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Abstract How to choose the computational compartment or cell size for the stochas-
tic simulation of a reaction–diffusion system is still an open problem, and a number
of criteria have been suggested. A generalized measure of the noise for finite-dimen-
sional systems based on the largest eigenvalue of the covariance matrix of the number
of molecules of all species has been suggested as a measure of the overall fluctua-
tions in a multivariate system, and we apply it here to a discretized reaction–diffusion
system. We show that for a broad class of first-order reaction networks this measure
converges to the square root of the reciprocal of the smallest mean species number
in a compartment at the steady state. We show that a suitably re-normalized measure
stabilizes as the volume of a cell approaches zero, which leads to a criterion for the
maximum volume of the compartments in a computational grid. We then derive a new
criterion based on the sensitivity of the entire network, not just of the fastest step,
that predicts a grid size that assures that the concentrations of all species converge to
a spatially-uniform solution. This criterion applies for all orders of reactions and for
reaction rate functions derived from singular perturbation or other reduction methods,
and encompasses both diffusing and non-diffusing species. We show that this predicts
the maximal allowable volume found in a linear problem, and we illustrate our results
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with an example motivated by anterior-posterior pattern formation in Drosophila, and
with several other examples.
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1 Introduction

It is now widely-recognized that stochastic effects can play an important role in
diverse processes such as gene expression and spatial pattern formation in development
because many key biological molecules are present in low copy numbers. For exam-
ple, gene transcription in some bacteria involves interactions between 1–3 promoter
elements, 10–20 polymerase holoenzyme units, 10–20 copies of repressor proteins,
3000 RNA polymerase molecules, and approximately 1000 ribosomes (Kuthan 2001).
Since chemical reactions occur in discrete steps at the molecular level, the processes
are inherently stochastic and the inherent “irreproducibility” in these dynamics has
been demonstrated experimentally for single cell gene expression events (Spudich
and Koshland 1976; Ozbudak et al. 2002; Levsky and Singer 2003). In some contexts
stochastic effects simply add noise to an output, but have no beneficial role, but in
others, such as asymmetric cell division, their role is essential. In general organisms
show a remarkable degree of resilience or robustness in the face of noise, and thus
understanding the time-dependent behavior of a system of interacting species and how
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noise influences the outcome is important in numerous contexts, including temporal
gene expression profiles, signal transduction, and other biochemical processes. Of
course when the numbers of molecules of all species are large enough, a ‘law of large
numbers’ argument shows that for finite times the stochastic formulation described
later converges to the mass-action based deterministic description commonly used, at
least in well-mixed systems (Kurtz 1972).

One of the earliest investigations of stochastic effects in reactions is due to Delbrück
(1940), who studied the distribution of the number of molecules for a single reacting
species in a one-component, enzyme-catalyzed system. It was assumed there that the
substrate is in excess and thus the process is effectively first-order. There are many
other examples of first-order reaction networks that involve a small number of mole-
cules, including transcription and translation modeled as first-order catalytic reactions
(Thattai and van Oudenaarden 2001), for which stochastic analysis is necessary. The
evolution of the surface morphology during epitaxial growth involves the nucleation
and growth of atomic islands, and these processes may be described by first-order
adsorption and desorption reactions coupled with diffusion along the surface. Proteins
exist in distinct conformational states, and the reversible transitions between states
can be described as first-order conversion processes (Mayor et al. 2003). Fluctuating
protein conformations are important in the movement of small molecules through pro-
teins such as myoglobin; hence it is important to understand the distribution of these
states (Di Iorio et al. 1991; Austin et al. 1975). RNA also exists in several confor-
mations, and the transitions between various folding states follow first-order kinetics
(Bokinsky et al. 2003). In Gadgil et al. (2005) the linear problem for an arbitrary num-
ber of components is more or less completely solved, in that it is shown there how to
obtain the evolution equations for the mean and variance in closed form. These results
also address the problem of understanding how the interplay between the nature of
the individual steps and the connectivity or topology of the entire network affects the
dynamics of the system, irrespective of whether a deterministic or a stochastic descrip-
tion is the most appropriate, but this problem remains unsolved for general nonlinear
reaction schemes.

In the context of biological pattern formation, robustness or resilience is frequently
defined with respect to the precision and sensitivity of the determination of boundaries
between different cell types in a developing tissue (Umulis et al. 2008). A classical
paradigm for this process is the French flag model, in which a one-dimensional domain
is to be divided into three equal-size sub-domains (Umulis et al. 2008). In the simplest
deterministic version of this model, either specialized source and sink cells located
at the boundary of the developmental field maintain the concentration of a signaling
molecule, called a morphogen, at appropriate fixed levels, or boundary cells produce
the morphogen at a fixed rate. In the former case, when there is no degradation of the
morphogen in the interior of the domain a linear distribution can be established in a
one-dimensional system of about 1 mm in length in the time that is normally available
for commitment to differentiation (Wolpert 1971; Crick 1970). Given fixed thresholds
between different cell types, the tissue can be proportioned into any number of cell
types and the determination of the boundaries is robust with respect to changes in the
size of the system. In the latter case we consider a simple version in which the flux
at the boundary is specified, and degradation by first-order reaction occurs through-
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Fig. 1 Two examples of the French flag model with stochastic dynamics. In each case the system is 1×0.01×
0.01 mm3, the x-length is discretized into 50 compartments, the diffusion coefficient is 1, 000 µm2 min−1,
and one realization is shown at 100 mins. a The distribution for fixed concentrations at the boundaries: 35
molecules at the left and 5 at the right, with diffusion and no degradation throughout. The color indicates
the thresholds: black greater than 25 and gray less than 15 molecules. b The distribution when there is an
influx from a source at the left end at a rate 0.1 nM µm min−1, and diffusion and degradation at a rate
0.01 min−1 throughout. Initially, each compartment has 10 molecules of morphogen. The color indicates
the thresholds: black greater than 12 and gray less than 6 molecules

out the domain—generalizations will be discussed later in the context of Drosophila
patterning.

However a deterministic description of either of these models ignores the possible
effects of stochastic fluctuations in the signaling and gene control networks and the
effect stochastic fluctuations may have on the precision of patterning. Figure 1a shows
one realization of a stochastic model of a linear chain of compartments with fixed
numbers of molecules at the endpoints of the domain, and Fig. 1b shows one realiza-
tion for the second scheme, in which the input flux is fixed at the left. In both panels
the solid line shows the mean of the distribution, which can be computed directly since
the equations are linear (Gadgil et al. 2005). These curves also represent the steady-
state distribution for the corresponding deterministic system. Since each developing
embryo represents one realization of the stochastic patterning process, the results illus-
trate the difficulty in determining the location of the boundaries between cell types
in the face of such fluctuations. In embryonic patterning in Drosophila, the primary
morphogen Dpp has signaling activity in the range of 10−10 to 10−9 M (Shimmi
and O’Connor 2003), and at these concentrations there are very few Dpp signaling
molecules available to the receptors. Thus fluctuations will be significant, and how
the embryos cope with such noise and pattern reliably is still not fully understood.
Preliminary work has shown that a postulated positive feedback mechanism (Serpe
et al. 2008) increases the reliability of spatial patterning (Zheng et al. 2011). In any
case, spatially-distributed systems add a new level of complexity to the problem of
understanding the importance of noise in development.

1.1 The description of reaction networks

Throughout we deal with reacting systems that are not diffusion-limited, and thus
a stochastic analysis and simulation of reaction and diffusion can be built around a
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discretized or compartmentalized model of the system in which each compartment is
well-mixed. We discuss the rationale for this approach and the method for choosing the
compartment size in more detail later, but we begin by developing the chemical master
equation that can be used to describe such systems. We begin with some background
on a deterministic description of reacting systems, then derive the master equation for
an arbitrary network of reacting species, and finally add diffusion. The formulation of
the reaction component is described in more detail elsewhere (Othmer 1981; Gadgil
et al. 2005; Lee and Othmer 2010).

Suppose that a reacting mixture contains a set M of s chemical species Mi that
participate in a total of r reactions. Let νil be the stoichiometric coefficient of the
i th species in the �th reaction. The νil are non-negative integers that represent the
normalized molar proportions of the species in a reaction. Each reaction is written in
the form

∑

i

reac.
νreac

i� Mi −→
∑

i

prod
ν

prod
i� Mi � = 1, . . . r,

where the sums are over reactants and products, respectively in the �th reaction. Here
the forward and reverse reaction of a reversible pair are treated as two irreversible
reactions. There may be other species that do not react, but they play no role here.
Once the reactants and products are specified the network topology of the associated
reaction graph is defined. The linear combinations of species that appear as reactants
or products in the various elementary steps are called complexes, and the relation
defined by which complexes are connected by reaction gives rise to a directed graph
G in which each complex is identified with a vertex Vj in G and a directed edge
E� is introduced into G for each reaction. Each edge carries a nonnegative weight
R̂�(c) given by the intrinsic rate of the corresponding reaction. The topology of G
is in turn represented in its vertex-edge incidence matrix E , which is defined as fol-
lows.

E j� =

⎧
⎪⎪⎨

⎪⎪⎩

+1 if E� is incident at Vj and is directed toward it

−1 if E� is incident at Vj and is directed away from it

0 otherwise

If there are p complexes and r reactions, then E has p rows and r columns and every
column has exactly one +1 and one −1.

Once the complexes and reactions are fixed, the stoichiometry of the complexes
is determined, and we let ν denote the s × p matrix whose j th column encodes the
stoichiometric amounts of the reacting species in the j th complex. Then the determin-
istic temporal evolution of the composition of a spatially-uniform reacting mixture is
governed by

dc

dt
= νER̂(c). (1)
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A special but important class of rate functions is that in which the rate of the �th
reaction can be written as

R̂�(c) = k�R�(c).

This includes ideal mass action rate laws, for which the rate is given by

R� =
s∏

i=1

(ci )
νi� . (2)

As it stands, (1) includes all reacting species, but those whose concentration is con-
stant on the time scale of interest can be deleted from each of the complexes in which it
appears, and its concentration or mole fraction can be absorbed into the rate constant
for reactions in which it participates as a reactant.1 Furthermore, some complexes
may not comprise any time-dependent species; these will be called null complexes
and denoted by M0, and each null complex gives rise to a column of zeroes in ν. The
rate of any reaction in which the reactant complex is a null complex is usually constant.
For instance, any transport reaction of the form M0 → Mi introduces a null complex
and the corresponding flux of Mi represents a constant input to the reaction network,
provided that the rate of the transport step does not depend on the concentration of a
time-dependent species.

One can also base the description of a reacting system on the number of mol-
ecules, and to connect the deterministic and stochastic descriptions, we let n =
(n1, n2, . . . , ns) denote the discrete composition vector whose i th component ni is
the number of molecules of species Mi present in the volume V. This is the discrete
version of the composition vector c, and they are related by n = NAVc, where NA is
Avogadro’s number. From (1) we obtain the deterministic evolution for n as

dn

dt
= νER̃(n)

where R̃(n) ≡ NAVR̂(n/NAV). In particular, for mass-action kinetics

R̃�(n) = NAVk�R�(n/NAV) = NAVk�

s∏

i=1

(
ni

NAV

)νi�

= k�

(NAV)
∑

i νi�−1

s∏

i=1

(ni )
νi� = k̂�

s∏

i=1

(ni )
νi� .

Care is needed in accounting for volume factors when one species in a bimolecu-
lar reaction is confined to a surface and the other to the adjacent fluid, as occurs in
receptor–ligand interactions.

1 Hereafter s will denote the number of species whose concentration may be time-dependent.
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1.2 The stochastic description of reactions

In the stochastic description the evolution of the number of molecules of a species is
modeled as a continuous-time Markov jump process. Let Ni (t) be a random variable
that represents the number of molecules of species Mi at time t , and let N denote the
vector of Ni s. The state of the system at any time is a point in Zs

0, where Z0 is the
set of nonnegative integers. Let P(n, t) be the joint probability that N (t) = n, i.e.,
N1 = n1, N2 = n2, . . . , Ns = ns ; then the master equation for the evolution of P is

d

dt
P(n, t) =

∑

m∈S(n)
R(m, n) · P(m, t)−

∑

m∈T (n)
R(n,m) · P(n, t)

where R(i, j) is the probability per unit time of a transition from state i to state j ,
the ‘source’ set S(n) is the set of all states that can terminate at n after one reaction
step, and T (n), the ‘target’ set, is the set all states reachable from n in one step of
the feasible reactions. The sets S(n) and T (n) are easily determined using the under-
lying graph structure. It follows from the definition of ν and E that the �th reaction
C(k) → C(k′) induces a change Δn(�) = νE(�) in the number of molecules of all
species after one step of the reaction, where subscript � denotes the �th column of E
and C(k) denotes the kth complex of species. Therefore the state m = n − νE(�) is a
source or predecessor to n under one step of the �th reaction. Similarly, states of the
form m = n + νE(�) are reachable from n in one step of the �th reaction.

Once the graph of the network and the stoichiometry are fixed, we can sum over
reactions rather than sources and targets, and consequently the master equation takes
the form

d

dt
P(n, t) =

∑

�

R�(n − νE(�)) · P(n − νE(�), t)−
∑

�

R�(n) · P(n, t).

However, the transition probabilities R�(n) are not simply the macroscopic rates R̃
if the reactions are second-order (or higher), but are given by (Gillespie 1976; Gadgil
et al. 2005)

R� = c j (�)h j (�)(n).

Here j (�) denotes the reactant complex for the �th reaction, the factor c j (�) is the
probability per unit time that the molecular species in the j th complex react via the
�th reaction, and h j (�)(n) is the number of independent combinations of the molecular
components in this complex. Thus

c j (�) = k�

(NAV)
∑

i νi j (�)−1
= k̂� and h j (�) =

∏

i

νi j (�)−1∏

ai =0

(ni − ai ).

