a solution (p(x, t), w(x, t)) of (5.1) with

p ∈ L∞(L∞
+(Ω); (0, T )) ∩ L2(H2(Ω); (0, T )), pt ∈ L2(QT )

and w ∈ L∞(L∞
+(Ω); (0, T )) ∩ L2(H2(Ω); (0, T )), wt ∈ L2(H2(Ω); (0, T )).

Furthermore this solution is unique with p(x, t) � 0 and w(x, t) � 0 for all t ∈ (0, T ). Finally

p(x, t) ∈ C1+ β
2 ,2+β(QT ) and consequently w(x, t) ∈ C2+ β

2 ,2+β(QT ).

Remark 5.3 To obtain the existence result for the system (5.1) we must increase the

regularity on w0(x) to guarantee that the corresponding function u0 := p0

1+w0
belongs to
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C2,β(Ω). One might be able to obtain better regularity results for the solution, but that is

not the goal of the present paper. The uniqueness statement mentioned in Corollary 5.2

can be found in detail in the Appendix of the present paper.

The same arguments also work to prove the local existence of a solution of the problem

pt =

(
p

1 + w2
+ αp

)
xx

, in QT

εwt = p − µw, in QT(
p

1 + w2
+ αp

)
x

= 0, on ΓT

p(x, 0) = p0(x), w(x, 0) = w0(x), in Ω.




(5.20)

Here we have to introduce the new function

u(x, t) :=
p

1 + w2
+ αp

and are thus led to the problem

ut =

(
1

1 + w2
+ α

)
uxx − 2w(1 + w2)u2 − 2µw2u

(1 + w2)(1 + α + αw2)
, in QT

εwt =
(1 + w)u

1 + α + αw2
− µw, in QT

ux = 0, on ΓT

p(x, 0) = p0(x), w(x, 0) = w0(x), in Ω.




(5.21)

We also have an energy functional for (5.1), as for problem (3.1)5 We define

E(t) :=

∫
Ω

p2(x, t) + 1

1 + w(x, t)
+ log(1 + w(x, t)) dx. (5.22)

Since E(t) is bounded from below, we see that solutions of (3.1) either converge to a

stationary solution as t → ∞ or blow up in finite time.

Figure 5 shows the influence of the time delay that arises from incorporation of a

finite rate for the evolution of the control substance on the blow-up behaviour of the

solution. Figure 5 (left) demonstrates that the finite rate provides an alternative form

of regularization of the solution, in that the high frequency oscillations that exist in the

singular solution shown in Figure 2 are absent. A similar comparison holds for Figure 5

(right) and Figure 3, and both cases show that the blowup is not solely dependent on the

ill-posed character of the singular problem. However the characterization of the initial

data that leads to blow-up is more complicated than in the singular model, in that the

shape of the initial control substance distribution may control blowup. This is clarified in

the following theorem, which is the analog for problem (5.1) of Theorem 3.9.

5 This is an important difference between system (5.1) and (5.20): for the latter there seems to

be no Lyapunov function.
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Figure 5. Smooth blowup of the solution of (5.1) for initial data p(x, 0) = 10 − 0.1 cos(πx) and

w(x, 0) = 100.0 (on the left) and p(x, 0) = 10 − 0.1 cos(2πx) and w(x, 0) = 100.0 (on the right). In

both simulations ε = 1.

Theorem 5.4 Assume that∫
Ω

p2
0(x) + 1

1 + w0(x)
+ log(1 + w0(x)) dx < |Ω| +

∫
Ω

log(1 + M2) dx (5.23)

where
∫
Ω
p0(x) dx = M|Ω|. Then the solution of (5.1) with T(w) = 1

1+w
must blow up

in finite time, i.e. there exists a maximal time Tmax < ∞ such that ‖p(·, t)‖H2(Ω) → ∞ as

t → Tmax.

