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A continuum model of diffusion in a reacting mixture is built around a constitutive relation for momentum
exchange by frictional interaction between diffusing species. The resulting continuity and momentum equations
incorporate a finite relaxation time for diffusion. Under appropriate conditions, linearization of these equations
produces a coupled system of hyperbolic equations for small disturbances of a stationary state. Fick’s law can
be recovered from the linear equations by assuming instantaneous relaxation of the flux, provided that the
stationary state is uniform. Fick's law is generally inconsistent with the momentum equation when the
stationary state is nonuniform. The stability of uniform stationary solutions predicted by the parabolic system
obtained when Fick’s law is used is compared with the stability predicted by the hyperbolic system. When

the former predicts stability and has at least one pair of complex-conjugate roots, the latter may predict

that the stationary state is unstable. Thus, inclusion of relaxation in the model can lead to qualitatively

different predictions of stability.

I. INTRODUCTION

In the majority of experiments on diffusion in systems
slightly perturbed from a steady state, a “Fick’s-law”
type of linear constitutive relation between the diffusive
flux of a species and gradients of the field variables is
adequate to correlate observations. However, it is
widely recognized that this constitutive relation, and its
counterpart in heat conduction, Fourier’s law, are
strictly valid only for describing steady-state phenom-
ena.! Use of Fick’s law for transient diffusion leads to
a parabolic partial differential equation, and such equa-
tions predict that density disturbances can travel at ar-
bitrarily large velocities. Such predictions are physi-
cally meaningless, and to obviate this difficulty alternate
constitutive equations must be sought.

From a molecular viewpoint, the reasons for the mean-
ingless predictions derived by using Fick’s law are evi-
dent. Einstein showed® that for Brownian particles the
relationship (#*)« ¢, between the mean square displace-
ment and the time elapsed since their release, is only
asymptotically valid for large {. The complete relation
is

<1,2>:2_7}“TkZ[%_ 14 e-ft/m] ,

where m is the mass and f the friction coefficient of a
particle and £T is the unit of molecular energy. At
large times this reduces to (#**yoc £, but when ¢ < m/¥,
then (rz)~ (¢T/m)? . The latter relation shows that
during a short time interval following release of the par-
ticles, the average motion is wavelike, In the transition
region between these extremes, the motion relaxes from
the wavelike (#*y« ¢ to the random, diffusionlike (»*)cc¢,
and any equation that governs the motion of an ensemble
of Brownian particles must have a solution with similar
properties. One such equation, often suggested as an
alternate to the diffusion equation, is a damped wave
equation called the telegrapher’s equation. Goldstein®
showed that it is the governing equation for a random
walk in which successive steps are correlated.

Although interdiffusion of approximately equally-sized
particles differs from the Brownian motion model of a

460 The Journal of Chemical Physics, Vol. 64, No. 2, 15 January 1976

massive particle subject to randomly fluctuating forces,
the qualitative features of the two processes are un-
doubtedly similar. The ensemble motion of a group of
molecules released at a point is highly correlated, hence
wavelike, during some short interval following their
release, but gradually relaxes, as the correlations decay
owing to interactions with other molecules, to a random,
diffusive motion. An estimate of the relaxation time
(10-°_10-1! sec) suggests that there will be no signifi-
cant qualitative difference between a description of dif-
fusion based on Fick’s law and one that incorporates a
finite relaxation time. This has been shown rigorously
for a nonreacting ideal binary mixture, * but it has not
been established for any single-component system with
a nonlinear reaction or for a linearized description of

a multicomponent reacting mixture, Turing® and others®
have shown that open multicomponent systems can be
unstable as a result of interactions between reaction and
diffusion, even when the two processes would be stable
were each to occur separately. Here we investigate
whether the relaxation effect is always negligible in lin-
earized multicomponent reacting systems, and if it is
not, under what circumstances its inclusion leads to
qualitatively different predictions of stability.

In any continuum model of reaction and diffusion, the
conservation equations must be supplemented by consti-
tutive equations that relate reaction rates, rates of
transport, stresses, etc. to the field variables. In Sec.
II, we follow recent work in the continuum theory of
mixtures’ and postulate constitutive relations for the re-
action rates and for the rate of exchange of linear mo-
mentum between species due to “frictional” interactions.
The individual species momentum balance equations then
yield a system of partial differential equations for the
diffusion fluxes. Postulating the relation for frictional
interaction between species has the advantage that the
relaxation of the flux is automatically accounted for by
the momentum equation; no ad koc assumption of rate-
type constitutive equations for the fluxes is required.

When linearized, the conservation equations lead to a
coupled system of partial differential equations for den-
sity and flux disturbances. Linearization around a non-
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uniform, nonequilibrium steady state produces equations
in which the flux disturbance depends on the steady-state
value of the flux, as well as on the steady-state densities
and their perturbations. Even when relaxation effects
are ignored, Fick’s law is not recovered. Only when the
steady state is uniform can one recover Fick’s law. Be-
cause the linear equations have nonconstant coefficients
if the steady state is nonuniform, we treat only uniform
steady states in Sec. III. The general solution of the
initial-boundary value problem is derived and compared
with the solution obtained using Fick’s law,

The inclusion of the finite relaxation time has two
major effects, First, it introduces n new dynamical
modes for the time evolution of the amplitudes in a Fou-
rier expansion of the solution. Generally these modes
are rapidly damped, and hence insignificant, except for
a very short time interval following a disturbance. Sec-
ondly, it rotates a certain subspace of the 2n dimen-
sional “amplitude” space and perturbs the eigenvalues
of the n slowly-decaying modes. Whether these eigen-
values are perturbed sufficiently to alter the qualitative
time behavior of the » slow modes is studied in Sec. IV.

Il. EQUATIONS OF CHANGE FOR DENSITIES AND
FLUXES

The system is an n+ 1-component reacting mixture
contained in the region 0=x=<1L, O0=sy=<L, 0=z=<§ of
three space, and surrounded by a uniform, constant-
composition bath, Both system and surroundings are
isothermal and characterized by a single temperature.
Mass exchange between system and surroundings can
occur only across the planes z=0 and z = §; the remain-
der of the boundary is closed. For simplicity we assume
that §/L « 1 and that composition nonuniformities are
negligible in the z direction. The upcoming equations
for densities and fluxes, which depend only on x and vy,
may be regarded as averages of their three-dimensional
version over the z dimension.® For convenience we work
in mass densities rather than molar densities and we as-
sume that there are n+1 chemical species, of which the
n+ 1st neither reacts nor is transferred across the bound-
ary.