For a first-order reaction k̂� is the probability per unit time per molecule of a transi-
tion, for a bimolecular step of the form A + A → C it represents the probability per
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Fig. 2 A schematic of a 1D network of coupled cells in which cells can interact either at their opposing
membranes or via transport between cells

unit time of a transition per ordered AA pair, and for a bimolecular step of the form
A + B → C it represents the probability per unit time of a transition per AB pair.
For a first-order reaction 1/k̂� represents a bona fide time scale, as in the deterministic
case, whereas for bimolecular reactions it does not. We return to this point later.

1.3 The master equation for a general system of reaction and diffusion

Many biological problems involve more than just one well-mixed compartment, and
this provides the motivation for describing a general framework for treating networks
of cells or compartments that can communicate by various mechanisms, some of
which involve material transport, and others of which merely involve signaling by, for
instance, a ligand binding to a receptor. A schematic of an array of discrete cells that
interact by several mechanisms is shown in Fig. 2. An example of a system that can be
described by such a network is the developing wing disc in Drosophila melanogaster.
We illustrate the types of interactions within and between cells, but there may also
be transport by diffusion within the gaps between cells and in the surrounding fluid.
We allow reaction within cells, reaction between species at the membranes with either
species in the associated cell or on the membrane of the adjacent cell, and transport
between cells.

If we associate a graph with only one class of nodes to the array, then ordering
them so that the first Nc are cell labels and the remaining 2Nc (or smaller, depend-
ing on boundary conditions) are pairs of opposed membranes produces the cleanest
separation, for then the incidence matrix has the form

E =
[ Ecc Ecm
Emc Emm

]

where Ecc, Ecm, Emc, and Emm denote the cell–cell, the cell–membrane, the mem-
brane–cell and the membrane–membrane connections, respectively.

It is not difficult to formulate a master equation for the general network in Fig. 2,
since all the steps shown can be treated as chemical reactions, but the details depend
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on the specific steps involved. When there is no interaction between membranes the
matrix collapses to Ecc, which encodes the connectivity of the cell network. It is clear
that we can still allow receptor–ligand interactions, and an example of this is given
later. In the remainder of the section we assume that transport is only by diffusion and
that the network arises from the discretization of a reaction–diffusion problem.

In a stochastic description of reaction–diffusion systems in which the reactions are
not diffusion-limited, the domainΩ containing the mixture can be discretized into spa-
tially-uniform compartments, and diffusion can be treated as a jump process between
compartments. How to correctly choose the computational cell or compartment size is
a significant problem, and we deal with this in the following sections—here we simply
derive the master equation for a reaction–diffusion system. In fact the compartments
need not be computational cells that arise from the discretization of a domain; they
could be compartments in the wider sense used above, as long as transport is diffusion-
like, and we describe all cases as compartments hereafter. However, for simplicity we
assume that transport between compartments is symmetric and linear in the concen-
tration differences, so as to describe diffusion, and that all compartments are cubes of
side-length h. We will comment later on how to generalize the resulting equation for
other transport mechanisms and unequal compartment sizes.

Earlier we introduced the reaction graph G and we indicated above that one can
associate a graph with the cellular network as well. To distinguish between these we
denote the former as Gr and the latter as Gc. We suppose that there are Nc nodes in
Gc, we define the incidence matrix Ec, which was Ecc in the general case, and the dis-
crete Laplacian as Δc = −EcET

c /2. When the network stems from a regular grid, the
Laplacian is the discretization, modulo a scale factor of h−2, of the spatial Laplacian
(Othmer 1971).

Let N (t) = (N 1(t), N 2(t), . . . , N Nc (t)) be the vector of random variables whose
kth vector component represents the numbers of molecules of species in the kth com-
partment. Let P(n, t) be the probability that N (t) = n, i.e., the joint probability that
N 1(t) = n1 = (n1

1, n1
2, . . . , n1

s ), N 2(t) = n2 = (n2
1, n2

2, . . . , n2
s ), . . . , N Nc (t) =

nNc = (nNc
1 , nNc

2 , . . . , nNc
s ). Then P(n, t) ≡ P(n1, n2, . . . , nk, . . . , nNc , t), and in

the absence of coupling between the compartments the master equation for P(n, t) is

d

dt
P(n, t) =

Nc∑

k=1

[
∑

�

R�(n
k − νE(�)) · P(n1, . . . , nk − νE(�), . . . , nNc , t)

−
∑

�

R�(n
k) · P(nk, t)

]

since this just involves the sum over all compartments of the changes in state of the
individual compartments. Since the compartments evolve independently in the absence
of coupling, the joint distribution can be factored into a product of Nc distributions,
but this plays no role here.

In the absence of reaction but in the presence of diffusive coupling between com-
partments, the flux of the i th species from k to one of its neighbors k′ is assumed to
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be given by

J kk′
i = Di

h2 nk
i ,

while the reverse flux is

J k′k
i = Di

h2 (n
k′
i + 1).

The transfer of one molecule in the first step involves the change nk
i → nk

i −1, nk′
i →

nk′
i + 1 whereas the reverse flux involves the change nk′

i + 1 → nk′
i , nk

i − 1 → nk
i .

Of course both steps conserve the particle number. Thus the evolution equation for
P(n, t) when diffusion alone is considered is

d

dt
P(n, t) =

Nc∑

k=1

∑

k′∈N (k)

s∑

i=1

⎡

⎣ Di

h2 (n
k′
i + 1)P(n1, . . . , nk − ei , . . . , nk′ + ei . . . , nNc , t)

− Di

h2 nk
i P(nk , t)

⎤

⎦

where N (k) is the set of all neighbors of k in Gc and ei = (0, 0, . . . , 1, . . . , 0)T has a
1 in the i th position and zeroes elsewhere. To obtain the full equation we simply add
the reaction and diffusion contributions; thus

d

dt
P(n, t) =

Nc∑

k=1

⎧
⎨

⎩
∑

k′∈N (k)

s∑

i=1

⎡

⎣ Di

h2 (n
k′
i + 1)P(n1, . . . , nk − ei , . . . , nk′ + ei . . . , nNc , t)

− Di

h2 nk
i P(nk , t)

⎤

⎦ +
∑

�

R�(n
k − νE(�)) · P(n1, . . . , nk − νE(�), . . . , nNc , t)

−
∑

�

R�(n
k) · P(nk , t)

⎫
⎬

⎭ . (3)

The formulation at (3) is based on the assumption that the domain is decomposed
into equal-size compartments defined by a Cartesian grid. However this is not nec-
essary, and a general formulation based on the compartment graph that allows for
unequal volumes goes as follows. A first step is to generalize the foregoing to arbi-
trary topologies, albeit with equal-size compartments. This can be done using the
Laplacian and the adjacency matrix A, which is defined via Δ = −d(Δ)+ A, where
d(Δ) is the diagonal matrix whose kth entry is the degree of the kth node. In the second
step one incorporates unequal volumes of compartments and differences in the area
for transfer between compartments. The latter is equivalent to allowing the diffusion
coefficients to depend on the pair of compartments involved in the exchange. Finally,
one has to scale the reaction rates differently in different compartments to account for
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the fact that the volumes of the compartments are not equal. We leave the details to
the interested reader.

1.4 Overview of the paper

If the compartment size used to develop the master equation (3) arises as a basic unit in
the system, for example, a biological cell size, then no further analysis is needed, and
a stochastic simulation based on (3) using the Gillespie’s algorithm (Gillespie 1976)
or one of its many modifications (Dobrzyński et al. 2007) is appropriate. However, if
the system is described initially as a continuum and a reaction–diffusion equation of
the form

∂u(x, t)

∂t
= DΔu(x, t)+ R

(
u(x, t)

)
(4)

is used, then the conversion to the master equation (3) requires a choice of compart-
ment size. A numerical algorithm for the solution of the deterministic equation (4)
would involve a discretization of space, and finer discretizations would produce more
accurate solutions under suitable conditions. However this assumes that the solution
is continuous in x, but this is clearly not true when there are few molecules of any
species present. One expects that for a fixed total number of molecules in a system,
smaller compartments will produce larger variation in the number of molecules within
a compartment, and the following example makes this precise.

Consider a closed system containing N molecules distributed in Nc compartments
that are connected by diffusion. The steady-state distribution is spatially uniform, and
it is known that it is multinomial (Gadgil et al. 2005) with mean and variance given
by

Mi = N

Nc
σ 2

i = Mi

(
1 − 1

Nc

)
= N

Nc

(
1 − 1

Nc

)
.

Therefore, if we adopt the coefficient of variation, CV = σi/Mi as a suitable measure
of the noise, then one has

CV =
√

Nc − 1

N
, (5)

which is zero for Nc = 1 and which grows as
√

Nc for large Nc. Thus choosing
a very small compartment size leads to large fluctuations, as measured by the CV,
in the amounts in various compartments. When reactions also occur the interaction
between reaction and diffusion must be taken into account, and this will be done in
later sections. Here we introduce some of the limitations of a compartmental analysis
and then discuss previous work aimed at determining a suitable compartment size.

One problem that presents difficulties, both for a continuum description such as
(4), as well as for the master equation approach, arises when one or more reactions
are diffusion-limited. This applies only for bimolecular and higher-order reactions,
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and refers to reactions of the type A + A → P or A + B → P in which the
reaction occurs instantaneously when the reactants are in sufficiently close proxim-
ity. Thus formation of homo- and heterodimers, polymerization reactions, ligand–
receptor interactions, and enzyme-catalyzed reactions are all potentially diffusion-
limited. In this context neither (4) nor the conventional framework of a compart-
mentalized system can be used directly, and both require some modifications. The
classical work of Smoluchowski (1917) dealt with coagulation reactions, but since
then it has been extended by many others (for a review see Bamford et al. 1985).
Suppose that the molecules are assigned a radius rA and rB , respectively, and assume
that the molecules react at a rate k0 when the distance between their centers is rA +rB .
In a coordinate frame in which B is fixed, the concentration of A satisfies

∂c

∂t
= D

r2

∂

∂r

(
r2 ∂c

∂r

)
for r ∈ (rA + rB,∞)

4πr2 D
∂c

∂r
= k0c at r = rA + rB

lim
r→∞ c(r) = c0.

In the strictly diffusion-limited case k0 is infinite, and one finds that as t → ∞, the
effective reaction rate ke reduces to

ke = 4π(DA + DB)(rA + rB) = 4πDR

where D = DA + DB and R = rA + rB (Bamford et al. 1985). The units of ke appear
formally to be volume/time, but this is the rate per molecule of B, and therefore the
units of ke are

(
molecules of B

volume
time

)−1

as is necessary for a bimolecular rate constant. An associated time scale for a diffu-
sion-limited reaction can be defined as

τdl = (ke · c∗)−1 (6)

where c∗ is a characteristic concentration of B in molecules/unit volume.
An estimate obtained via a stochastic analysis begins with the problem of comput-

ing the mean first passage time for a random walker searching for a specified target.
Suppose that the walker is confined to a spherical shell of inner radius r0 and outer
radius r1, that it cannot escape through the outer boundary and is annihilated upon
hitting the inner boundary. The mean first passage time τ(r) for annihilation beginning
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on a spherical surface of radius r ∈ (r0, r1) is given by the solution of

D

r2

d

dr

(
r2 dτ

dr

)
= −1

τ(r0) = 0 (7)

τ ′(r1) = 0.

One finds that the solution is

τ(r) = 1

6D

(
r2

0 − r2 + 2r3
1

(
1

r0
− 1

r

))

and the average of this over the spherical shell is

τ(r) = r2
1

2D(1 − ξ3)

[
−2ξ5

15
+ 2ξ2

3
+ 2

3ξ
− 6

5

]

where ξ ≡ r0/r1. If this ratio is sufficiently small, then to leading order

τ(r) = r2
1

3D

r1

r0
= Vs

4πDr0

where Vs is, to lowest order, the volume of the spherical domain. By identifying r0
with rA +rB one sees that the continuum and stochastic approaches agree to within the
choice of a reference concentration in (6). When there are N non-interacting walkers
in the shell, the spatially averaged mean first passage time for the first annihilation
remains unchanged. A proof of this is given in Appendix A.

To estimate the magnitude of ke and hence the time scale in a typical solvent, we
use the Stokes–Einstein relation

D = kB T

6πμr ′

to estimate the diffusion coefficient, where kB is Boltzmann’s constant, T is the abso-
lute temperature, μ is the solvent viscosity, and r ′ is the hydrodynamic radius of
the molecule. Assuming a solvent viscosity μ = 9 poise, one finds that kB T/μ =
4.5 · 10−12 cm3/s, and if one assumes both molecules have the same encounter radius
and a hydrodynamic radius equal to that radius, then

ke = 8

3

kB T

μ
= 1.2 · 10−11 cm3/s

or in molar units

ke = 7.2 · 109 M−1 s−1.
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Table 1 On- and off-rates for second-order reactions

Receptor Ligand k f kr Reference
(M−1 s−1) (s−1)

Insulin Insulin 1.6 × 105 3.3 × 10−3 Lauffenburger and Linderman (1993)

EGF EGF 3 × 106 2 × 10−3 Lauffenburger and Linderman (1993)

Fibronectin Fibronectin 1.17 × 104 1 × 10−2 Lauffenburger and Linderman (1993)

Surface bound BMP 1.67 × 107 3.33 × 10−2 Umulis et al. (2006)
protein

Type I/II BMP BMP 4 × 105 6.67 × 10−2 Umulis et al. (2006)
receptor

Vkg Dpp 3.92 × 103 2.90 × 10−3 Wang et al. (2008)

Dcg1 Dpp 3.20 × 103 2.07 × 10−3 Wang et al. (2008)

Human BMP4 2.75 × 104 2.50 × 10−3 Wang et al. (2008)
Collagen IV

Cv-2 BMP 1.67 × 106 3.33 × 10−3 Serpe et al. (2008)

Receptor BMP 4.0 × 105 4.0 × 10−4 Serpe et al. (2008)

Receptor BMP bound Cv-2 3.3 × 107 3.3 × 10−2 Serpe et al. (2008)

Cv-2 BMP bound 3.3 × 105 3.3 × 10−2 Serpe et al. (2008)
receptor

Based on this estimate, there appear to be few biochemical reactions that are severely
diffusion-limited in vitro, since most of the available second-order rate constants lie
in the range of 104–107 (M s)−1 (cf. Table 1). It may be that in vivo measurements
will show more diffusion influence on reaction rates.