Proof of Theorem 5.4 We can argue in the same way as for Theorem 3.9. We see that

d

dt
E(t) =

∫
Ω

2ptp + wt

1 + w
− wt(p

2 + 1)

(1 + w)2
dx = −

∫
Ω

2

∣∣∣∣
(

p

1 + w

)
x

∣∣∣∣
2

+
εw2

t

(1 + w)2
dx.

If we assume that Tmax = ∞ we can conclude that

lim
t→∞

2

∫
Ω

∣∣∣∣
(

p

1 + w

)
x

∣∣∣∣
2

dx = 0 and lim
t→∞

∫
Ω

εw2
t

(1 + w)2
dx = 0

since E(t) is bounded from below by 0. This implies that the solution must converge to a

stationary solution of (5.1) as t → ∞. However, the only continuous stationary solution

satisfying the mass constraint is the constant solution p(x, t) = M, w(x, t) = M2. But this

is not possible from our assumptions on the initial data. Thus the solution has to blow

up in finite time. �

Remark 5.5 We proved the local existence of a solution belonging to H2(Ω). Even if

it is possible to prove the local existence of a solution belonging only to H1(Ω) under

weaker assumptions than those we assumed in Corollary 5.2, the finite time blow-up result

remains valid by replacing the H2-norm by the H1-norm. Once again we see from the

numerical calculations that the L∞-norm is the correct blow-up norm in this case as well,

but we have no analytical proof for this observation.
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Figure 6. Multiple peak blow-up for different values of ε: (a) 0.1 (b) 1.0 (c) 5.0 and (d) 25. Initial

data is given by p(x, 0) = 10 − 0.1 cos(2πx) and w(x, 0) = 100.

In contrast to problem (3.1), we are not able to characterize a set of initial data for

which the solution exists globally in time. Numerical experiments show that this depends

on the shape of the initial data w(x, 0), but we do not know what conditions, other than

the energy condition, classify the initial data for (5.1) according to whether the solutions

exist for all time or blow up in finite time. Moreover, in the latter case the number of

blowup points depends on ε as well. Figure 6 shows how the magnitude of ε affects the

number of possible blow-up points, all other factors being equal.

Finally, observe that model (3.1) and model (5.1) have the same steady state solutions,

which is in contrast to the Cahn–Hilliard regularization, where the steady state does not

have to be a constant solution. From the perspective of our studies of the least energy

solution, the regularized model is more closely related to the singular equation (3.1) than

the Cahn–Hilliard approach.

Remark 5.6 The incorporation of a small random diffusion component into the probab-

ility of jump can be modelling by considering T(p) of the form αp + 1/(1 + p2) either

for the singular model (3.1) or model (5.1) with T(w) = 1
1+w

. Simulations (see Painter

et al. [27]) for sufficiently large α demonstrate evolution to the homogeneous solution

even for supercritical initial data. At lower values of α, the early evolution is similar to

the results for the singular system described in § 4, with multiple peak blow-up followed

by coarsening. However, the long term evolution is different, with evolution to stable

multiple peak solutions rather than a single peak.



572 D. Horstmann et al.

6 Conclusion and open questions

We have studied various aspects of the steady-state and transient dynamics of a continuum

description of a reinforced random walk that may describe the motion of certain biological

organisms. The analysis of the corresponding lattice walk is done in [27]. Here we

proved the global existence of the solution in the case of subcritical initial data and

studied the time asymptotic behaviour of the solution for general initial data. Our

numerical experiments, details of which will be reported in Painter et al. [28], showed that

the solution of the forward-backward equation undergoes a coarsening effect for some

supercritical initial data. We gave an intuitive explanation for the observed coarsening

effect for the continuum problem that parallels what can be proven rigorously for the

discrete problem analyzed in Painter et al. [27]. Using variational techniques, we gave

some arguments as to why the final blow-up profile of solution is expected to be a

single peak δ-distribution (as has been observed in our studies of the discrete models in

Painter et al. [27]).