Let p;, v!, and J* denote the density, velocity, and
diffusion flux of species ¢ in the system; the latter de-
fined as J*=p,(v' —v), where v=3,p,v!/3,p, is the mass

let R, be the mass rate of production of ¢; N, the rate of

exchange of 7 with the surroundings; T! the stress tensor
of species i; and F* the net rate at which linear momen-

tum is supplied to species i. The balance equations for

mass and momentum are

2]
—3Bti+v'PiV=-V'ji+Rt+Nt,

)
%(Pivi)+V‘ pvivi=V.TiL F, .

By summing these equations over i, one obtains the over-
all equations for total density p and total momentum pv:
8
a—‘;+ Vepv=N,
@)

a
a—t(pV)+V‘pVV=V'T+F.

Here p=J;p;, N=3;N;, F=3,F, and T=3,[T* - p,(v' - V)
x (! = v)] are the total density, total mass exchange rate,
total momentum supply rate, and total stress tensor,
respectively, of the mixture.

The momentum supply rates F! consist of four terms,
F'=Fl+F.Fl4F, 3)

As written, they represent the net rate of increase of
linear momentum of species ¢ due to frictional interac-
tion with all other species, to chemical reaction, to
mass exchange with the surroundings, and to the action
of conservative external fields. Because the internal
interactions between species have no effect on the total
linear momentum, it is necessary® that both

Y Fi=0

and (4)
D Fi=0,
i

The body force and exchange terms will be neglected
hereafter.

For later purposes it is more convenient to regard
(P15 **° Pus1s I% * =+ 1™) as the dependent variables rather
than (py, *°, P, V') ***, V™). The two sets are re-
lated by a nonsingular transformation, and either can
be recovered from the other. In terms of the J*’s, the

average velocity relative to fixed coordinates. Further, species momentum equations at (1) read
i
9 i igi
—aj?v-j—ph%[v- T+F-vN|+ Vv ivVe s Ve iy Ve (p,—p)lVV=V T+ F, (5)
H

and after rearrangement the over-all momentum equa-
tion reads

v
pa—t+pv-Vv=V-T+F—vN. ®)

Equations (1a), (2a), (5), and (6), when augmented by
boundary conditions and constitutive equations for the
reaction rates, exchange rates, viscous stresses, and
momentum supplies, suffice to determine the density

[
and diffusive fluxes of all species. !°

The constitutive equations cannot be arbitrarily chosen
because they must reflect the symmetry of the material
to which they apply and must be invariant under orthog-
onal transformations of space time.! We assume that
the reacting mixture is isotropic and find that a set of
constitutive equations consistent with the foregoing re-
strictions is
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R{:Ri(ply v :pn)

o {i:l,...,ﬂ
N1=Ni(D1, s Pn)

0
s Pns P1s oo e

Ffi = inl(pb ooy Ppels jl: ] jm.l) l
22‘1’;(01: ~-°!pml’“1‘: ’“n-vl"
k=1
Pt g (7
Fi=Flpy, «on by ity o on 1™
zgdji(f)l, ~--!pml;“1|’ ’ljn’l‘:

Pt g

Ti:"i’i(l)l, o ?pn)g

where all functions are smooth functions of their argu-
ments. ' Herepl,...,p" are thedensities in the sur-
roundings; p' is the hydrostatic pressure of species i;
I | is the magnitude of a vector in 2-space; * is the
scaler product of vectors in 2-space; and 0§ is the unit
isotropic second rank tensor.

The postulated stress relationship reflects the assump-
tion that each constituent of the mixture behaves as a
perfect fluid and implies that the total stress is given by
T=-p8-7,(1/p)1*4*. The functions ¢! and y} are iso-
tropic, scalar-valued functions and depend, as indicated,
only on the scalar invariants of the set {j!, ..., j™1}.1°
Clearly both F¥ and F? vanish when all fluxes vanish,
but it must also be true that for nonzero fluxes 3, F}
=%, F =0; this implies that the ¢! and ! must satisfy
T19L=7,9t=0. Furthermore, the momentum supply F

]

%
L4V 1-Kp=0,

must vanish when R, =0 and this further restricts the
#i. When the Jacobian [9R,/8p,] is nonsingular for all
p; in the range of interest, (7a) can be inverted to give
p;= pj(Rl, ..., R, and (7d) can then be written as F!
=YWi(Ry, ... , R, 151, , 171+ §"))%, where the g} are
now different Eunctions. They must satisfy 3,1,=0 and
wL(RI"--O) '“ﬁRn)|jl|’ 'j"-l'jn):O‘

A complete analysis of the full nonlinear problem
given by (1a), (2a), (5), and (6) with initial and boundary
conditions is impossible, even if linear reaction mech-
anisms are under consideration, Accordingly, we re-
strict attention to the behavior of the solution in the
neighborhood of a steady state and study the lineariza-
tion of the nonlinear equations. We assume that the
system of steady-state equations, obtained by setting
(8/8£)=0 in (1a), (2a), (5), and (6), has at least one
solution (By, ... Bty Iy +-. 17, #) for which ¥=0,
0,=0, and at least one R; #0. Such a solution satisfies

-V-J 4+ R+ N; =0,
N=0,

V°ji".i=—vj;i+i'i+i'f—v5
P e ®)

-7 S AdH 2 Fizo,
i

§*=0 on the boundary,

where a tilde denotes a quantlty evaluated at the steady
state. Define p,, 7, and Vv as disturbances of such a
steady state and set =@, ..., ™7, p=(py, + - ) Pro)”-
To first order, the disturbances satisfy the linear equa-
tions

83+n1 T+ RV )+ §+ Qd+ Q- Vot QVp+ Qo+ By ¥4+ 3(V+ V+fr Y9+ (V- §v=0,

where the constants are defined as

1
Q) j 6 j
)= iR~ Rk

Zi(ﬁki_s_jk'jp’

& a(jﬂ d)
(2%),=V (]"/5;)54;@—‘2-“7 * (G*/B0 - @4+ {l;z) !
(Q4>¢k' ‘%Gik j
(95)“; (qu %)

(9)
Mi&]ﬁﬁ
17208, 2p, R
I
@)= [-3 T 2 ” -3 V3D | s VG
-~ (V1" ) 8R,
+J”——z—( 53)—23%:1" Z-a—ﬁ— 5, 2, (10)

@), =2[ Vi,

: 3R, BN[ ,
i~ apj 8p;

8;;=Kronecker delta.