When reactions are strictly diffusion-limited, rather than just diffusion-influenced,
a precise description involves tracking individual particles as they diffuse in space, and
algorithms for this have been developed (Andrews and Bray 2004; Dobrzyński et al.
2007). If one describes the motion of the Brownian particles A and B with stochastic
differential equations, then in certain regimes the positions evolve according to

dxi = √
2Di dWi i = A, B,

where Wi are independent standard Wiener processes. This is a more fundamental
approach that also indicates a shortcoming in the analysis discussed earlier, because
that analysis assumes that the motion of the two particles is perfectly correlated, which
is not true if each executes an independent Brownian motion.

Several different attempts to correctly treat diffusion-limited reactions via a com-
partment-based master equation have been made. Fange et al. (2010) first derive a
discretized description using spherical shells around a single particle, and then lift this
description to a compartmental model using modified diffusion kinetic coefficients
that reflect the discretization. However, in deriving the modified rates the authors use a
model in which the diffusing particle is confined to a spherical shell around the reaction
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site, and thus implicitly assume that the particles will react with probability one. In 3D
this is not strictly true, and in general it is an approximation that may be difficult to
justify. Others have addressed the relationship between the continuum description (4)
and the master equation for a diffusion-limited reaction (Isaacson 2009). It is shown
that one cannot expect that the limit of the master equation is (4), since bimolecular
reactions disappear in this limit. In Isaacson and Isaacson (2009) a pseudo-potential to
capture the singular behavior is used, while the reaction rates in a compartmentalized
model are modified so that the encounter probability of the molecules does not depend
on the compartment size (Erban and Chapman 2009). A more fundamental approach
is to derive the evolution equation for the pair distribution function, as was done in
a continuum description (Sung et al. 1997), but the discretization problem was not
addressed there.

Numerous authors have addressed the issue of how to choose a suitable compart-
ment size h when reactions are not diffusion-limited. Most criteria are based on the
premise that the compartment size should be small enough that all mobile species in a
compartment can traverse the compartment on the time scale of the fastest reaction in a
compartment, since only then a compartment can be considered spatially uniform. For
bimolecular reactions this implies that all pairs of reactants have equal probability of
reacting. Thus most criteria hinge on the relation between the diffusion time scale for
a chosen compartment size and a characteristic reaction time. As noted earlier, reac-
tion rates scale as V p ∼ h pd where p = 1, 0,−1, for zero-, first- and second-order
reactions, respectively, V is the compartment volume, and d is the space dimension.
Thus a characteristic reaction time scales with the compartment size as follows.

τr ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c∗
k0hd : zero-order

1
k1

: first-order

hd

k2c∗ : second-order

Here k j is a concentration-based reference kinetic coefficient, usually the deterministic
value, and c∗ is a reference concentration.

A characteristic diffusion time scale is given by τd = h2/mini Di and thus the
following conditions on h

h2+d <
mini Di

k0(c∗)−1 : zero-order

h2 <
mini Di

k1
: first-order

h2−d <
mini Di

k2c∗ : second-order

will ensure that τd ≤ τr . Since no molecular interaction are involved in zero- and
first-order reactions, one might conclude that the first two estimates are irrelevant.
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However, they arise naturally in the criterion for convergence to spatial uniformity
derived later, and they indicate the crossover in h from a regime in which diffusion
is fast compared to reaction to one in which the reverse holds. Understanding these
regimes plays a role in stochastic simulations using Gillespie’s method, because if
the compartment is too small the diffusion steps dominate the computations. A more
detailed analysis using the known solutions for the mean and variance in systems of
first-order reactions (Gadgil et al. 2005) will lead to a more precise characterization
of this.

Stundzia and Lumsden (1996) describe diffusion as a jump process, but rather than
using a constant jump rate, they use the inverse of the mean first passage time from
a compartment to its neighbors. Baras and Mansour (1996) suggest that the compart-
ment size should be smaller than a two-particle correlation length, but larger than a
mean free path λ, defined as the average distance traveled by a particle between two
reactive collisions. Since the correlation length is smaller than the mean free path in
dilute solutions, they assert that the compartment size should be chosen with the order
of mean free path i.e.,

h ≈ O(λ).

Since this only applies for gases we do not consider it further here. Bernstein (2005)
applies Gillespie’s algorithm to simulate diffusion with spatially-inhomogeneous coef-
ficients in non-uniform Cartesian grids using a finite volume approximation with either
Neumann or Dirichlet boundary conditions. To apply Gillespie’s algorithm to reac-
tion–diffusion networks the slowest diffusion time should be much less than the fastest
reaction time, i.e., τd � τr .

Isaacson and Peskin (2007) suggest a lower and upper bound for the compartment
size based on three facts: the compartment size should be much larger than the mean
free path λ so that the system can be considered in local equilibrium in each compart-
ment due to nonreactive collisions; the compartment size should be much smaller than
the length scale of the system size Lx ; and the time scale for diffusion through each
compartment should be faster than the time scale for the fastest bimolecular reaction.
This leads to the condition

max
(
λ,

k

D

)
� h � Lx (8)

but as we noted earlier, a reference concentration is needed to properly define a reaction
time scale for bimolecular reactions.

Erban and Chapman (2009) suggest simulation algorithms for reaction–diffusion
processes in which diffusion is treated as a jump process. They give a simple example
of a bimolecular reaction for which the stationary distributions are explicitly known,
and point out the limitations of current SSAs by comparing the stationary distribu-
tions. Using a modified algorithm, they show that if the compartment size is larger
than a critical value, the multi-compartment model can reproduce the known station-

ary distribution correctly. The reactions considered are ∅ → A and A + B
k→ B with

diffusing species, A and B, and k is the deterministic reaction rate of the bimolecular
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Table 2 Previous criteria for
the compartment size

Reference Criteria

Bernstein τd ≈ h2

2d D
� τr

Isaacson and Peskin max
(
λ,

k

D

)
� h � Lx

Erban and Chapman
k

4(DA + DB )
≤ h

reaction. Then the lower bound on the compartment size is

h ≥ hcrit

hcri t ≈ k

4(DA + DB)
.

All of these estimates implicitly assume that all reacting species also diffuse, but
this is rarely the case in biological problems, since diffusible species may bind to
receptors or other essentially immobile proteins. In addition, none of the criteria deal
with the possibility of reactions on the boundary of the domain. In later sections we
develop a criterion based on the full chemical network for a reacting system in which
some species may be immobilized in the interior of the domain, and we compare the
criteria in Table 2.

Another aspect inadequately addressed in previously-cited work is the effect of
compartment size on the magnitude of the stochastic fluctuations, as measured by the
coefficient of variation of solutions. As suggested by the example of diffusion alone,
the noise can be expected to grow as the compartment size decreases, and this raises
the question of how to choose h so as to ensure that the discretized system is accurate,
and yet minimizes some measure of the noise. In the following section we analyze
linear reaction networks to address this issue, and show that a certain scaling of the
coefficient of variation stabilizes as h decreases, which leads to an optimal choice of
h (in the sense that it is taken as large as possible). In Sect. 3 we develop a general
criterion for the choice of compartment size that applies to all orders of reactions and
both diffusing and non-diffusing species.

2 Linear stochastic reaction–diffusion networks

2.1 Measures of the fluctuations in a compartmental system

We consider a first-order chemical reaction–diffusion network, and from previous
work we know that the reactions fall into one of four classes: production from
a source, degradation, conversion, and catalytic production from a source (Gadgil et al.
2005). Production from a source is an input reaction of the form ∅ → Mi ; degradation
is a reaction Mi → ∅; conversion is a reaction M j → Mi ; and catalytic production

from a source is a reaction ∅

M j→ Mi . We assume that degradation, conversion, and
catalyzed production from a source occur at all spatial positions, but production from
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a source may be spatially nonuniform. Suppose that the domain � is a rectangular
parallelepiped with dimensions Lx × L y × Lz of volume V = Lx L y Lz . We divide�
into Nc = Nx Ny Nz compartments, each of which has volume V/Nc. Define the index
k = (k1, k2, k3) to denote a compartment, where k1, k2, k3 = 1, . . . , Nx , Ny, Nz ,
respectively, and set η = (k, i) where i = 1, . . . , s denotes the species. Let N k

i (t) ≡
Nη(t) be a random variable that represents the number of molecules of species Mi in
the kth compartment at time t , and let N k denote the vector of N k

i s. Several different
measures of the noise will be introduced later to understand the dependence of noise
on the discretization, all of which involve the means and variances of the components
in the network, and thus we first analyze the evolution of these quantities.

The mean M(t) is an s Nc-dimensional vector of first moments with elements
defined by

[
M(t)

]
i(η) = E[Nη(t)], (9)

where the index function i, which is defined as i(η) = i + (
(k1 − 1)Ny Nz + (k2 −

1)Nz + (k3 − 1)
)
s, labels the components. Define ζ = (q, j) as the index for the

j th species in the qth compartment. Then the matrix of second moments V (t) is an
s Nc × s Nc matrix with elements

[
V (t)

]
i(η),i(ζ ) = E[Nη(t)N ζ (t)] − E[Nη(t)]δ{η=ζ }.

The covariance matrix, Cov(t), is defined as

[
Cov(t)

]
i(η),i(ζ ) = E[Nη(t)N ζ (t)] − E[Nη(t)]E[N ζ (t)],

and therefore can be expressed in terms of M(t) and V (t) as

Cov(t) = V (t)− M(t)M(t)T + Md(t),

where Md(t) = diag
[
M(t)

]
is a diagonal matrix whose entries are those of M(t).

As in Gadgil et al. (2005), let K be the s × s reaction matrix for conversion or
degradation of species within a compartment, let D be the s × s diagonal diffusion
matrix, let K cat be the s × s matrix wherein the (i, j)th element is the catalytic pro-
duction rate from a source of the i th species catalyzed by the j th species, and let K S

be the s Nc × s Nc diagonal matrix with the i(η)th diagonal element representing an
input of the i th species from a source into the kth compartment.2 Further, letΔ be the
discrete Laplacian for the domain � with Neumann boundary conditions; Δ encodes
the topology of the network, and more general topologies can be treated similarly
(Othmer 1971). Finally, we let u and INc be a vector of length s Nc, all of whose
entries are 1, and the unit matrix of dimension Nc × Nc, respectively. We let ks be the

2 This formulation can be generalized to allow catalyzed production from a source to be space-dependent
as well, but we do not include this here.
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vector whose components are the diagonal elements of K S , and we define the rank
one square matrix S = [ks |ks | · · · |ks] whose columns are ks .

These definitions lead to a reaction–diffusion matrix defined as Ω ≡ Δ ⊗ D +
INc ⊗ K (Gadgil et al. 2005), and we assume throughout that Ω is semi-simple, that
the kinetic system is stable, and that the spectrum σ(Ω) lies in the closed left-half
plane, denoted L H P . A spectral representation of Ω is given in Appendix B. We
consider two cases defined by whether Ω has a zero eigenvalue or not (multiple zero
eigenvalues can be treated similarly). The presence or absence of a zero eigenvalue is
determined solely by the kinetic matrix, and thus we exclude Turing-type instabilities
that arise from the interaction of reaction and diffusion. If Gc is strongly connected, as
in the case treated here, the Laplacian has exactly one zero eigenvalue for Neumann
boundary conditions, and σ(Ω) ⊂ L H P if the system is either closed with degrada-
tion or open with production from a source and degradation. In the absence of inputs
the mean and variance decay to zero as t → ∞, which is of no interest, and in the
presence of inputs they are determined by the inputs as t → ∞. On the other hand, if
there is exactly one zero eigenvalue of Ω and no inputs, the steady-state probability
distribution is determined by the eigenvector corresponding to the zero eigenvalue
(Gadgil et al. 2005). Other cases may arise, but are not treated here.

The first and second moments M(t) and V (t) are solutions of the ordinary differ-
ential equations

d M(t)

dt
= ΩM(t)+ ks

(10)
d V (t)

dt
= ΩV (t)+ [

ΩV (t)
]T + C(t)+ C(t)T

where C(t) = W (t)+ ks M(t)T (Gadgil et al. 2005). Here W (t) is a block-diagonal
matrix with elements defined as

[W (t)]i(η),i(ζ ) =
{

K cat
i j [M(t)]i(ζ ) if k = q

0 otherwise.

Define indices l,m, and n which run over compartments, let μ, χ , and γ be indices
that label species, and define the indices l = (l, μ),m = (m, χ), and n = (n, γ ). The
eigenvalues of Ω = Δ ⊗ D + INc ⊗ K can be computed once those of Δ, denoted
by αl , are known (Othmer 1971). They are eigenvalues of the matrix pencil K + αlD
and thus are the solutions of

∣∣K + αlD − λl Is
∣∣ = 0.

The corresponding eigenvectors ofΩ are the tensor product of eigenvectors ofΔ and
those of K + αlD. Let φl and φ∗

l be the eigenvector and adjoint eigenvector of Δ
for the eigenvalue αl , and let ϕl and ϕ∗

l be the corresponding eigenvector and adjoint
eigenvector of K +αlD for λl. Then φl ⊗ ϕl is the eigenvector ofΩ corresponding to
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the eigenvalue λl, and the projection Pl associated with λl is defined as

Pl =
(
φl ∗ φ∗

l

)
⊗
(
ϕl ∗ ϕ∗

l

)
,

where φ∗
l and ϕ∗

l are complex conjugates of φ∗
l and ϕ∗

l , respectively. Here ∗ is the dyad
product defined operationally as (u ∗ v)w = 〈v,w〉u. Given these, we can compute
the solution for the first two moments in terms of λl and Pl in the semi-simple case.

Later we focus primarily on the steady-state level of fluctuations, and therefore we
define

M∞ ≡ lim
t→∞ M(t) and V∞ ≡ lim

t→∞ V (t).