In addition, we studied reaction-diffusion systems that arise from models of movement

of mobile populations, and which can be interpreted as reasonable regularizations of

the forward-backward equation and that display similar time asymptotics as for the

singular problem. We established the well-posedness of these systems and studied the time

asymptotic behaviour of the solutions for different initial data. We also suggested possible

criteria to classify the initial data leading to the convergence to the uniform distribution

and those leading to blow-up in finite time. Further numerical results on these issues

will be reported in Painter et al. [28]. Unfortunately, in gaining the local existence of a

solution for all sufficiently smooth initial data for the regularizations, we lost the rigorous

characterization of one class of initial data which leads to solutions that exist globally in

time. The loss of a maximum principle for the first equation of (5.1) does not allow us to

make an analogous statement for this model.

As we have already mentioned in previous remarks, we cannot prove that the L∞-norm

of a solution blows up for blow-up solutions. This brings us to open questions which

might be worth studying. As mentioned previously it would be of interest to find a proof

which shows that in fact the L∞-norm of the function p blows up in finite time for initial

data satisfying the energy condition in both models (3.1) and (5.1). Moreover, it would

be interesting to establish a rigorous analytical classification of initial data that leads to

finite time blow-up of the solution of the problem (5.1). Once again, the energy condition

in Theorem 5.4 should imply properties on the initial data and comments made through

out the paper give some insights on this condition. The numerical studies provide some

information, but a general classification remains missing.

We have not resolved the question as to whether existence and blowup are dependent

on the dimension of the underlying space here, but one of the authors [15] has shown

that there exists a solution of problem (5.1) resp. (5.20) and related systems for any

space dimension. Concerning blowup, computational results for the model studied in [25]

indicate that axisymmetric blowup in two dimensions is essentially identical in both profile

and blowup time to the one-dimensional case, but there are no rigorous results on this

issue as yet. The interested reader might find more results on blowup of the model studied

in Othmer & Stevens [25] also in Levine & Sleeman [21], and Yang et al. [35, 36].
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Appendix A Notation

Throughout the paper we use the following notation. We write u = O(g) as x → x0, if

there is a constant C such that |u(x)| � C|g(x)| holds for all x which are sufficiently close

to x0. Let Ω ⊂ IRN (N � 1) be an open set. We use the following notation for time

dependent Lr-spaces:

Lr(X; (0, T )) := {u : [0, T ] → X | u is measurable and ‖u‖Lr(X;(0,T )) < ∞},

where

‖u‖Lr(X;(0,T )) :=


 T∫

0

‖u(t)‖rX dt




1/r

for 1 � r < ∞ and

‖u‖L∞(X;(0,T )) := ess sup
0�t�T

‖u‖X for r = ∞.

C(X; [0, T ]) := {u : [0, T ] → X | u is continuous and ‖u‖C(X;[0,T ]) < ∞},
where ‖u‖C(X;[0,T ]) := max

0�t�T
‖u(t)‖X. We write Lr(ΩT ) for the function spaces Lr(Lr(Ω);

(0, T )) for all 1 � r � ∞.

Appendix B Proof of Corollary 5.2

As mentioned during the text, we see that the existence of a solution is a direct consequence

of the existence of a solution for (5.2). Thus we only have to prove the uniqueness of this

solution. So let us assume that there are two solutions (p(x, t), w(x, t)) and (q(x, t), v(x, t)) of

(5.1) with p(x, 0) = p0(x) = q(x, 0) and w(x, 0) = w0(x) = v(x, 0). We see that the following

equalities hold:

∫
Ω

(pt − qt)(p − q) dx =

∫
Ω

(
p

1 + w
− p

1 + v
+

p

1 + v
− q

1 + v

)
xx

(p − q) dx

=

∫
Ω

−|(p − q)x|2
1 + v

dx +

∫
Ω

p − q

(1 + v)2
vx(p − q)x dx

+

∫
Ω

− v − w

(1 + w)(1 + v)
px(p − q)x dx

+

∫
Ω

p(p − q)x

(
wx

(1 + w)2
− vx

(1 + v)2

)
dx

= I1 + I2 + I3 + I4, (B 1)