Only 2(n+ 1) of the disturbance variables are independent
and these are most conveniently taken as py, ..., Bpets
%, 7%, ...,7". From these follow p=3"1p,, 1™ =-31,7%

and p =342 pp=27 1 (9p*/80 )P 10
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The linearized momentum equation in (9) gives the
most general linear relation between the flux, density,
velocity, and their space and time derivatives that is
consistent with the postulated constitutive equations.
Since both space and time derivatives of the flux appear
in the equation, it is clear that one cannot generally re-
cover a Fick’s law relation simply by ignoring the time
derivative of J and the velocity terms. Therefore,
Fick’s law will generally be inconsistent with the linear-
ized species momentum equations, even when the small
departures from a steady state are time independent and
such that ¥=0. It is interesting to note that spatial “re-
laxation” of the flux, as reflected by the terms involving
spatial derivatives, appears automatically and on an
equal footing with temporal relaxation in this derivation.

In the foregoing case, the coefficients in (9) depend
on the stationary state and therefore (8) cannot be solved
in general. Consequently, we shall hereafter assume
that the stationary state is uniform, in which case the
flux equations reduce substantially. Now both V- j’
and VA§i=0, and since J* =0 on the boundary, J'=0, i.e.,
all fluxes vanish identically. As a result, the constants
Q, 0, @, 0, and @, all reduce to zero, and

()yp=- (aiﬁ‘ 1;2)5 LT
AR:
()= (514 %L) L/ =Ci.

90,
The equations at (9) now reduce to

(11)

/2
at+V j~ Kp=0,

:—j+d>j+CVp=0, (12)

por == Vb 2
with initial and boundary conditions
plx, 3,0) =pox, v),
JCx, 9,0) =Jo (x, ¥),
vix, y,0) =%, (x, y),
10, v, =4(L, y,t) =§(x,0,) =} (x, L, /) =0

for 0=x=L, 0<y=<L, t=0, The p and J equations of
(12) are not coupled to the v equation and can be solved
independently. Knowing p and J, ¥ follows from

(13)

V(x, v, 1) =v(x, v,0)

Z_q:j [ Do, 3, T) = 8, 0%1%(x, v, 7)] ir

(14)
Hereafter we ignore the v equation.

It is clear from (12) that the only surviving terms
when linearizing around a wuniform steady state corre-
spond to the frictional interactions (— $1t), the momen-
tum supply rate due to reaction (- zb,,) and the acoustic
term

5.\ 8
) —9.1)—.
;(“ p/)3p,

All other terms arise only when there is a nonzero mass
flux in the steady state. I one now neglects the (8§/8¢)
term in the flux relation the result is almost the sim-
plest version of Fick’s law, However, & is singular
because T, ¢t =0, and 3, yL =0, but since $7:1J%=0 the
linear dependence in the flux relations can be removed.
Define

q’;k=¢{k-q’£.n+l i’ =1’ cse,y (15)

and hereafter drop 5"“‘. Similarly, define new matrices
K’ and C’ by dropping the (z+ 1)st row and column in
each case and retaining only the z X% matrix in the upper
left hand corner, This implies no loss of generality
because the only nonzero terms in the last row and col-
umn of K and C are K,,y,,, and C,, .., and the equation
for p,,; is uncoupled. If we denote the truncated vectors
and matrices with the same symbols, the equations at
(12) read

—3+v1 - Kp=0,

at
4 ®j+ CVp=0 a0
at+ j+ p=Y,
where p and J are now n-component vectors. Hereafter

we shall assume that the nX# matrix & has real, dis-
tinct positive eigenvalues and that the nX»n matrix C is
positive definite.' If the term (8)/8¢) is now dropped,
the flux equation can be written J=— D Vp, provided we
define the “diffusion coefficients” as D;, = (®-'C),,. This,
of course, is the simplest statement of Fick’s law in a
multicomponent system.'® Even so, the diffusivities

D,, are more general than usual in that they include the
term for the momentum supply due to reaction.

In general, the second equation of (16) can be inte-
grated with respect to time to give

¢
i, v, ) =e"**§(x, y,0) - j’O e NCvp(x, v, 7)dT, 17

and this shows that the present value of the flux depends
on the history of the density gradients over the interval
(0, #). The eigenvalues of & are reciprocal relaxation
times, and when these eigenvalues are large, the effect
of the initial flux J(x, y, 0) decays rapidly. Under these
circumstances, the major contribution to the integral
comes from ¢#- 7~0, and one expects that after elapse
of a short time following imposition of a disturbance,
the flux is approximately given by Fick’s law. The con-
ditions under which this is true are investigated in the
following sections.

11l. SOLUTION OF THE INITIAL BOUNDARY VALUE
PROBLEM

It is convenient to reduce (16) to a second-order equa-
tion in p alone by eliminating J. The result is

82
Q-lgtg+ - @'IK)%Bt=DVzp+Kp,
D(x; 9,0)=pylx, ¥),
5 (18)
_a%(x, ¥,0)== V= §y(x, )+ Kpo(x, ¥) ,

n* Vp=0 on the boundary,
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where n is the unit normal to the boundary and D=&"!C,

as previously. This second-order equation is hyperbolic

and the initial boundary-value problem is well posed
provided that the “acoustic” matrix C is positive defi-
nite.!® In this case there are # acoustic speeds, all
finite, two or more of which may coincide. Equation
(18) is a system of coupled telegrapher’s equations that
differs, in the absence of reaction and exchange (K=0),
from the corresponding parabolic system obtained using
Fick’s law only in the term $-8%p/3¢/*. However, when
K+#0, the “damping” term 8p/8¢ is modified by a term
- &K, and interaction between reaction and momentum
exchange is directly reflected in the partial differential
equation. In the case where &K =1, the damping term
vanishes completely and one is left with a set of coupled
wave equations. However, this case seems devoid of
any physical significance and its occurrence is likely to
be coincidental.