First, consider the case in which σ(Ω) ⊂ L H P; then one finds that

M∞ = −
∑

l

Pl

λl
ks,

V∞ =
∑

m

∑

l

[
1

λl(λl + λm)
Pm K S(PlS)

T + 1

λm(λl + λm)
PmSK S PT

l

+
∑

n

Pm

{
diag[Pn S](K cat )T + K cat diag[Pn S]

}
PT

l

λn(λl + λm)

]
, (11)

where the sums range over the eigenvalues of K + αlD.
To assess the fluctuations in the network we can use one of several forms of a coef-

ficient of variation, defined as the standard deviation divided by the mean. The first
measure results from defining the noise component- and compartment-wise, which
may be appropriate when assessing the effect of fluctuations in a morphogen used
to define the boundary between two tissue types. In this case one computes the stan-
dard deviation of the number of molecules for the i th species in the kth compartment
divided by its mean, viz.,

(CV (t))η ≡
√

E[Nη(t)2] − E[Nη(t)]2

E[Nη(t)] (12)

where η = (k, i). This reflects the fluctuations of each species in each compartment,
and thereby leads to a total of s Nc measures, but for our purpose a single global
measure that averages over all species and compartments is more appropriate. There
are many ways to do this—one could for instance use the average of the component
measures in (12) or the maximum of these. However, we use a measure based on a
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normalized covariance matrix (Tomioka et al. 2004), which is defined as

[
�0(t)

]
i(η),i(ζ ) = E[Nη(t)N ζ (t)] − E[Nη(t)]E[N ζ (t)]

E[Nη(t)]E[N ζ (t)]

≡ (Md(t)
−1Cov(t)Md(t)

−1)i(η),i(ζ ).

We then define a generalized coefficient of variation as the square root of the maximum
eigenvalue of �0(t), and denote it

CV ∗(t) ≡ √
λmax (�0(t)). (13)

Since the covariance matrix is symmetric and at least positive semi-definite, this is
well-defined.

We define other steady-state variables as

Cov∞ ≡ lim
t→∞ Cov(t) Md,∞ ≡ lim

t→∞ Md(t)
(
CV∞

)η ≡ lim
t→∞

(
CV (t)

)η

�0,∞ ≡ lim
t→∞�0(t)

and then the steady-state CV ∗ is given by

CV ∗ =
√
λmax

(
�0,∞

) =
√
λmax

(
Md,∞−1

(
V∞ − M∞MT∞ + Md,∞

)
Md,∞−1

)
.

In the following proposition, we express CV ∗ in terms of M∞ alone when the eigen-
values of Ω are in the L H P and there are no catalyzed inputs to the system. When
there is exactly one zero eigenvalue of Ω and no inputs, we express CV ∗ in terms of
Md,∞,Md(0), and Ps,where Ps is the projection corresponding to the zero eigenvalue.

Proposition 1 Suppose that the eigenvalues of Ω are in the L H P; then

1. If there are no non-catalyzed inputs (K S = 0), then Md,∞ = Cov∞ = 0
2. If K S �= 0 then

Cov∞ = Md,∞ +
∑

l,m,n

Pm

{
diag[Pn S](K cat )T + K cat diag[Pn S]

}
PT

l

λn(λl + λm)

and

�0,∞ = M−1
d,∞ + M−1

d,∞

⎧
⎨

⎩
∑

l,m,n

Pm

{
diag[Pn S](K cat )T + K cat diag[Pn S]

}
PT

l

λn(λl + λm)

⎫
⎬

⎭ M−1
d,∞.

If K cat = 0, the second term vanishes and

CV ∗ =
√

1

minη

[
M∞

]
i(η)

. (14)
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3. Suppose that σ(Ω) ⊂ L H P and there is exactly one zero eigenvalue of Ω and
no inputs; then

Cov∞ = Md,∞ − Ps Md(0)P
T
s

where Ps is the projection corresponding to the zero eigenvalue and

�0,∞ = M−1
d,∞ − M−1

d,∞ Ps Md(0)P
T
s M−1

d,∞. (15)

Proof The proof is given in Appendix C. ��
It is clear from the foregoing that CV ∗ is an increasing function of the number of

compartments in the system, since the mean number of molecules of each species in
each compartment decreases. However, as the following example illustrates, and as
will be proven later, a scaled version of CV ∗ stabilizes as the compartment number
increases. Define Vc = V/Nc and the scaled variables

M∞ ≡ M∞
Vc

, CV
∗ ≡ √

VcCV ∗,
(
CV ∞

)η ≡ √
Vc
(
CV ∞

)η
, (16)

where η = (k, i) and (X)(k,i) represents the component of X corresponding to the i th
species in the kth compartment. Equation (14) shows that in the absence of catalyzed
inputs, the least abundant species, evaluated over all compartments, determines CV ∗,
and one sees that convergence of M∞ implies convergence of CV

∗
as Nc → ∞.

Convergence of the former as Nc → ∞ is shown in Theorem 1 below.
Denote by K′ the reaction matrix for conversion or degradation of species in a com-

partment for systems with non-catalytic production of diffusing species, and rearrange
the species order so that K′ can be partitioned into block matrices as

K′ =
[

R S
T W

]
.

Here R (W) is the reaction matrix for conversion between diffusing (non-diffusing)
species or degradation of diffusing (non-diffusing) species, and S (T ) is the reaction
matrix for conversion of non-diffusing (diffusing) species to diffusing (non-diffusing)
species. We denote by X (t) and Y (t) the mean vectors for diffusing and non-diffus-
ing species numbers, with each element defined as in (9), and write the governing
equations for these means as follows:

d X (t)

dt
= (

Δ⊗ D + INc ⊗ R
)

X (t)+ (
INc ⊗ S

)
Y (t)+ ks,

dY (t)

dt
= (

INc ⊗ T
)

X (t)+ (
INc ⊗ W

)
Y (t).

(17)

Let X∞ and Y∞ be the steady-state solutions of (17). Assuming that σ(W) ⊂ L H P ,
the steady-state mean vector for non-diffusing species can be expressed in terms of
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X∞, where X∞ is the solution of

(
Δ⊗ D + INc ⊗ K

)
X∞ + ks = 0, (18)

where K ≡ R − SW−1T . To show convergence of X∞/(NAVc) to the solution of
the continuum deterministic reaction–diffusion system, we consider a 1-dimensional
domain [0, Lx ] for simplicity, and we let α̃l be the solution of the following scalar
problem:

d2q̃(x)
dx2 = α̃q̃(x), x ∈ [0, Lx ],

(19)
q̃ ′(x) = 0, x = 0, Lx .

Theorem 1 Let D̃ be the diffusion matrix for the continuum problem, and suppose
that

σ(Ω), σ (W), σ (K + αlD), σ
(
K + α̃lD̃

)
⊂ L H P,

and that K + αlD and K + α̃lD̃ are semi-simple. Assume that K cat = 0 and assume
that only diffusing species are produced from a source and production occurs only in
the left-most compartment. Then,

• [
M∞

]
i(η) converges to the steady-state solution of the corresponding continuum

deterministic reaction–diffusion system as Nc → ∞,

• CV
∗

converges to the limit of
√

1
minη

[
M∞

]
i(η)

as Nc → ∞.

Proof The proof is given in Appendix D. ��
For systems with no inputs, it follows from (15) that if we show that each element

of Vc

(
M−1

d,∞ Ps Md(0)PT
s M−1

d,∞
)

converges to zero as Nc → ∞, convergence of M∞
will imply convergence of CV

∗
as Nc → ∞, as stated in the following theorem, again

under the assumption of a one-dimensional domain.

Theorem 2 Suppose that there are no inputs, that σ(Ω) ⊂ L H P, and there is exactly
one zero eigenvalue of Ω . Then,

• [
M∞

]
i(η) converges to the steady-state solution of the corresponding continuum

deterministic reaction–diffusion system as Nc → ∞,

• CV
∗

converges to the limit of
√

1
minη

[
M∞

]
i(η)

as Nc → ∞.

Proof The proof is given in Appendix E. ��
In essence these results show that the concentration-based CV for the discretized
problem stabilizes.
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2.2 Example

The example in this section is motivated by the classical French flag paradigm of
pattern formation in a one-dimensional system discussed earlier. In that context, a
morphogen is produced at one end of a 1D domain, diffuses into the domain, and
binds to receptors and is perhaps degraded by a first-order process (Wolpert 1969).
The problem is to reliably partition the domain into 3 equal-size sub-domains (cor-
responding to blue, white and red, beginning at the staff) by setting thresholds that
determine the extent of each domain. A system that exemplifies this arises in anterior-
posterior pattern formation in the fruit fly Drosophila melanogaster. The Drosophila
embryo is approximately ellipsoidal, and is surrounded by a thin fluid layer, called
the perivitelline (PV) space, bounded by the outer membrane. The coordinate frame
of the embryo is first established by gradients of inherited maternal factors in the
anterior-posterior (AP) direction and by gradients of factors in the PV space in the
dorsal-ventral direction. The first level of AP patterning is mediated by the morphogen
Bicoid, which is a transcription factor that is transcribed from maternally-inherited
mRNA localized at the anterior end of the embryo. Because production is localized at
the anterior end, the concentration of the Bicoid protein forms a monotone distribution
with the high point at the anterior end.

We consider a rectangular solid continuum whose major axis lies along the x axis,
and we let Lx = 275 µm, L y = 5 µm, and Lz = 0.5 µm represent the lengths of
each side of the system, motivated by a slice of the PV space in Drosophila (Umulis
et al. 2008). Since Lx � L y, Lz , we set Ny = Nz = 1, and determine the appropriate
discretization defined by Nx = Nc in the x-direction. We suppose that there is one
diffusing species, A, and two non-diffusing species, B and C , which represent ligand,
receptor with ligand bound, and downstream signal, respectively. Assuming that the
number of receptors is large, as it is in many biological systems, receptor–ligand bind-
ing is described as a first order reaction. The complete set of reactions is as follows.

Ak
κ5 R−⇀↽−
κ−5

Bk, for all k, (20)

Ak κ6−→ ∅, for all k,

Bk κ7−→ Ck, for all k,

∅
κ8−→ A1, (21)

Ck κ9−→ ∅, for all k,

Ak
κd−⇀↽−
κd

Ak+1, for k = 1, . . . , Nc − 1

Here superscript k denotes the species in the kth compartment.
All reactions are either production from a source, degradation, or conversion, in

the terminology of Gadgil et al. (2005); there is no catalytic production from a source.
The reaction (20) simply describes a linearized ligand-binding to receptors. The reac-
tion (21) describes production of species A from a source located at the leftmost
compartment, and thus A has an input only to the first compartment. The coefficients
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Table 3 Deterministic and stochastic parameters in Example 2.2

Deterministic Stochastic

k5 1 nM−1 min−1 κ5 k5/(NAVc) ≈ 2.42 × 10−3 Nc min−1

k−5 2 min−1 κ−5 2 min−1

k6 1 min−1 κ6 1 min−1

k7 0.03 min−1 κ7 0.03 min−1

k8 250 nM µm min−1 κ8 k8(NAV)/Lx ≈ 376.38 min−1

k9 0.03 min−1 κ9 0.03 min−1

cR 320 nM R cR(NAVc) ≈ 132484/Nc

D 4380 µm2 min−1 κd D/(Lx/Nc)
2 ≈ 5.79 × 10−2 N 2

c min−1

Lx 275 µm

L y 5 µm

Lz 0.5 µm

V 687.5 µm3

κm , for m = 5, 6, 7, 8, 9, are stochastic reaction rate constants and κd is the diffusion
rate constant for species A. These are derived from the corresponding deterministic
rate constants estimated in Umulis et al. (2006), and both the deterministic and the
stochastic parameters are given in Table 3.

In the kinetic scheme κ5 is a stochastic rate constant for ligand–receptor binding,
and thus depends on the volume, but since we assume that the receptor density is large
compared to the signal, the product of the binding constant and the receptor density
is a pseudo-first-order rate constant, and hence independent of the volume. All other
reactions except for production of species A are first order, and the deterministic and
stochastic rate constants are independent of the volume and hence Nc. To standardize
the input as we change Nc, we must hold the total flux of A constant. An estimate of
an input on a volumetric basis given in Umulis et al. (2006) is converted to a flux per
unit area by multiplying by the length of the longest edge, Lx = 275 µm; this yields
k8. The corresponding stochastic rate, κ8, is given as follows:

κ8 = k8(NAV)
Lx

.

Therefore, κ8 does not depend on Nc.
The stochastic diffusion rate constant κd is computed by dividing the continuum

deterministic diffusion rate constant by (Lx/Nc)
2, via discretization of the Laplacian,

and thus scales as N 2
c .

Let X (t) be the first moment vector for the diffusing species A and Y (t) be the
first moment vector for the non-diffusing species B and C . [X (t)]i(k,1) denotes the
mean number of molecules of species A in the kth compartment, and [Y (t)]i(q,1) and
[Y (t)]i(q,2) represent the mean numbers of species B and C in the qth compartment,
respectively. The evolution of the first moments is governed by

d X (t)

dt
= (

Δ⊗ D + INc ⊗ R
)

X (t)+ (
INc ⊗ S

)
Y (t)+ ks (22)
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dY (t)

dt
= (

INc ⊗ T
)

X (t)+ (
INc ⊗ W

)
Y (t). (23)

The diffusion matrix, reaction matrices, and a matrix for production rate from a source
are given as

D = κd , R = −κ5 R − κ6, S = [
κ−5 0

]
, T =

[
κ5 R

0

]
,

W =
[−κ−5 − κ7 0

κ7 −κ9

]
, ks = [κ8, 0, . . . , 0]T .

In this example, the eigenvalues of all principal submatrices of the reaction matrices
R and W are in the L H P .

Let X∞ be the steady-state first moment vector for the number of molecules of spe-
cies A and let Y∞ be the steady-state first moment vector for the numbers of molecules
of species B and C . Using the fact that species B and C do not diffuse, we compute
Y∞ in terms of X∞.

Y∞ = −
(

INc ⊗ (W−1T )
)

X∞.

Then we find that

[Y∞]i(k,1) = κ5 R

κ−5 + κ7
[X∞]i(k,1) (24)

[Y∞]i(k,2) = κ5κ7 R

κ9(κ−5 + κ7)
[X∞]i(k,1) (25)

Converting the steady-state first moment of B into that of A, the effective reaction rate
of species A at steady-state becomes

K ≡ R − SW−1T

= − κ5κ7 R

κ−5 + κ7
− κ6.