∫
Ω

(wt − vt)(w − v) dx =

∫
Ω

(p + q)(p − q)(w − v) dx −
∫
Ω

(w − v)2 dx

= II1 + II2 (B 2)
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Ω

(wxt − vxt)(wx − vx) dx =

∫
Ω

(p + q)(p − q)x(w − v)x dx −
∫
Ω

|(w − v)x|2 dx

+

∫
Ω

(p − q)(p + q)x(w − v)x dx

= III1 + III2 + III3. (B 3)

Let us now add these three identities and we get the equality

d

dt
J(t) =

4∑
i=1

Ii +

2∑
i=1

IIi +

3∑
i=1

IIIi, (B 4)

where J(t) := ‖p − q‖2
L2(Ω)

+ ‖w − v‖2
L2(Ω)

+ ‖(w − v)x‖2
L2(Ω)

. Before we proceed further on

we remark that we can estimate I4 from above by

I4 �
∥∥∥p(1 + v)1/2

∥∥∥
L∞(Ω)

∥∥∥∥ (p − q)x

(1 + v)1/2

∥∥∥∥
L2(Ω)

∥∥∥∥ wx

(1 + w)2
− vx

(1 + v)2

∥∥∥∥
L2(Ω)

�
∥∥∥p(1 + v)1/2

∥∥∥
L∞(Ω)

∥∥∥∥ (p − q)x

(1 + v)1/2

∥∥∥∥
L2(Ω)

×
(∥∥∥∥ (w + v + 2)(w − v)

(1 + w)2(1 + v)2
wx

∥∥∥∥
L2(Ω)

+ ‖(w − v)x‖L2(Ω)

)

�
∥∥∥p(1 + v)1/2

∥∥∥
L∞(Ω)

∥∥∥∥ (p − q)x

(1 + v)1/2

∥∥∥∥
L2(Ω)

‖w − v‖L2(Ω)

×
∥∥∥∥ (w + v + 2)

(1 + w)2(1 + v)2
wx

∥∥∥∥
L∞(Ω)

+
∥∥∥p(1 + v)1/2

∥∥∥
L∞(Ω)

∥∥∥∥ (p − q)x

(1 + v)1/2

∥∥∥∥
L2(Ω)

‖(w − v)x‖L2(Ω) (B 5)

using Hölder’s inequality. By using Hölder’s inequality also on I2, I3, II1, III1 and III3 and

then applying Cauchy’s inequality on each of these terms we can derive d
dt
J(t) � const·J(t).

Applying Cauchy’s inequality on the right hand side of the estimate on I4 and on III1 and

III3 we remark that the constants have to be chosen such that I1 cancels out the resulting

‖ (p−q)x
(1+v)1/2

‖2
L2(Ω)

terms. Gronwall’s Lemma now implies the uniqueness of the solution. If we

interpret the first equation of (5.1) as a linear parabolic equation with discontinuous coef-

ficients, we see that all the coefficients satisfy the conditions of Theorem 12.1 Chapter III

in Ladysenskaya et al. [19] and we get the regularity for p from this theorem. The

regularity for w is a direct consequence from the representation formula

w(x, t) = w0(x)e−t +

t∫
0

es−tp2(s, x) ds.

Let us note that estimating the norms in J(t) is sufficient to get the uniqueness of the

solution also in H2(Ω), since these estimates and the Sobolev imbedding H1(Ω) ↪→ C(Ω)



Aggregation under local reinforcement 575

for N = 1 imply that v(·, t) = w(·, t) in Ω for all 0 � t < Tmax. Since the estimates above

show that the solution of the first equation is unique in L2(Ω) we can use this fact,

Cauchy’s inequality and Gronwall’s Lemma to prove the uniqueness of the solution also

in the other spaces resp. to find estimates on the higher order norms as well that imply

the uniqueness in these spaces. But we leave this for the interested reader. Thus the proof

of the Corollary is completed. �
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