A suitable nondimensionalization of (18) is obtained
by defining

6=max|D;,|, k=max|, ¢'=max|&;}],

e=k/d, n=x/L, t=9y/L,
p*=max | pos(x, )|,  7*=max |jo;, (x, ¥), josy(x, )|, (19)

$0%ey feXey
pi=pi/p*, i=1/i* Dj;=D;,/s,
1=K/, ®= 0@,

for then the equations read

T=kt,

az ! % 5 82 ' 62 l>
7-1 - 1-1 = p (N
ed —%—at +{I-€® K)at (-—ZKL )D<_7£1,r8 +‘8§2 +K'p',
p'('f), §,0)=P6(77, §),
80 £,0) =215 4 Kp “
T S p*K‘L 7 Po s

n* v'p’' =0 on the boundary.

(Hereafter we drop the primes on all variables.) By
virtue of these normalizations, all entries of p, !, K,
and D are quantities whose order of magnitude is unity.
Typical values for 6 are 10°-10"7 cm?/sec, and k may
range from ~10-? sec™! for very slow reactions to 10*
sec™! or larger for very rapid reactions. The entries
of ® are characteristic frequencies for momentum ex-
change and hence are of order 10*°-10* sec™!. There-
fore the characteristic relaxation time ¢ is of order
10°-10""2 gec. 1"

For sufficiently smooth initial data, the solution of
(20) has an eigenfunction expansion

p(, &, 7= ZN (") Uni (0, £) (1)

that converges uniformly along with its first two n, g,
and T derivatives, on 0=<7, £=1, 7=0. The eigenfunc-
tions {U,,;} are complete and orthonormal; they satisfy

5 (U, 8% )_
m(ﬁ‘f""*a—gf]‘ == Uy (22)

and have zero normal derivative on the boundary. The
n-component amplitude vectors y,,;(7) are solutions of

adl 1) 4
€d I_HX:LHI—EQ 1K)““12,:L=(K““HD)3’N ’

. (23)
Yu1(0)= ay <22 (0)= By + Ko

where a, and B, are vectors of Fourier coefficients of
the initial density and flux disturbances, respectively.
To simplify notation, we hereafter drop all subscripts
% and 7 and define Y(7)=[y(7), dy(r)/d7]T and

0o | I
q)’

3 | %
€(K—;.LD) K—€

and then (23) becomes
dy/dr=AY,

Y(0)= Y= (Bf}{a) .

The solution of this is ¥Y(7)=e*" ¥(0), which in expanded
form reads

(24)

s

XyTNy) ¥4
Y(T):Ee‘J’[P1+XjTNJ+--- DyrNy).
j=

1
o1 =i ]Y(O). (25)

Here P, is the 2nX2x projection associated with xy, N,

the corresponding nilpotent, s the number of distinct

eigenvalues, and M, the multiplicity of the jth eigenval-
18

ue,

The eigenvalues satisfy

|A-xl| =0, (26)
or equivalently

|ed™™+ (I -~ €d™'K)\ - (K —puD)| =0 .

This determinantal equation, when expanded, yields a
polynomial in A of degree 2n, the coefficients of which
are polynomials in € and u. If (26) is irreducible, the
2n X’s are branches of a single algebraic function. 19
For simplicity we shall assume that these 2»n branches
are distinct for € sufficiently small and every p that is
an eigenvalue of the Laplacian, At €=0, (26) reduces
to IANI - (K - uD)| =0, which is the characteristic equa-
tion obtained by using Fick’s law as the constitutive
equation for the diffusion flux.2® By assumption, the ei-
genvalues of this equation, call them w, are distinct.
Consequently, n of the roots of (26) have the form

N=wi+ e+ 0(€) j=1,...,n, 27)

where f(€)~ 0(¢) means

lim f
€-0 €

The remaining n X's are obtained by setting A= €X in
(26) to get
| %1+ - €®(@ 'K +K - uD)| =0 . (28)
The n X's of interest are
5\,: —H,+Xﬁ€+0(€) j=n+1,...,2n,

where the I1; are the eigenvalues of &. Consequently,
the 2% roots of (26) have the form
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A= wy+ A€+ 0(€)

X":—Tnj—+xﬁ+0(1) j=n+1""’2n‘

j:]"'--’n’
(29)

Clearly n of these have a pole at €=0, while the remain-
ing n are analytic there.

Because the eigenvalues are assumed to be distinct,
both A and its adjoint AT, have a complete set of eigen-
vectors, the nilpotents N, are zero, *! and (25) reduces
to

Y(1)=D_ eM P, Y, . (30)
J

Let X be a 2n-dimensional unitary space with inner
product (x, v),=3%" x,v;, let {uy, ..., u,} be the eigen-
vectors of A, and {vy, ..., v,} the eigenvectors of its
adjoint. We choose the #’s and +'s so that they are bi-
orthogonal; (v, u,)3=0,. The P/s are of rank one,
and consequently each may be written P,=u,; xv; where
* is a dyad product. This product is defined operation-
ally by Pu={v, u)u, for any uc X.

The eigenvectors u; are solutions of (A —A;I)u;=0,

and the v, are solutions of (AT =X,I)v,=0. In expanded
form
I
. —7\11 I {1) . _u; =0 (31)
_;—(K—uD) K-—=-NI uf
and

3 r &7 1
NI l (K - uD) 2—1 vy

K ,KT-‘:;T—X,IJ o

PED 4 P,y (€) I { PEPg ! + €P,,(€)}

when u; and v; are partitioned in conformance with A.
From these equations one finds that the eigenvectors
can be written in terms of the n-component eigenvectors

wk-#P p¥-*D and u®, v*® of K - uD and &, respectively,
as follows:
B ul-K'“D+O(€) -1 n
U= w;uf4P 1 0 () J=heees
(32)
4+ 0
u].:(.:%lj‘—.(s)._> j=n+1, ,2n,
_.._G_.L ud} +0(1)
K-iD | 0(¢)
- v, +0(e _
Vi <€(q>-1)7‘vj1(-ub+ 3] (62)> 7 1’ N,
(33)

1 (- (K- uD)To? + o€

v,=aj v3+o(€) ) j=n+l,...,2n .

Here 0(€") represents quantities f(¢) for which

. (€)
tim L2

is bounded and the 3%, are normalization factors that en-
sure that

(ua=0y J,k=1,...,2n

for all € #0. It is consistent with this normalization to

biorthogonalize the sets {4}, v} and {52, %P} as
n-component vectors and this is done hereafter.