Note that K is a scalar since there is exactly one diffusing species, A. Then, X∞
satisfies

(
Δ⊗ D + INc ⊗ K

)
X∞ + ks = 0. (26)

Define X∞ ≡ X∞/Vc. To calculate the steady-state first moment for species A, we
first compute the eigenvalues and corresponding projections of the reaction–diffusion
matrix Ω = Δ⊗ D + INc ⊗ K. As before, let αl denote an eigenvalue of Δ, let λl be
an eigenvalue of Ω , and let Pl be the corresponding projection of Ω . Then according
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Fig. 3 Eigenvalues of Δ and Ω
when Nc = 10, 20, 30, 40
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to (11), the scaled steady-state first moment of A is

X∞ = − 1

Vc

∑

l

Pl

λl
ks . (27)

In Fig. 3 we show the relation between αl and λl for Nc = 10, 20, 30, 40. The range
of αl is fixed at [−4, 0] by the structure of the network and the boundary conditions,
but the range of λl increases as Nc is increased because higher spatial frequencies are
captured with increasing Nc. Since we impose Neumann data on the boundary in the
discrete problem, the smallest eigenvalue in magnitude is λNc,1 ≈ −5.73 correspond-
ing to αNc = 0. The dominant term in (27) corresponds to λNc,1, and is independent

of Nc. Using (24) and (25), we compute maxk
(
CV ∞

)k,i for i = A, B,C in terms of
mink[X∞]i(k,1).

max
k

(
CV ∞

)k,A =
√

1

mink[X∞]i(k,1)
(28)

max
k

(
CV ∞

)k,B =
√
κ−5 + κ7

κ5 R

√
1

mink[X∞]i(k,1)
(29)

max
k

(
CV ∞

)k,C =
√
(κ−5 + κ7)κ9

κ5κ7 R

√
1

mink[X∞]i(k,1)
(30)

Also, we have

CV
∗ =

√√√√
1

min
(

mink [X∞]i(k,1),
κ5 R

κ−5+κ7
mink [X∞]i(k,1),

κ5κ7 R
κ9(κ−5+κ7)

mink[X∞]i(k,1)

) .

In Appendix D we prove that X∞/NA converges to the concentration satisfying the
corresponding continuum model in which the source is located at x = 0. Due to the
source location at x = 0, the steady-state concentration is monotone decreasing in x .
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Fig. 4 The evolution of

ln
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Vc
(
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)Nc,C
)

in time

for Nc = 10, 30, 60, when
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Fig. 5 The CV of species A in the 1-dimensional model

One can show that the same is true in the discrete problem, and the proof is left to the
reader.

Since we later only use the steady-state measure for the noise to determine the
number of compartments, one has to check that the steady-state is reached rapidly. In
Fig. 4 we show the transient evolution of

√
Vc
(
CV (t)

)Nc,C in the last compartment
for Nc = 10, 30, 60. In this example species C serves as the downstream signal, and
as we see in Fig. 4, the noise in the downstream signal stabilizes very quickly, which
indicates that a compartment size based on the steady-state noise level is appropriate
here. Of course it may not always be.

In Figs. 5 and 6, we display the steady state noise for the kinetic scheme in Example
2.2 for the unscaled and scaled CVs as a function of Nc. In Fig. 5, we show (CV∞)k,A
for k = 1, Nc as we vary Nc. The values of (CV∞)k,B and (CV∞)k,C are simply scaled
versions of (CV∞)k,A and are not shown. [X∞]i(k,1) has its maximum and minimum
values in the first and the last compartments, respectively, by virtue of the monoto-
nicity of the profile. Therefore, using Proposition 1, (CV∞)k,i has its maximum and
minimum values in the last and the first compartments, respectively. It is apparent in
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Fig. 6 A comparison of the noise for (a) spatially-nonuniform and (b) spatially-uniform inputs

the figure that as Nc increases, (CV∞)k,i gets larger due to the smaller number of
molecules in each compartment, but (CV ∞)k,i stabilizes due to convergence of X∞
to the corresponding concentration multiplied by NA as Nc → ∞. This indicates that
the contribution of diffusion to this scaled measure is dominated by the kinetic con-
tribution for large enough Nc. This explanation could be made rigorous by analyzing
the asymptotic behavior of the covariance as h → 0, but we will not pursue this here.

In Fig. 6 we illustrate the effect of the source location on the global measures CV ∗
and CV

∗
. In (a) the source for species A is in the first compartment as previously,

while in (b) the input is divided amongst all compartments, scaled so that the total
input is fixed and independent of Nc. In (a) CV

∗
stabilizes at about Nc = 30, while

in (b) CV
∗

is constant in Nc, whereas CV ∗ is monotone increasing in Nc in both
cases. The stabilization of CV

∗
with Nc suggests that the minimum number of com-

partments needed for an accurate representation of the noise is defined by the smallest
Nc at which CV

∗
reaches a chosen percentage of the asymptotic value. As we show

in the following section, this agrees remarkably well with a criterion based on con-
vergence of solutions to a uniform state. Although it is not shown in (a), an increase
of the diffusion constant decreases the value of Nc at which CV

∗
stabilizes, as is to

be expected. The results in (b) suggest that distributing the input is an effective way
of reducing the noise, but of course this cannot be done if A is a morphogen that is
used to determine cell types in a developing tissue. A comparison of

(
CV ∞)Nc,A in

Fig. 5b and CV
∗

in Fig. 6a shows that these two values are equal, since [X∞]i(Nc,1) is
the smallest among all first moments of species A in all compartments, which is what
is used for computing CV

∗
.

In Sect. 1.4 we discussed different criteria to determine the compartment size, and
here we apply Bernstein’s criterion to the foregoing example. Denote Atot , Btot , and
Ctot as the total numbers of molecules of species A, B, and C at steady state, respec-
tively. To compute the reaction timescale we have to compute the propensity of each
reaction, for which we use the steady-state first moments for species A, B, and C , and
this yields Atot = 65.69 and Btot = Ctot = 10356. Since the propensity of conversion
from A to B is the largest, we use this to compute the timescale of the process, τr .
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Thus

τr ≈ 1

320 min−1 × Atot
Nc

= 1

76.44 × hx
min.

The diffusion timescale computed using the diffusion coefficient of species A is

h2
x

2D
= hx µm2

2 × 4380 µm2 min−1 = h2
x

8760
min.

If we demand that the diffusion timescale be much smaller than the reaction timescale,
we obtain

hx �
(

8760

76.44

)1/3

µm

≈ 4.86 µm.

In Sect. 3 we derive an upper bound for the compartment size for general systems, and
as we show in Sect. 4, this leads to an estimate hx < 8.25 µm (which corresponds to
Nc > 33). This result confirms the fact that it is not necessary to discretize in the y or
z-direction, since those dimensions are less than the maximum allowable compartment
size.

3 An upper bound for the compartment size

As was discussed earlier, current criteria for choosing an appropriate cell or compart-
ment size for discretizing a reaction–diffusion system are based on first estimating the
smallest reaction time-scale and then choosing a compartment size to ensure that the
diffusion time scale is less than this. Since this is based on the objective of ensuring
that all molecules within a cell are accessible to each other, an alternate approach is to
ask what conditions guarantee that the solution of the coupled reaction–diffusion sys-
tem converges to spatially-uniform solutions, whether stationary or time-dependent.
This obviously requires that diffusion dominates reaction in an appropriate sense, and
that sense was first developed in Othmer (1977) and Ashkenazi and Othmer (1978).
There it was shown that every species approaches a spatially-uniform solution at an
exponential rate in time when the diffusion constant for each species is sufficiently
large relative to a measure of the sensitivity of the kinetic network. More precisely, if c
is the vector of species concentrations and c̄ is the spatial average of c, then under the
assumption that all species diffuse, the authors prove that ‖c(x, t)−c̄(t)‖L2 → 0 expo-
nentially in t in any bounded domainΩ in 1-, 2-, or 3-dimensional space if |α1δ| > r̂ .
Here δ is the smallest diffusion coefficient, α1 is the largest non-zero eigenvalue of
the Laplacian with homogeneous Neumann conditions on ∂Ω , and r̂ is the maximum
Euclidean norm, taken over an appropriate set, of the Jacobian of the reaction terms.
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That result was generalized in Conway et al. (1978). Here we extend this result to allow
non-diffusing species and reactions at the boundary, as described below, and use the
result to compute a maximal compartment size for a discretized reaction–diffusion
system. We do this in two steps—first we treat homogeneous Neumann boundary data
to analyze the effect of non-diffusing species, and then we summarize the results for
other boundary conditions.

3.1 Homogeneous Neumann conditions

Let Ω ⊂ R3 be a domain with a smooth boundary ∂Ω . Denote generic spatial loca-
tions as x = (x, y, z) and ξ = (ξx , ξy, ξz), where either can lie in the interior of or
on the boundary of Ω . Let u(x, t) ∈ Rm and v(x, t) ∈ Rn denote the concentrations
of diffusing and non-diffusing species, respectively, that react in Ω at time t , and let
w(x, t) ∈ R p denote the concentrations of non-diffusing species that do not affect
the evolution of any species in u and v. We write the governing equations and the
boundary conditions for all species as follows.

∂u(x, t)

∂t
= DΔu(x, t)+ R

(
u(x, t), v(x, t)

)
, x ∈ Ω

∂v(x, t)

∂t
= S

(
u(x, t), v(x, t)

)
, x ∈ Ω

∂w(x, t)

∂t
= T

(
u(x, t), v(x, t), w(x, t)

)
, x ∈ Ω

∂u(x, t)

∂n
= 0, x ∈ ∂Ω

u(x, 0) = u0(x), x ∈ Ω
v(x, 0) = v0(x), x ∈ Ω
w(x, 0) = w0(x), x ∈ Ω

Here differentiation with respect to n is along the outward unit normal vector toΩ , and
D is a diagonal matrix of diffusion coefficients. Note that the non-diffusing species
in w(x, t), which do not affect any species in u or v, can be ignored in the following,
since they do not affect the convergence to a uniform solution of the diffusing species.
Hereafter we exclude the governing equation for w(x, t) from the system equations,
and this leads to the following simplified set of equations that we use for the analysis.3

∂u(x, t)

∂t
= DΔu(x, t)+ R

(
u(x, t), v(x, t)

)
, x ∈ Ω

∂v(x, t)

∂t
= S

(
u(x, t), v(x, t)

)
, x ∈ Ω

∂u(x, t)

∂n
= 0, x ∈ ∂Ω (31)

3 In fact, as we show in an example later, inclusion of such species can lead to an inappropriate estimate
of the compartment size, and for this reason we include it in the above.
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u(x, 0) = u0(x), x ∈ Ω
v(x, 0) = v0(x), x ∈ Ω

We assume that R and S are C1 in the non-negative cone of (u, v)-space, and in
general both are nonlinear functions of (u, v).

Define the vector c(x, t) ≡
[
u(x, t)T , v(x, t)T

]T
of all species concentrations and

let c0(x) be the initial distribution. For a given c0(x), define C0 = {c0(x)|x ∈ Ω̄}. In
the following theorem we assume that the concentration c(x, t), which is the image of
c0(x) under the mapping defined by the integral representation given in (43) and (44)
is contained in a closed, bounded, convex set C∞ ⊇ C0, for all t ∈ [0,∞). We define
the spatial average of the concentrations for diffusing species as

ū(t) ≡ 1

|Ω|
∫

Ω

u(x, t) dx,

and we further assume that for each t > 0, there exists a spatially-uniform solution
v̄(t) satisfying

d v̄(t)

dt
= S

(
ū(t), v̄(t)

)
,

v̄(0) = 1

|Ω|
∫

Ω

v0(x) dx.
(32)

Given ū(t), the existence and uniqueness of v̄ is guaranteed by the smoothness assump-
tions, but v̄(t)may not be the spatial average of v(x, t)when S is a nonlinear function
of either u or v.

We define the L2 norm

‖ f (x, t)‖2
L2

≡ 〈 f (x, t), f (x, t)〉L2 ≡
∫

Ω

‖ f (x, t)‖2
E dx

where ‖·‖E is the Euclidean matrix norm, and we define c̄(t) ≡
[
ū(t)T , v̄(t)T

]T
.

Then we say that ‖c(x, t) − c̄(t)‖L2 → 0 if ‖u(x, t) − ū(t)‖L2 → 0 and
‖v(x, t)− v̄(t)‖L2 → 0.