It follows from the definition of the projections as
dyad products, that wxRTv = (uxv)R for any » X n matrix
R. Using this fact, P, can be written

P,=[ 1 :l ji=1,...,n
w (P21 €P, () | €w, (P24 v ey (o)}

L[ ~PiE-pD)+ePyle) | Pj+ePule)

(34)

i | T i
Ty | TL{PY 0~ uD) v eP (o)} | - T +€P? + <Py (e}

where the matrices P¥"“? and F§ are the n xn projec-
tions corresponding to the eigenvalues w; and II; of
K- uD and &, respectively. All entries of the matrices
Pyle), k=1, ..., 4 are 0(1) quantities. Since {u,v,}
is biorthogonal, the P, satisfy P,P,=5,P,.

If we formally set € =0 in the first » projections, we
get

pEuo |0 J
py= i=1,...n. (35)
F [wjpf;-up 0 J ’ n

For any vector

(:>GX,

j=n+l, ..., 2n,

r
u, v n-dimensional,

Uy
#() (1)
v w,u,

which of course is proportional to the eigenvector in
(32). The union of the » one-dimensional manifolds
spanned by vectors of the form

w sty

is an n-dimensional subspace U° of X, and when €= 0,
the vector
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;)

b

is confined to U’. From (34) one can see that when
€+0

G)
¥
is no longer confined to U° because the projections P,

j=1, ..., n are no longer projections onto U°, In fact,
the first-order effect of the perturbation is twofold, The

)

eigenvectors u;, j=1, , ® are different by an o(¢€)
quantity and hence the corresponding projections P; are
projections onto a subspace U*! that is different from
Ue, Secondly, the solution now also has a component
in an n-dimensional subpace U? that is complementary
to U'. U?is spanned by the eigenvectors u;, j=n

+1, ..., 2n and the projections P; j =n +1, , 2n are
projections onto U2,

The first~order effect on the amplitudes y(7) can be
found by using the projections at (34) in (30); the result
is

2n

(1) :i exp{[w,;+0(&)]7} [PF*P+ e(P+ P} P37 K) a+ Z exp ([—%+O(l)} 7> [- P§(K - uD)+ €(Py; + P{K)] &

J=n¢l

+€Zexp{[w,+o(€) T} PEPgg, ¢ Z exp([——+ 0(1)] )P}’B . (36)

j=n¢l

By comparison, if € is taken fo be identically zero at
the outset, the result is

(1) =: evs TP;('"D a, (37)
‘=

which coincides with the first term in the first summa-
tion of (36), but for the ©(¢) difference in the eigenval-
ues.

The solutions (36) and (37) differ gualitatively in
several ways. First, the density disturbance is cou-
pled to the initial flux disturbance via the third and
fourth terms of (36). In the extreme case of @ =0,

B =0, (37) predicts that there is no disturbance whatso-
ever, while (36) predicts that y(r)~ o(¢) for 7>0 if all
w, + o(€) have negative real parts. Secondly, (36) con-
tains components in U a’ given by the second and fourth
terms, If all 7,> €, these components decay rapidly
and are significant only for ¢ <e¢/min,{r,}. Both U' and
U? are invariant subspaces for (24), but given an initial
point in neither U' nor U?, the solution rapidly ap-
proaches U! and then evolves along a trajectory close to
U' on a much longer time scale. This is a standard
phenomenon in a singularly-perturbed problem. How-
ever, it should be emphasized that U' is not U°, and the
time evolution of a point

(y(7)>
¥(7)
on or near U may be significantly different from that

on U", Some examples in the following section illus-
trate this.

An analogous comparison can be made for the fluxes.
The dimensionless form of (17) is

T
1(71, g, T):e"w/e)rjo(n, 0 - Xf e-(o/e)(r-f)gvpdT:’ (38)
0

where x=0p*/(*L). After integration by parts and re-
arrangement this yields

3(g,m, 7)== xDVp +e /97 [§(£, m) - (- xDVpy)]

T ~(D/e)(r=1") ap !
+YV f e - D;yd?’ . (39)
0

The first term is the Fick’s law flux at time 7 and the
second the initial (7 =0) discrepancy between the speci-
fied flux and that calculated by Fick’s law. The third
term represents the effect of including the finite relaxa-
tion time, for 7>0. As before, the second term decays
rapidly, leaving the Fick’s law component and the inte-
gral term. One can readily show, using the series ex-
pansion for p in (39), that if all the perturbed eigenval-
ues are negative or have a negative real part, the inte-
gral term is 0(¢) for 7>0 and the flux is closely approxi-
mated by Fick’s law.

If it were physically meaningful to let € -0, we would
conclude from (36) and (40) that the amplitudes y(r) and
fluxes }(¢, n, 7) of the nondegenerate (e #0) system ap-
proach those of the degenerate (€=0) system uniformly
in T as € -0, provided 7 is bounded away from zero,
But physical considerations dictate that €, though small,
is strictly positive and hence we must determine how
much the eigenvalues of the nondegenerate system differ
from those of the degenerate system. This is done in
the following section by calculating the leading order
terms in the functions represented by o(€¢) in (27) and
(32).

IV. COMPARISON OF STABILITY FOR HYPERBOLIC
AND PARABOLIC SYSTEMS

The eigenvalues of the » “fast” modes in U? are large
and negative for small €, and we shall assume that the
relative first-order correction to these eigenvalues and
the corresponding eigenvectors is negligible. The re-
maining eigenvalues and eigenvectors are analytic in €
for small €, and the first-order corrections can be
computed by a straightforward perturbation expansion.
As before, u; (u,, uj') and v,—(v,, v j=1, , 1y
and, from (31) uy' —x,u, and v, —(K uD)Tthv“/e)\

Thus the equations for u, and v can be written

[K = puD = NI+ e, 8K - A,D)]u;=0
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[(K - uD)7 37 +X (K" - &) — 1 f] ]! =0. (40)
Define

Ly(\)=K - uD- N1,

LN =0 (K- N,
and write

Ml€)=w, +€xyy +€2 R 4000,

7§(€):uj0 +€U; +€2u,-2+--- s 1)

viHe) = ev; +ePup 4o

where u,=u} P and v,y = (<I>")T #-42_ The equation for

u}(€) can now be wrltten
[Lo(N) + €L, (M)} =0, 42)

and after inserting the series and equating coefficients
of like powers of € there results the sequence of rela-
tions

Lo(wj) ujo = 0,

{43
Lolwy) uy =[Ajl = Lifw)]ujo, !

The first of these is satisfied identically since u;,
=42 is the eigenvector of K — D that corresponds to
the eigenvalue w;. Because L, is singular, the Fred-
holm alternative® implies that the second equation has'
no solution unless the right-hand side is orthogonal to
all solutions of the adjoint equation

[KT = uDT-w,I]v =0, (44)

This has only one solution, vy, Evf'“”, and consequently

the orthogonality condition can be written
(0, Al = Ly{w,)) uy0), = 0. {45)

This can be solved for A;,, the first-order correction,
to give

A1 =(vg0, Lilw;)us)
=w; vy, &K - w0 u,
=I~L(A)1<Uj0, Q-lDuﬂ)), ]':1, ceag R (46)

(Here and hereafter all inner products are in n-dimen-
sional space.) However, not all A, are independent, be-
cause it follows from (26) that the constant term divided
by the coefficient of A*" is [det(K — uD)det®]/(~ €"). This

n
App = ol Z (vy9, 4’-ID“JO>{<2)10 , &7y —t
= W= wy
1

Both the eigenvalue and eigenvector corrections are
proportional to the dimensionless wavenumber u,
raised to some power, and hence both vanish at zero
wavenumber (infinite wavelength) and are most impor-
tant at large wavenumbers (short wavelengths). To de-
termine the magnitude of the relative correction, 6)\,1/
wy, define vector and matrix norms

must equal the product of all 2 eigenvalues,

ﬁ 5 det(K - puD)detd
i=1 ' (=€ ’

and if we let A, stand for either w, or -1II,, it can be
shown that

3 kl(n o) =0.

k=1

CY))

Therefore, if neither K — uD or & has any zero eigen-
values, it is necessary that
2n

Z (Ae1/ M) = 0. (48)

If, for instance, all A, are negative, then some eigen-
values must decrease and some must increase. In par-
ticular, it can never happen that there is only one eigen-
value for which A,; is very large, while all other A, are
small,

As already noted, Ly(w,) is singular, and therefore to
find u;, from (43b) requires a generalized inverse or
generalized Green’s function.?® This satisfies

LoG;=I—u;pxvy (49)
i F07 4
and is given by

n
UjoxTio
G,= =

§=1

p{-+b
—3
=1 W =Wy
i%

where subscript j indicates that this is the Green’s func-
tion for a perturbation of the jth eigenvalue. The solu-
tion of (43b) is only determined to within an arbitrary
additive vector parallel to u;,. It can be written

pib
‘Z(w o > { M= Lilw)}ug +cugg, (50)
i#

where c is an arbitrary constant. If we require that
(v, #;1) =0, then ¢= 0 and u,; is uniquely determined.
After simplification of (50) one gets

T & Pty (51)

i#

The first-order correction for the adjoint eigenvecter

is constructed in an analogous manner. Higher-order
terms in the series are calculated by repeating the fore-
going procedure. For example, the second-order term
for an eigenvalue is

Wy, ‘I"ID“10>} - ““’3(”10 ) @ luge) (00, & Duyg) + Hrw vy, & Duyg?,

(52)
f
- 1/2
Hxll = (G, 02, (53)
[l All= SUI_)IHAxH

for n-component vectors and n xn matrices, respec-
tively. It can be shown that || A[| equals the largest
eigenvalue of AA* and that if 14,; |<1, then !l Al =<n
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It then follows from {46), by use of Schwarz’ inequality,
that

A1

o, = 1|( vy, 7 Duye) |

= plle =11 DI <1l vigll 1wz ll
= szll Uj()”‘ “u;()” . (54)

This upper bound is the best possible for arbitrary &
and Dwithin the class considered here, because equality
can hold for special choices of & and D,

When K — uD is self-adjoint (symmetric), the adjoint
eigenvectors v,y coincide with the u,,, and the latter can
be chosen so that Tu; =1, The above inequality then
reduces to | )\jl/wjl < un? and therefore the relative
magnitude of the first-order term €);; is bounded above
by €un®. A continuum model of diffusion would surely
break down if the disturbance wavelength is less than
10 A, and when this is used as a lower bound, one finds
the following necessary condition from (22):

2

%“ < —;%HO— . (55)
Using previous estimates of « and 6, the largest possible
u is for 5~107 and k~107 and then p <~ 10%, For this
value of k, €~10"2-10"" and therefore (€u)pa,~ 0. 01~
1,0. Consequently, even if # is only 2 or 3, the relative
correction is significant at very short wavelengths.
Since particular choices of & may lead to values of ¢!
much larger than those used here [cf. (17)], the first-
order terms can sometimes be significant even at wave-
lengths of ~ 100 A. However, the corrections will be
negligible, almost without exception, whenever the wave-
length exceeds 1000 A,

When K — pD is not symmetric, the adjoint eigenvec-
tors v, are distinct from the eigenvectors u,, and since
we have chosen (v,o, Upg) = 8, the norms of v, and uy
cannot be set equal to 1. They are bounded below by
1, ¥ but cannot be bounded above a priovi; they simply
have to be calculated. In fact, it is easy to see that the
norms can be made as large as desired, simply by de-
manding that K — uD have two eigenvectors that are
nearly parallel. By prior assumption, the eigenvalues
of K — uD are distinct and therefore two eigenvectors are
never precisely parallel, but the angle between them can
be made as small as desired. The consequence is that
when K - uD is not symmetric, the correction terms can
be significant for all wavelengths and the eigenvalues of
(26) may differ substantially from those of K ~ yD. In
such cases, the series would converge very slowly and
would be of little value for calculating the X’s.

Estimates of the magnitude of the correction to the
eigenvectors u; are gotten by analogous methods. One
can readily show that when K — uD is symmetric, the
angle O; between the eigenvectors u;, and uq+€u;y satis-
fies

1

.
c089,= The oy (56)

and is small except when Il u,lll2 is large. Except at
very short wavelengths, each eigenvector is only rotated

slightly and therefore U! essentially coincides with U°,
However, at long wavelengths they may differ signifi-
cantly.