The Jacobians of a function f : Rm × Rn → Rm × Rn with respect to u and v are
denoted

Du f (u, v) ≡ ∂ f (u, v)

∂u
, Dv f (u, v) ≡ ∂ f (u, v)

∂v
.
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We define measures of kinetic sensitivity via the Jacobians of the reaction terms as
follows

r̂u ≡ sup
c∈C∞

‖DuR(c)‖E , r̂v ≡ sup
c∈C∞

‖DvR(c)‖E ,

ŝu ≡ sup
c∈C∞

‖DuS(c)‖E , šv ≡ inf
c∈C∞

|σ (Wc DvS(c))| .
(33)

The matrix Wc is defined in the following.
For a Hermitian operator H , let λm(H) and λM (H) be the smallest and the largest

eigenvalues of H , which are defined as

λM (H) = sup
x

{〈x, H x〉|‖x‖ = 1} and λm(H) = inf
x

{〈x, H x〉|‖x‖ = 1} ,
(34)

respectively, and define ‖H‖ ≡ max{λM (H),−λm(H)}. An operator H is said to
be uniformly positive if λm(H) > 0 (Daleckiĭ and Kreĭn 1974), which we denote as
H � 0. If H � 0, the norm defined as ‖x‖2

H = 〈x, H x〉 satisfies

λm(H)‖x‖2 ≤ ‖x‖2
H ≤ λM (H)‖x‖2 = ‖H‖‖x‖2. (35)

In case all species are diffusible, the proof of the convergence result in Othmer
(1977) does not require that the spectrum of the Jacobian of the kinetics lies in the
L H P; only that a norm of the Jacobian can be dominated by the diffusion terms. How-
ever this fails when there are non-diffusing species, and this raises several technical
difficulties, even when the spectrum of the Jacobian of the kinetics lies in the L H P
pointwise in time. These are overcome in part by use of a time-dependent metric, but
this raises additional difficulties. We assume that for all c ∈ C∞,

σ (DvS(c)) ⊂ L H P, (36)

where σ(A) denotes the spectrum of A. A generalized Lyapunov theorem (Theorem
5.1 in Daleckiĭ and Kreĭn 1974) states that if A is a real bounded linear operator on
a real Hilbert space, and if σ (A) ⊂ L H P , then there exists a uniformly positive
operator WA such that WA A � 0. Thus in view of (36), for each t > 0 there is a
uniformly positive operator Wc such that

Wc DvS(c) � 0. (37)

Since c is time-dependent W is also, and one cannot apply the standard result which
states that for a linear system with a real constant matrix A, the zero solution of

dz

dt
= Az, (38)
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is exponentially stable if and only if the Lyapunov equation

AT W + W A = −Q

has a positive definite solution W for any positive definite matrix Q (Gantmacher
1974). When A is time-dependent the spectral condition no longer suffices, but it is
known that the fundamental solution U (t, s) of the nonautonomous version of (38) is
exponentially stable if and only if the Lyapunov equation

dW

dt
= −(AT (t)W (t)+ W (t)A(t)+ Q)

has a solution for any positive definite matrix Q (Phat and Nam 2007). Here we do
not assume exponential stability, but later we require a bound on the derivative with
respect to time of Wc, and one can see that this is equivalent to requiring that the
Jacobian DvS(c) does not vary too rapidly. We define

λm ≡ inf
c∈C∞

λm(Wc),

λM ≡ sup
c∈C∞

λM (Wc),

w ≡ 1

2
sup

U∈C∞

∥∥∥∥
∂Wc

∂t

∥∥∥∥
E
.

(39)

In the definition of w the supremum is taken over all solutions U = (u(x, t),
v(x, t), v̄(t)) where (u(x, t), v(x, t)) satisfy (31), the third component satisfies (32),
and (x, t) ∈ (Ω, [0,∞)).

The following theorem gives conditions for exponential convergence in time of
c(x, t) to a spatially-uniform solution under homogeneous Neumann boundary con-
ditions. In essence the condition requires that the smallest non-zero diffusion coeffi-
cient should be large enough compared to some function of the kinetic sensitivities,
r̂u, r̂v, ŝu , and šv , and of the constants, λm, λM , andw, defined by the positive operator
Wc.

Theorem 3 ‖c(x, t)− c̄(t)‖L2 → 0 exponentially in t if

(i) σ (DvS(c)) ⊂ L H P for all c ∈ C∞,
(ii) šv > w,

(iii) |α1δ| > r̂u + r̂v ŝu

šv − w
· λ

2
M

λm
,

(40)

where δ = mini Di i and α1 is the largest non-zero eigenvalue of the scalar problem

Δφ(x) = αφ(x), x ∈ Ω,
(41)

∂φ

∂n
= 0, x ∈ ∂Ω.
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Proof Define the Green’s function G(x, ξ , t) as the solution of

∂G(x, ξ , t)

∂t
= DΔG(x, ξ , t), x ∈ Ω,

∂G(x, ξ , t)

∂n
= 0, x ∈ ∂Ω,

G(x, ξ , 0) = δ(x, ξ).

(42)

G is a diagonal matrix and Gii represents the i th diagonal element. Then for x ∈ Ω, u
and v satisfy

u(x, t) =
∫

Ω

G(x, ξ , t)u0(ξ) dξ +
t∫

0

∫

Ω

G(x, ξ , t − τ)R
(
u(ξ , τ ), v(ξ , τ )

)
dξ dτ,

(43)

v(x, t) = v0(x)+
t∫

0

S
(
u(x, τ ), v(x, τ )

)
dτ. (44)

The i th diagonal element of G satisfies

∫

Ω

Gii (x, ξ , t − τ) dξ = 1,

and by defining

G0
i i (x, ξ , t) ≡ Gii (x, ξ , t)− 1

|Ω| , (45)

we have

∫

Ω

G0
i i (x, ξ , t) dξ = 0. (46)

Therefore

u(x, t) =
∫

Ω

(
1

|Ω| + G0(x, ξ , t)

)
u0(ξ) dξ

+
t∫

0

∫

Ω

(
1

|Ω| + G0(x, ξ , t − τ)

)
R
(
u(ξ , τ ), v(ξ , τ )

)
dξ dτ, (47)
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and it follows that

ū(t) = 1

|Ω|
∫

Ω

u0(ξ) dξ + 1

|Ω|
t∫

0

∫

Ω

R
(
u(ξ , τ ), v(ξ , τ )

)
dξ dτ (48)

and

0 =
∫

Ω

G0(x, ξ , t)ū(0) dξ +
t∫

0

∫

Ω

G0(x, ξ , t − τ)R
(
ū(τ ), v̄(τ )

)
dξ dτ. (49)

We define

�(x, t) ≡ u(x, t)− ū(t), Φ(x, t) ≡ v(x, t)− v̄(t),

and then find that

�(x, t) =
∫

Ω

G0(x, ξ , t)�(ξ , 0) dξ +
t∫

0

∫

Ω

G0(x, ξ , t − τ)R(ξ , τ ) dξ dτ (50)

where

R(ξ , τ ) ≡ R
(
u(ξ , τ ), v(ξ , τ )

) − R
(
ū(τ ), v̄(τ )

)
.

Consider the diffusion problem

∂ψ(x, t)

∂t
= Di iΔψ(x, t), x ∈ Ω,

∂ψ(x, t)

∂n
= 0, x ∈ ∂Ω.

(51)

The solution of (51) can be written

ψ(x, t) =
∑

l

alφl(x)eαlDi i t

where the eigenvalues αl are non-positive and the φl(x)’s are the corresponding ortho-
normal eigenfunctions. For those having zero mean over Ω,αl < 0 and ψ(x, t)
satisfies

d

dt
‖ψ‖2

L2
= d

dt
〈ψ,ψ〉L2 = 2

〈
ψ,
∂ψ

∂t

〉

L2

= 2〈ψ, Di iΔψ〉L2 ≤ 2α1 Dii‖ψ‖2
L2
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where α1 is the largest non-zero eigenvalue. It follows that ψ(x, t) satisfies

‖ψ(x, t)‖L2 ≤ e−|α1|Di i t‖ψ(x, 0)‖L2 . (52)

The Green’s function defined at (42) has an eigenfunction expansion in terms of
the φ′s, and from this it follows that the first term in (50) satisfies the inequality

∥∥∥∥∥∥

∫

Ω

G0(x, ξ , t)�(ξ , 0) dξ

∥∥∥∥∥∥
L2

≤ e−|α1|δt‖�(x, 0)‖L2 .

Using this, and the inequality

∥∥R
(
u(ξ , τ ), v(ξ , τ )

) − R
(
ū(τ ), v̄(τ )

)∥∥
L2

≤ r̂u ‖�(x, τ )‖L2 + r̂v ‖Φ(x, τ )‖L2 ,

(53)

it follows from (50) that

e|α1δ|t‖�(x, t)‖L2 ≤ ‖�(x, 0)‖L2 + r̂u

t∫

0

e|α1δ|τ‖�(x, τ )‖L2 dτ

+r̂v

t∫

0

e|α1δ|τ‖Φ(x, τ )‖L2 dτ. (54)

From (32), we have

v̄(t) = v̄(0)+
t∫

0

S
(
ū(τ ), v̄(τ )

)
dτ (55)

and therefore the difference Φ(x, t) = v(x, t)− v̄(t) satisfies

Φ(x, t) = Φ(x, 0)+
t∫

0

{
S
(
u(x, τ ), v(x, τ )

) − S
(
ū(τ ), v̄(τ )

)}
dτ. (56)

Since C∞ is convex, for each x ∈ Ω and τ ∈ [0, t < ∞), there exist c1(x, τ ) and
c2(x, τ ) such that

S
(
u(x, τ ), v(x, τ )

) − S
(
ū(τ ), v̄(τ )

) = DuS
(
c1(x, τ )

)
(u(x, τ )− ū(τ ))

+DvS
(
c2(x, τ )

)
(v(x, τ )− v̄(τ )) .
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As a result, (56) can be rewritten as

Φ(x, t) = Φ(x, 0)+
t∫

0

{
DuS

(
c1(x, τ )

)
�(x, τ )+ DvS

(
c2(x, τ )

)
Φ(x, τ )

}
dτ.

(57)

In view of (36) and (37), for each c ∈ C∞ we can define a weighted Euclidean
norm by Wc as

‖A‖2
E,Wc

≡ 〈A,Wc A〉E .

Since Wc is a uniformly positive operator for each c ∈ C∞, λm > 0 in (39). Using
(35) and (39), for each x ∈ Ω and t ∈ [0,∞), we obtain the upper and lower bounds

λm‖Φ(x, t)‖2
E ≤ ‖Φ(x, t)‖2

E,Wc2(x,t)
≤ λM‖Φ(x, t)‖2

E . (58)

Define a weighted L2 norm as

‖ f (x, t)‖2
L2,W f

≡
∫

Ω

‖ f (x, t)‖2
E,W f (x,t)

dx.

Then,

λm‖Φ(x, t)‖2
L2

≤ ‖Φ(x, t)‖2
L2,Wc2

≤ λM‖Φ(x, t)‖2
L2
, (59)

and differentiating this we obtain

d

dt
‖Φ(x, t)‖2

E,Wc2(x,t)
= 〈
Φ(x, t), Dt Wc2(x,t)Φ(x, t)

〉
E + 〈

Φ(x, t),Wc2(x,t)DtΦ(x, t)
〉
E

+ 〈
DtΦ(x, t),Wc2(x,t)Φ(x, t)

〉
E . (60)

From (57) and (60) it follows that

d

dt
‖Φ(x, t)‖2

E,Wc2(x,t)
= 〈
Φ(x, t), Dt Wc2(x,t)Φ(x, t)

〉
E

+ 〈
Φ(x, t),Wc2(x,t)DuS

(
c1(x, τ )

)
�(x, t)

〉
E

+ 〈
Φ(x, t),Wc2(x,t)DvS

(
c2(x, τ )

)
Φ(x, t)

〉
E

+ 〈
DuS

(
c1(x, τ )

)
�(x, t),Wc2(x,t)Φ(x, t)

〉
E

+ 〈
DvS

(
c2(x, τ )

)
Φ(x, t),Wc2(x,t)Φ(x, t)

〉
E .
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After applying the Cauchy–Schwarz inequality and using the fact that
σ (Wc DvS(c)) ⊂ L H P for all c ∈ C∞, we obtain

d

dt
‖Φ(x, t)‖2

E,Wc2(x,t)
≤ 2w‖Φ(x, t)‖2

E + 2ŝuλM‖Φ(x, t)‖E‖�(x, t)‖E

+
〈
Φ(x, t),

(
Wc2(x,t)DvS

(
c2(x, τ )

) + [
DvS

(
c2(x, τ )

)]T

× Wc2(x,t)
)
Φ(x, t)

〉
E

≤ 2ŝuλM‖Φ(x, t)‖E‖�(x, t)‖E − (
2šv − 2w

) ‖Φ(x, t)‖2
E

(61)

where
[
DvS

(
c2(x, τ )

)]T is the transpose of DvS
(
c2(x, τ )

)
for fixed x ∈ Ω and

τ ∈ [0,∞). From the second condition in (40), we assume that šv − w > 0. Then
using (58) and dividing by 2‖Φ(x, t)‖E,Wc2(x,t)

, (61) becomes

d

dt
‖Φ(x, t)‖E,Wc2(x,t)

≤ ŝuλM√
λm

‖�(x, t)‖E − šv − w

λM
‖Φ(x, t)‖E,Wc2(x,t)

. (62)

From this one obtains

e|α1δ|t‖Φ(x, t)‖E,Wc2(x,t)
≤ ‖Φ(x, 0)‖E,Wc2(x,0)

+ ŝuλM√
λm

t∫

0

e|α1δ|τ‖�(x, τ )‖E dτ

+
(

|α1δ| − šv − w

λM

) t∫

0

e|α1δ|τ‖Φ(x, τ )‖E,Wc2(x,τ )
dτ

(63)

which the reader can verify by integration by parts. Integrating (63) over x ∈ Ω , we
get

e|α1δ|t‖Φ(x, t)‖L2,Wc2
≤ ‖Φ(x, 0)‖L2,Wc2

+ ŝuλM√
λm

t∫

0

e|α1δ|τ‖�(x, τ )‖L2 dτ

+
(

|α1δ| − šv − w

λM

) t∫

0

e|α1δ|τ‖Φ(x, τ )‖L2,Wc2
dτ. (64)

We now have the estimates on the diffusing and non-diffusing species needed, and
we combine these as follows. Define

g(t) ≡
[
e|α1δ|t‖�(x, t)‖L2 , e|α1δ|t‖Φ(x, t)‖L2,Wc2

]T ;
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then from (54) and (64) we have

g(t) ≤ g(0)+
t∫

0

⎡

⎣
r̂u

r̂v√
λm

ŝuλM√
λm

|α1δ| − šv−w
λM

⎤

⎦ g(τ ) dτ,

where the inequality is defined componentwise. Since the off-diagonal elements of the
matrix K in the integral are positive, the map defined by the right-hand side preserves
the order in the positive cone of R2 (Smith 1988), and it follows that

g(t) ≤ eK t g(0).

Therefore

[ ‖�(x, t)‖L2

‖Φ(x, t)‖L2,Wc2

]
≤ eAt

[ ‖�(x, 0)‖L2

‖Φ(x, 0)‖L2,Wc2

]

where

A =
⎡

⎣
−|α1δ| + r̂u

r̂v√
λm

ŝuλM√
λm

− šv−w
λM

⎤

⎦ .

Consequently, if all eigenvalues of A have negative real part, then it follows, after
using (59), that ‖c(x, t)− c̄(t)‖L2 → 0 exponentially in t .