The foregoing expansions show when the eigenvalues of
the n “slow” modes of the hyperbolic system can differ
significantly from the corresponding eigenvalues of
K —-uD, However, it is generally impractical to deter-
mine from these expansions whether the eigenvalues
(when they are real) or their real part (when they are
complex) increase or decrease as € increases from
zero. Consequently, it cannot be decided a priori
whether inclusion of the relaxation time qualitatively
changes the stability predicted for uniform solutions.
Conceivably, the effect of relaxation could be to make
a negative eigenvalue positive (or vice-versa), or to
change the real part of a complex eigenvalue from nega-
tive to positive (or vice-versa). Next we show that the
latter is possible while the former is impossible.

In expanded form, the characteristic equation (26)
reads

Py X34 Py N2 4 P+ Py=0 (57)

where all P, are real and P,,> 0. . All eigenvalues X have
negative real parts if the Hurwitz determinants

Hy=Pgpy,
Py1 Popg
H - n n
2 PZn P2n-2 ’
Pypy Pypg Pops o... 0 (58)
PZn .
g-| © :
0
0 vvee e, 0 P,

are all positive, % When the largest real eigenvalue or
the real part of any complex eigenvalue is zero, H,>0,
Hy,>0,...,Hyps>0, and Hy,=0.% Since H,,= PyXHy,y,
either or both of Py and H,,., vanish when H;,, vanishes.
The vanishing of Py implies that there is a zero real
eigenvalue; this case will be analyzed first.

By assumption, & is nonsingular and it follows from
(47) that A= 0 is a solution of (57) if and only if K — uD is
singular. Therefore, the locus of marginal stationary
stability (x=0) in parameter space is unchanged by the
inclusion of a finite, nonzero relaxation time. Through-
out we have assumed that all eigenvalues of both K — uD
and A are distinct, i.e., there are no branch points of
any X in {0, €]. Consequently, an eigenvalue that is real
at €=0 can never cross the locus x=0 because
81/8€l,.0=0. Thus, whenever K — uD has only real ei-
genvalues, inclusion of velaxation can neither stabilize
an unstable system nov destabilize a stable system.

In particular, this pertains when K — uD is symmetric.

When K — uD has complex eigenvalues, it must be
determined whether any eigenvalues cross the locus
H,, =0 as € increases from zero, The following ex-

J. Chem. Phys., Vol. 64, No. 2, 15 January 1976

Downloaded 06 Jan 2004 to 128.101.154.71. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



H. G. Othmer: Multicomponent reacting systems 469

ample of a two-component system shows that this can
occur, The coefficients Py, P, ... are®
-1
P =€,
-1
P;=€T® -¢
- - -1 -
Py=€%® Y _ ekt eu(T?T® - T°° he1 , (59)
- - -1
Py= T 4 ep (TP P8R _TF 4 TP
P0= tK-uD s

where T=Tr C=J C,; and ° =det C denote the similar-
ity invariants of the 2x2 matrix C. At €=0, the coef-
ficients reduce to P, (0)=P? where P}=PJ=0, P}=1,
P3=uT? - 7%, and P}=t"P, These are the coefficients
of the characteristic equation det(K — uD -AI)=0, and
this equation has roots with negative real parts for all

u >0 provided ™2 >0 and uTj - T%>0. We want to
show that H; can be made negative while P,>0, H;>0,
Hy,>0, #*P>0and uT] -T% >0.

-1
2TKt° ,

Since ® (and therefore <I>'1) is assumed to have only
real po'i;ltlve e1genva1ues the invariants of ! must sat-
isfy 27 >0 and T° > 2(* " H¥250. In order that #~*°
and pTD ~T¥ be positive, it is necessary and sufficient

that®® 7% <0, >0, T°>0, >0, and 7% - T*T°
> = 2(t*°)2, From (58) it follows that
H1= I’S ’
Hy=PyPy - P\P, , (60)

Hy= Py(P,Py - P\P,) - PoP} ,
and by virtue of the foregoing conditions on the invari-
ants, H, is always positive. Since PP~ 0 (€®) and
P,P;~ 0(1), it is clear that H,>0 for small €, For the
same reason, P;P, can be neglected relative to P,P; in
Hy, and to make Hy <0 we need

Py(P,P, - PyP,) <0 . (61)

To first order in €, this requires that

" _ep® ' <0, 62)

Since the invariants of ®-! and D are all of order 1, by
virtue of the chosen normalizations, it is clear that when
€lr~0(l), Eq. (62) will be satisfied. The previous esti-
mates of parameters show that ep ~0(1) is within the
realm of physically meaningful values. Consequently,
the fourth-order equation obtained by including relaxa-
tion can have a pair of roots with positive real parts,
even if the roots of the second-order equation have nega-
tive real parts.

The foregoing predicts that stability is different only
at very short wavelengths, but a more careful analysis
of the order of magnitude of the quantities involved shows
that H; can be made negative under less severe condi-
tions on p. Furthermore, when three or more chemical
species are present, it can be shown that the 2»n-1st
Hurwitz determinant of the 2n-dimensional system in-
volves additional invariants that are independent of those
that appear in the n-1st determinant for the n-dimen-
sional system. These new invariants, which arise from
products of !, D, and K, provide additional degrees

of freedom that can be used to make H,, , negative,

In summary, the perturbation analysis shows that
when K - uD is symmetric, the eigenvalues are insensi-
tive to inclusion of diffusion relaxation except at very
short wavelengths, If in addition to K — uD being sym-
metric, no eigenvalues have branch points in [0, €],
analysis of the characteristic equation shows that sta-
bility is qualitatively unchanged at all wavelengths by
inclusion of relaxation. On the other hand, whenK - puD
is not symmetric, the perturbation analysis shows that
the eigenvalues can vary rapidly with € at all wave-
lengths whenever K - D has a pair of eigenvectors that
are “almost” parallel, In such cases, it follows from
Eqg. (46) that there can be large differences, at any
wavelength, between the frequency of oscillation and the
decay or growth rate calculated for the “perturbed” sys-
tem (e=#0) and those calculated for the unperturbed
(e =0) system. Moreover, analysis of the characteris-
tic equation shows that stability in the two systems can
be qualitatively different as well, at least to the extent
that a system predicted to be stable for €=0 can be un-
stable for € #+0. Whether a system unstable for €=0
can be stable for ¢+ 0 has not been investigated,

V. CONCLUSION

The foregoing results bring out a fundamental differ-
ence between monotonic and oscillatory growth or decay
of disturbances in multicomponent systems. To zero
order in the disturbance amplitude, (i.e., in the linear
analysis), the inertia effects that give rise to higher-
order time derivatives have little effect on growth or
decay rates and can never qualitatively change stability
when growth or decay is monotonic, However, the same
inertia terms can significantly change both growth or
decay rate and frequency for oscillatory modes. Evi-
dently this difference arises only in multicomponent
systems, since at least two species are required to pro-
duce a pair of complex conjugate roots to the character-
istic equation. Consequently, use of Fick’s law in a
multicomponent system will not lead to accurate predic-
tions of stability behavior in all cases. When numerical
data on ¢, D, and K are available, the characteristic
equation with ¢ # 0 should be solved, at least whenever
K - pD has complex conjugate eigenvalues.

Further analysis of the constitutive equations is re-
quired to determine what, if any, restrictions on the
structure of the equations are implied by the require-
ment of a nonnegative entropy production rate, *® This
has not been pursued here because we have treated only
linearized versions of the constitutive equations. An
analysis of such conditions for a limited class of non-
reacting systems is given by Miiller, ¥

ACKNOWLEDGMENT

The author is indebted to L. E, Scriven for several
helpful conversations in early stages of this work.

1A partial list of references, which indicates the scope of the
recent literature in the area, is as follows: R. Aris and
N. R. Amundson, Mathematical Methods in Chemical Engi~
neering, (Prentice-Hall, Englewood Cliffs, 1973), Vol. 2;

J. Chem. Phys., Vol. 64, No. 2, 15 January 1976

Downloaded 06 Jan 2004 to 128.101.154.71. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



470 H. G. Othmer: Multicomponent reacting systems

K. J. Baumeister and T. D. Hamill, J. Heat Transfer 91,
543 (1969); R. J. Bearman, J. Chem. Phys. 31, 751 (1959);
J. Meixner, Arch. Ration. Mechan. Anal. 39, 108 (1970);

P. M. Morse and H. Feshbach, Methods of Theoretical Phys-
ics, (McGraw=Hill, New York, 1953), Vol. I; S. I. Sandler
and J. S. Dahler, Phys. Fluids 7, 1743 (1964); H. D. Wey-
mann, Am. J. Phys. 35, 488 (1967).

’A. Einstein, Ann. Phys. 17, 549 (1905). The generalization
is due to Ornstein: L. S. Ornstein, Proc., Acad. Amst, 21,
96 (1919), quoted in G. E. Uhlenbech and L. S. Ornstein,
Phys. Rev. 36, 823 (1930).

33, Goldstein, Q. J. Mech. Appl. Math. 4, 129 (1951).

43, 1. Sandler and J. S. Dahler, Phys. Fluids 7, 1743 (1964).

5A. M. Turing, Philos. Trans. R. Soc. Lond. B 237, 37 (1952).

fAmong others, J. I. Gmitro and L. E. Scriven, in Intracellu-
lar Transport, edited by K. B. Warren (Academic, New York,
1966); H. G. Othmer and L. E. Scriven, Ind. Eng. Chem.
Fundam. 8, 302 (1969); I. Prigogine and R. Lefever, J. Chem.
Phys. 48, 1695 (1967),

"As expounded in J. E. Adkins, Philos. Trans. R. Soc. Lond.
A 255, 74 (1963); I. Muller, Arch. Ration. Mechan. Anal.

28, 1 (1968); C.- Truesdell, Rational Thermodynamics
(McGraw=Hill, New York, 1959).

8These assumptions imply that the mass exchange term can be
incorporated directly into the continuity equations. This sub-
stantially simplifies the stability analysis.

°C. Truesdell, J. Chem. Phys. 37, 2336 (1962).

The possible restrictions on the constitutive equations that may
may follow from nonnegativity of the entropy production are
discussed in the concluding section.

¢, Truesdell and R. A. Toupin, Handbuch dev Physik ITI/1
(Springer, Berlin, 1960).

Lhe general representation for a vector-valued isotropic func-
tion on n vectors is due to Wang: C. C. Wang, Arch. Ration.
Mechan. Anal. 33, 249 (1969).

33ee Ref. 12. The force due to frictional interaction is gen~
erally written Fi= -, L'”(v' —v/), where & is a frictional co-
efficient. This is equivalent to our formulation, because

iy oo, V)T =CGY, ..., i"D7, where C is a nonsingular ma=
trix.

YUThere is no reason to expect that & is symmetric except when
the frictional interaction is strictly binary and there are no
chemical reactions; cf. C. Truesdell, J. Chem. Phys. 37,
2336 (1962).

153, R. DeGroot and P. Mazur, Non-Equilibrium Thermody-
namics (North-Holland, Amsterdam, 1962).

18R, Courant and D. Hilbert, Methods of Mathematical Physics,
(Interscience, New York, 1962), Vol. II.

por kinetic data, see S. W. Benson, The Foundations of
Chemical Kinetics (McGraw-Hill, New York, 1960); M.
Boudart, Kinetics of Chemical Processes (Prentice-Hall,
Englewood Cliffs, 1968). This estimate of ¢! is very crude.
Since the elements of &! are certainly not bounded above by
the reciprocal of the largest element of &, it would be more
accurate to say that ¢~! can take on any positive value.

B, Kato, Perturbation Theory for Lineayr Operators (Springer,
New York, 1966).

15, Knopp, Theory of Functions (Dover, New York, 1947),
Part II.

%Y. G. Othmer and L. E. Scriven, Ind. Eng. Chem. Fundam.
8, 302 (1969),

Hgee, Ref. 18,

2R, Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience, New York, 1953), Vol. 1.

Bsee Ref. 22.

3. H. Wilkinson, The Algebraic Eigenvalue Problem (Claren-
don, Oxford, 1965).

¥y, G. Othmer and L. E. Scriven, Ind. Eng. Chem. Fundam.
8, 203 (1969).

%A, T. Fuller, J. Math. Anal. Appl. 23, 71 (1968).

YA, T. Fuller, J. Math. Anal. Appl. 23, 71 (1968).

BH. G. Othmer and L. E. Scriven, Z. Angew. Math. Phys.
24, 135 (1973).

®gee Ref. 28.

%7, Miiller, Arch. Ration. Mechan. Anal, 28, 1 (1968).

Hgee Ref. 30.

J. Chem. Phys., Vol. 64, No. 2, 15 January 1976

Downloaded 06 Jan 2004 to 128.101.154.71. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