We can compute the characteristic equation explicitly and find the factored form

(
λ+ |α1δ| − r̂u

) (
λ+ šv − w

λM

)
− r̂v√

λm

ŝuλM√
λm

= 0.

Therefore the λ’s are negative if

(|α1δ| − r̂u
) + šv − w

λM
> 0

(|α1δ| − r̂u
) šv − w

λM
− r̂v ŝuλM

λm
> 0.

(65)

Since we assume that šv > w, these conditions are satisfied if

|α1δ| > r̂u + r̂v ŝu

šv − w
· λ

2
M

λm
, (66)

which then guarantees exponential in t convergence to the uniform solution. This
proves the theorem. ��
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Remark 1 If all species diffuse, the criterion in (66) reduces to

|α1δ| > r̂u,

since S(u(x, t), v(x, t)) = 0. This is the condition given in Ashkenazi and Othmer
(1978).

Remark 2 If Ω = [0, hx ] × [0, hy] × [0, hz],

αlD = −
(

l1π

hx

)2

Dx −
(

l2π

hy

)2

Dy −
(

l3π

hz

)2

Dz

for l1, l2, l3 = 0, 1, . . . where Dx ,Dy , and Dz are diffusion matrices of diffusing
species in x-,y-, and z- directions. If diffusion is isotropic, we have

|α1δ| = min
{( π

hx

)2

,

(
π

hy

)2

,

(
π

hz

)2 }
min

i
Di i .

If one adopts the criterion that the largest computational cell size for a stochas-
tic simulation of a reaction–diffusion system should be small enough that the cell is
uniform on time scales relevant to the coupled deterministic reaction network, one can
apply the criterion in (66) to predict the minimum number of computational cells. We
do this in detail for Example 2.2, as later shown in Example 4.1. There we set Wc = 1
since DvS is a scalar, and therefore λm = λM = 1 and w = 0 in (66).

3.2 Other types of boundary conditions

The convergence result in Theorem 3 can be extended in several ways. For exam-
ple, when there are no non-diffusing species, exponential convergence to a uniform
state under homogeneous Robin boundary conditions on ∂Ω was proven in Conway
et al. (1978). That result can be extended to allow homogeneous Robin conditions on
∂Ω1 ⊂ ∂Ω and homogeneous Neumann data on ∂Ω/∂Ω1, since it is easy to show
that the principal eigenvalue for the spectral problem with mixed data is strictly less
than zero.

When there are non-diffusing species, the Neumann conditions in (31) are replaced
by

D ∂u(x, t)

∂n
= −Bu(x, t), x ∈ ∂Ω1,

∂u(x, t)

∂n
= 0, x ∈ ∂Ω/∂Ω1.

(67)

We assume that B is a diagonal matrix with positive diagonal elements, and thus the
reactions represent degradation or sequestration on the boundary, or transfer through
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the boundary. In any case, the flux of diffusing species to ∂Ω1 balances reactions of
diffusing species on ∂Ω1.

We could allow a slightly more general boundary condition by replacing the term
−Bu(x, t) in (67) with −B(u(x, t)− us), where us is a solution of

R
(
us, vs) = 0 and S

(
us, vs) = 0,

but by translating the steady state, we can assume that (us, vs) = (0, 0), which we do
hereafter.

We then have the following.

Theorem 4 Consider the system (31) with boundary conditions replaced by (67).
Further, suppose that the system admits the uniform steady state (us, vs) = (0, 0).

Let αi1 be the principal eigenvalue of the scalar problem

Δφ(x) = αiφ(x), x ∈ Ω,

∂φ

∂n
= Bi i

Di i
φ, x ∈ ∂Ω1,

∂φ

∂n
= 0, x ∈ ∂Ω/∂Ω1,

(68)

and suppose that

(i) σ (DvS(c)) ⊂ L H P for all c ∈ C∞,

(ii) šv > w,

(iii) δ1 > r̂u + r̂v ŝu

šv − w
· λ

2
M

λm
,

where δ1 ≡ mini (|αi1|Di i ). Then ‖c(x, t)‖L2 → 0 exponentially in t .

Proof The proof follows along the same lines as that of Theorem 3. The equations
are cast into integral form using a Green’s function for the Robin problem. From the
analog of (51) one finds that since the principal eigenvalue αil < 0 (Smoller 1982),
ψ(x, t) satisfies the inequality

‖ψ(x, t)‖L2 ≤ e−|αi1|Di i t‖ψ(x, 0)‖L2 , (69)

where αi1 is the largest eigenvalue of the scalar problem analogous to (51). This leads
to the estimates
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eδ1t ‖u(x, t)‖L2 ≤ ‖u0(x)‖L2 + r̂u

t∫

0

eδ1τ ‖u(x, τ )‖L2 dτ

+ r̂v√
λm

t∫

0

eδ1τ ‖v(x, τ )‖L2,Wc4
dτ, (70)

eδ1t ‖v(x, t)‖L2,Wc4
≤ ‖v0(x)‖L2,Wc4

+ ŝuλM√
λm

t∫

0

eδ1τ ‖u(x, τ )‖L2 dτ

+
(
δ1 − šv − w

λM

) t∫

0

eδ1τ ‖v(x, τ )‖L2,Wc4
dτ, (71)

and from these it follows that ‖c(x, t)‖L2 → 0 exponentially in t under the hypoth-
eses in the statement of the theorem. Here Wc4 in (70) and (71) is analogous to Wc2

in (64). This is used to estimate S
(
u(x, τ ), v(x, τ )

)
, rather than S

(
u(x, τ ), v(x, τ )

)−
S
(
ū(τ ), v̄(τ )

)
as in Theorem 3. The functions c3 and c4 are defined as follows: for

each x ∈ Ω and τ where 0 ≤ τ ≤ t < ∞, there exist c3(x, τ ) in
(
0, u(x, τ )

)
and

c4(x, τ ) in
(
0, v(x, τ )

)
satisfying

S
(
u(x, τ ), v(x, τ )

) = DuS
(
c3(x, τ )

)
u(x, τ )+ DvS

(
c4(x, τ )

)
v(x, τ ).

The details of the proof are left to the reader. ��
Other types of boundary conditions can be treated under suitable constraints on the

boundary values. For example, if non-homogeneous Dirichlet conditions of the form
u(x, t) = u B for x ∈ ∂Ω are imposed, then a uniform steady state exists only if there
is a constant vector vs such that

R
(
u B, vs) = 0 and S

(
u B, vs) = 0.

In other words, the boundary values must coincide with the u-component of a con-
stant, spatially-uniform steady state of the governing reaction–diffusion equations. In
this case, as in the above, the proof of convergence to a uniform solution follows that
from Robin data, since the principal eigenvalue of the associated spectral problem is
negative (Smoller 1982).

4 Applications

In this section we apply the results in Sects. 2 and 3 to Example 2.2 and to a simple
nonlinear reaction–diffusion system with the bimolecular reaction 2A � C . We com-
pute CV

∗
as a function of Nc and determine at what number of compartments, CV

∗

stabilizes, so as to determine the number of compartments in the stochastic model. We
also compute the upper bound for the computational cell size by applying Theorem
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3 to obtain the minimal number of compartments, and we compare this number to
the one determined by CV

∗
. Erban and Chapman (2009) also analyzed a system with

bimolecular reaction, 2A → C , but their reaction is irreversible and there is production
of A from a source in their model. They consider both the compartment-based model
using a master equation and the molecular-based model using stochastic differential
equations. We consider a multi-compartment model to illustrate another aspect of how
the criterion of Theorem 3 can be used.

4.1 Example 2.2 revisited

Consider the reactions involving species A, B, and C in Example 2.2 with correspond-
ing deterministic rate constants given in Table 3. Species A can diffuse, species B and
C do not, and species C does not affect species A and B. Let u(x, t), v(x, t), and
w(x, t) be the concentrations of species A, B, and C , respectively. Since C does not
affect the dynamics of A or B, we first consider the system with only A and B. The
domain is Ω = [0, hx ] and ∂Ω = {0, hx }. u(x, t) and v(x, t) satisfy (31) with

R(u(x, t), v(x, t)) = [−(k5cR + k6) k−5
] [ u(x, t)
v(x, t)

]
,

S(u(x, t), v(x, t)) = [
k5cR −(k−5 + k7)

] [ u(x, t)
v(x, t)

]
,

D = D.

Since DvS is a scalar, we may set Wc = 1. Then, the variables defined by Jacobian
of the reaction terms are found to be

r̂u = k5cR + k6, r̂v = k−5, ŝu = k5cR, šv = k−5 + k7.

After computing the convergence criterion given in Theorem 3, we obtain the fol-
lowing upper bound for the computational cell size that guarantees convergence to a
spatially-uniform solution in the deterministic calculation.

hx <

√√√√
Dπ2

(
k5cR(2k−5+k7)

k−5+k7
+ k6

) ≈ 8.25 µm

We then use hx as the compartment size for the corresponding stochastic model, apply
the fact that hx = Lx/Nc, and replace the deterministic reaction rate constants by
stochastic reaction rate constants. As a result we obtain the following lower bound for
the number of compartments,

Nc >

√√√√
(
κ5 R(2κ−5+κ7)

κ−5+κ7
+ κ6

)
L2

x

Dπ2 ≈ 33. (72)
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Comparing this lower bound for Nc to the number at which the CV
∗

in Fig. 6a stabi-
lizes, we conclude that (72) gives a good estimate for the maximum allowable com-
partment size. This shows that Theorem 3, applied appropriately, provides a rational
basis for computing the minimum number of compartments. However, some thought
is required, as the following illustrates.

Suppose that we had not recognized that C does not affect the upstream reactions.
Now w becomes v2 and the reaction matrices are

R(u(x, t), v(x, t)) = [−(k5cR + k6) k−5 0
]
⎡

⎣
u(x, t)
v1(x, t)
v2(x, t)

⎤

⎦ ,

S(u(x, t), v(x, t)) =
[

k5cR −(k−5 + k7) 0
0 k7 −k9

]⎡

⎣
u(x, t)
v1(x, t)
v2(x, t)

⎤

⎦ ,

D = D.

Since σ
(
(DvS(c)+ [DvS(c)]T )/2

) ⊂ L H P for all c ∈ C∞, we can take Wc to be
the identity matrix. The sensitivities defined by the Jacobians of the reaction terms are
found to be

r̂u = k5cR + k6, r̂v = k−5,

ŝu = k5cR, šv =
(k−5 + k7 + k9)−

√
(k−5 + k7 − k9)2 + k2

7

2
.

Using αl = −
(

lπ
hx

)2
and applying Theorem 3, we find that

hx <

√√√√ Dπ2

( k5cR(k−5+šv)
šv

+ k6
) ≈ 1.41 µm.

Treating [0, hx ] as one compartment, we obtain a lower bound for the number of
compartments,

Nc >

√( κ5 R(κ−5+šv)
šv

+ κ6
)
L2

x

Dπ2 ≈ 195. (73)

Comparing (72) and (73), we see that the condition in Theorem 3 overestimates a
lower bound for the number of compartments if we include the non-diffusing species
which do not affect the diffusing species. The difference between (72) and (73) arises
from the fact that κ−5 +κ7 ≈ 2.03 min−1 in (72), whereas šv ≈ 0.03 min−1 appears in
(73). The difference reflects the fact that the relaxation time of the non-diffusible spe-
cies (more generally, a measure of the sensitivity of the non-diffusible species) enters
into the calculation of the overall relaxation time, and this is much longer when C
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is included. Clearly if downstream uncoupled components relax faster than upstream
components their inclusion will not have this effect.

4.2 Why network properties must be considered

Condition (i) in Theorem 3 is very important, since without it diffusive instabilities
(such as the Turing instability) can arise (Othmer 1977, 1980). In fact, if a self-acti-
vating species is also immobile, instabilities of arbitrarily-short wavelengths can arise
(Othmer 1969), which precludes establishing a minimum non-zero compartment size.
To illustrate some of the effects of violating this condition, we investigate a simple
reaction–diffusion network which does not satisfy this condition.

Example 1 Consider a model for the glycolytic reactions, which involves positive
feedback and leads to a generic back-activation oscillator (Ashkenazi and Othmer
1978). The kinetic steps are

Substrate −→ X −→ Y −→ Products

and assuming that the enzyme is far from saturation, these can be described via poly-
nomials. To illustrate some of the problems as simply as possible, we consider a
two-compartment model, since the deterministic case for that system has been ana-
lyzed in detail (Ashkenazi and Othmer 1978). We assume that Y does not diffuse and
therefore the governing equations are

du1(t)

dt
= Dx

(Lx/2)2
(
u2(t)− u1(t)

) + k0 − k1u1(t)v1(t)
2 − k2u1(t),

dv1(t)

dt
= k1u1(t)v1(t)

2 + k2u1(t)− k3v1(t),

du2(t)

dt
= Dx

(Lx/2)2
(
u1(t)− u2(t)

) + k0 − k1u2(t)v2(t)
2 − k2u2(t),

dv2(t)

dt
= k1u2(t)v2(t)

2 + k2u2(t)− k3v2(t),

where uk(t) and vk(t) are concentrations of species X and Y in the kth compartment
at time t for k = 1, 2. The term k1uk(t)vk(t)2 comes from the positive feedback step
in which Y activates its production. The uniform steady state is

u∗ = u∗
1 = u∗

2 =
k0
k3

k2
k3

+
(

k0
k3

√
k1
k3

)2 ,

v∗ = v∗
1 = v∗

2 = k0

k3
.
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Table 4 Deterministic and stochastic parameters in Example 1

Deterministic Stochastic

k0 5.25 nM min−1 κ0 k0 × (NAVc) ≈ 158.22 min−1

k1 1 nM−2 min−1 κ1 k1/(NAVc)
2 ≈ 0.0011 min−1

k2 0.005 min−1 κ2 k2 = 0.005 min−1

k3 5 min−1 κ3 k3 = 5 min−1

Dx 1000 µm2 min−1 κd,x Dx/(Lx/2)2 = 0.4 min−1

u1(0) 2 nM N (1,1)(0) 2 nM × 6.022×10−1 µm−3

1 nM × 50 µm3 ≈ 60

u2(0) 2 nM N (2,1)(0) 2 nM × 6.022×10−1 µm−3

1 nM × 50 µm3 ≈ 60

v1(0) 7 nM N (1,2)(0) 7 nM × 6.022×10−1 µm−3

1 nM × 50 µm3 ≈ 210

v2(0) 0 nM N (2,2)(0) 0 nM × 6.022×10−1 µm−3

1 nM × 50 µm3 ≈ 0

Lx 100 µm

L y 1 µm

Lz 1 µm

V 100 µm3

The diffusion matrix and the Jacobian of the kinetic terms are

D =
[ Dx
(Lx/2)2

0

0 0

]
,

K(uk(t), vk(t)) =
[−(k2 + k1vk(t)2) −2k1uk(t)vk(t)

k2 + k1vk(t)2 2k1uk(t)vk(t)− k3

]
.

The stability of the uniform steady state to spatially uniform disturbance is determined
by the eigenvalues of K(u∗, v∗) and the stability of the uniform steady state to non-
uniform disturbance is determined by the eigenvalues of K(u∗, v∗)− 2D (Ashkenazi
and Othmer 1978).

We choose parameter values so that the uniform steady state is unstable, in which
case a well-mixed system evolves to a unique periodic solution. This solution is also a
solution of the coupled systems, since both cells are identical, and therefore a stochas-
tic simulation should be expected to exhibit periodic behavior if averaged over many
realizations. Using the stochastic and deterministic parameters given in Table 4, we
compare the time evolution of X and Y in the two compartment model. Let N (k,1)(t)
and N (k,2)(t) represent the numbers of molecules of X and Y in the kth compartment
at time t , respectively.

Note that in Table 4, we multiply k0 by the volume of each compartment (Vc) to
obtain the corresponding stochastic rate constant, since the corresponding reaction is
production from a source occurring in both compartments. Similarly, we divide k1 by
square of the volume of each compartment to obtain the stochastic rate constant, since
the corresponding reaction, X + 2Y → 3Y , is trimolecular. Diffusion coefficients in
both the deterministic and the stochastic two-compartment model are scaled by the
square of each compartment size due to the discretization of the Laplacian.
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For the parameter values chosen, the second diagonal element of K(u∗, v∗), corre-
sponding to the non-diffusing species Y , is positive, which reflects the self-activation
of that species. Thus a deterministic spatially-continuous system with these kinetics
does not satisfy condition (i) in Theorem 3, and thus we cannot apply the criterion to
determine an appropriate discretization. Furthermore, we have

T r
(
K(u∗, v∗)

)
> 0,

det
(
K(u∗, v∗)

)
> 0,

T r
(
K(u∗, v∗)− 2D

)
> 0,

det
(
K(u∗, v∗)− 2D

)
> 0,

and therefore the eigenvalues of K(u∗, v∗) and K(u∗, v∗) − 2D are positive and the
uniform steady state is unstable to both uniform and nonuniform disturbances.

In Fig. 7 we compare the stochastic and deterministic simulations of the two-com-
partment model. In (a) and (b), we show the uniform periodic solution of the deter-
ministic two-compartment model for initial values given in Table 4. One sees that
when uk(t) approaches zero, vk(t) approaches to its maximum. In (c)–(f) and (g)–(j)
we give two realizations of stochastic simulations of the two-compartment model.
Clearly there is no hint of periodicity in the stochastic simulations, despite running for
a long time compared to that needed for relaxation to the uniform periodic solution
in the deterministic case, and the compartments are certainly not synchronized. As in
(a) and (b), when X peaks, Y in the same compartment has a local minimum value.
However, the local minimum and maximum values of the numbers of molecules for
the same species vary, and the burst times of the same species in two compartments
are not synchronized. One reason for the discrepancy between the deterministic and
stochastic solutions is that there is also a stable non-uniform periodic solution in the
deterministic system, and though the initial data lies in the domain of attraction of
the uniform solution for the deterministic problem, the non-uniform solution appears
to exert a significant influence on the stochastic evolution. A detailed analysis of the
deterministic case is done on (Ashkenazi and Othmer 1978), where the reader can see
the full complexity of the solution set for this simple system.

The complexity of the solution set is solely the result of the self-activation in the
local dynamics—without that the system would not show oscillations and the con-
dition (i) in Theorem 3 would be satisfied. Thus a full understanding of the local
dynamics is needed to determine whether a sufficiently small compartment size will
produce meaningful results in a stochastic simulation.

4.3 The reaction 2A � C in a distributed setting

Consider a multi-compartment system of Nc compartments. Let Ak and Ck denote
species A and C in the kth compartment for k = 1, . . . , Nc. The system has the
following reactions

2Ak
κ1−⇀↽−
κ−1

Ck, for all k,
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Fig. 7 Deterministic and stochastic simulation for the two-compartment model. uk (t) and vk (t) are con-
centrations of species X and Y in the kth compartment at time t . N (k,1)(t) and N (k,2)(t) are the numbers
of molecules of species X and Y in the kth compartment at time t

Ak
κd,A−⇀↽−
κd,A

Ak+1, for k = 1, . . . , Nc − 1,

Ck
κd,C−⇀↽−
κd,C

Ck+1, for k = 1, . . . , Nc − 1,

wherein the parameter values are as given in Table 5.
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Table 5 Deterministic and stochastic parameters in Example 4.3

Deterministic Stochastic

k1 0.05 nM−1 min−1 κ1 k1/(NAVc) ≈ 1.21 × 10−4 Nc min−1

k−1 0.05 min−1 κ−1 0.05 min−1

DA = DC 73 µm2 s−1 κd,A = κd,C DA/(Lx/Nc)
2 ≈ 9.65 × 10−4 N 2

c s−1

0.73 µm2 s−1 DA/(Lx/Nc)
2 ≈ 9.65 × 10−6 N 2

c s−1

Lx 275 µm

L y 5 µm

Lz 0.5 µm

V 687.5 µm3

In Table 5, k1 is divided by the volume of the compartment (Vc) to obtain the
stochastic rate constant κ1. As before, we assume that Lx � L y, Lz , and discretize
Lx into Nc compartments. Since this system is closed, the components are strongly
connected, the deficiency is zero, and the steady-state probability density function has
a product form (Anderson et al. 2009). (Zero-deficiency of the network means that ν
does not annihilate any elements in the range of E , Othmer 1981.)

Let N (k,1)(t) and N (k,2)(t) represent the numbers of molecules of species A and C
in the kth compartment at time t , respectively. Then,

∑Nc
k=1

(
N (k,1)(t)+ 2N (k,2)(t)

)
is

conserved and equal to its initial value N0. The stady-state probability density function
can be expressed as (Anderson et al. 2009)

P∞(n(1,1), n(1,2), . . . , n(k,1), n(k,2), . . . , n(Nc,1), n(Nc,2))

= M
Nc∏

k=1

(wk
A)

n(k,1)

(n(k,1))!
(wk

C )
n(k,2)

(n(k,2))! (74)

where wk
A and wk

C for k = 1, . . . , Nc are the components of the steady-state solution
of the following deterministic system.

dwk
A(t)

dt
= −2κ1w

k
A(t)

2 + 2κ−1w
k
C (t)

+κd,A

[
(wk−1

A (t)− wk
A(t))I{k �=1} + (wk+1

A (t)− wk
A(t))I{k �=Nc}

]
(75)

dwk
C (t)

dt
= κ1w

k
A(t)

2 − κ−1w
k
C (t)

+κd,C

[
(wk−1

C (t)− wk
C (t))I{k �=1} + (wk+1

C (t)− wk
C (t))I{k �=Nc}

]
(76)

Here I is the indicator function, wk
A and wk

C satisfy the conservation law,∑Nc
k=1

(
wk

A + 2wk
C

) = 1, and in (74), M is a normalizing constant that depends on
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Table 6 CV ∗ and CV
∗

when
N0 = 6 Nc CV ∗ CV

∗

1 3.7164 97.4456

2 5.3659 99.4871

3 6.5719 99.4871

4 7.5886 99.4871

5 8.4843 99.4871

6 9.2941 99.4871

7 10.0387 99.4871

8 10.7319 99.4871

9 11.3829 99.4871

10 11.9986 99.4871

Nc. The steady-state solution of (75) and (76) is spatially uniform and given by

wk
A = K d, wk

C = K

2
d2,

where

K = κ−1

2κ1
, d =

−1 +
√

1 + 4
K Nc

2
.

Since d and K do not depend on the diffusion coefficients of species A and C , the
steady-state probability density function does not depend on them neither. (Compare
the earlier example of diffusion only in Sect. 1.4, which led to a multinomial distri-
bution independent of the diffusion constant.) Using P∞(·) in (74) and parameters
given in Table 5, the computed CV ∗ and CV

∗
for N0 = 6 is given in Table 6. For

Nc ≥ 2,CV
∗

is approximately constant. Thus the results suggest that the number of
compartments should be at least 2 in a multi-compartment stochastic model.

Next, we apply Theorem 3 to estimate an upper bound for each compartment size
in the stochastic model. Let u1(x, t) and u2(x, t) be concentrations of species A and C
on x at time t , and denote u(x, t) ≡ [u1(x, t), u2(x, t)]T . The reaction and diffusion
matrices are given as

R
(
u(x, t)

) =
[−2k1u1(x, t)2 + 2k−1u2(x, t)

k1u1(x, t)2 − k−1u2(x, t)

]
,

D =
[

DA 0
0 DC

]
.

Since we assume that both species A and C diffuse, (40) is reduced to

|α1δ| > r̂u (77)

where α1 = −(π/hx )
2 and δ = DA. The Jacobian matrix for the kinetic terms is

DuR
(
u(x, t)

) =
[−4k1u1(x, t) 2k−1

2k1u1(x, t) −k−1

]
.
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Using
∥∥DuR

(
u(x, t)

)∥∥
E = √

20(k1u1(x, t))2 + 5(k−1)2, we have

r̂u = max
u1(x,t)∈C∞

√
20(k1u1(x, t))2 + 5(k−1)2.

For fixed volume Vc, r̂u has a maximum value when all molecules of species A
are located in one compartment. Therefore, we approximate the maximum value of
u1(x, t) by N0/(NAVc) = N0/(NAhx L y Lz) where N0 = 6 is the conserved num-
ber of molecules. Using the upper bound of r̂u , we find the following is a sufficient
condition to satisfy (77):

DAπ
2

h2
x

>

√

20

(
k1 N0

NAhx L y Lz

)2

+ 5(k−1)2.

It follows that hx must be chosen so that

5(k−1)
2h4

x + 20

(
k1 N0

NA L y Lz

)2

h2
x − D2

Aπ
4 < 0,

which leads to the following condition on hx .

hx < 621.79 µm when DA = DC = 73 µm2 s−1

hx < 61.93 µm when DA = DC = 0.73 µm2 s−1

Said otherwise, a single compartment suffices if Lx < 622 µm, which compares
well with the result in Table 6, which depends on Lx through the rate constants, and
are computed for Lx = 275 µm. However when DA = DC = 0.73 µm2 s−1, the
upper bound for the compartment size gives Nc > 4 which overestimates the num-
ber of compartments needed according to Table 6. This is not surprising, since the
theoretical estimate is based on the relaxation rate to the uniform solution, and for
the second case, in which diffusion is 100-fold slower, the approach to the uniform
solution takes much longer and at least four compartments are needed to capture the
temporal evolution. Once again, care is needed in applying the criterion.

Finally, we compare our result to the one using Bernstein’s criterion for the compart-
ment size introduced in Sect. 1.4. Consider the case when DA = DC = 73 µm2 s−1.
To compute the reaction timescale, we use the reaction with the largest propensity,
since Bernstein sets the reaction time as the reciprocal of the propensity. Denote Atot

and Ctot as the total numbers of molecules of species A and C , respectively. Using
Atot + 2Ctot = 6, we compute

κ1
Atot

Nc

(
Atot

Nc
− 1

)
≈ (1.21 × 10−4 Nc)

6

Nc

(
6

Nc
− 1

)
≈ 0.0044

(
1

Nc
− 1

6

)
,

κ−1
Ctot

Nc
≈ 0.05

3

Nc
= 0.15

(
1

Nc

)
.
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Therefore, the propensity of the first-order reaction, C
κ−1→ 2A, is the largest. Based

on the conservation law, we assume that the total number of molecules of species C
is 3. The reaction time-scale is given as

τr ≈ 1

0.05 min−1 × 3
Nc

= 1833.33

hx
min.

The diffusion time-scale is computed using the diffusion coefficient of species A.

h2
x

2DA
≈ h2

x µm2

2 × 4380 µm2 min−1 = h2
x

8760
min

Since the diffusion time-scale should be much faster than the reaction time-scale, we
have

hx � (8760 × 1833.33)1/3 µm

≈ 252.30 µm.

Similarly, when DA = DC = 0.73 µm2 s−1, Bernstein’s criterion yields hx �
54.36 µm. Therefore, in both cases the upper bound for the compartment size using
our criterion is larger than the one obtained from Bernstein’s criterion.

5 Discussion

A number of criteria have been suggested for determining the appropriate compartment
size for a stochastic treatment of a reaction–diffusion system, but none incorporates
measures of the noise in the process, nor do they account for the properties of the
integrated reaction network. We incorporate those factors here and develop a criterion
for choosing the compartment size.

We first define a suitably scaled, generalized coefficient of variation as an appro-
priate measure for the noise level of the system, and use this scaled measure, CV

∗
, to

determine a lower bound for the number of compartments based on simulations of a
particular network. Using results from Gadgil et al. (2005), we compute the asymp-
totic mean M∞ and variance V∞, and we express CV

∗
in terms of M∞ for specific

cases of a linear reaction–diffusion network. We show the convergence of each com-
ponent in M∞ multiplied by some constant to the corresponding concentration in the
continuum model for an open linear network with production from a source, and for
a closed linear network with no inputs and no degradation (in case there is exactly
one zero eigenvalue in the reaction matrix). We then show computationally that the
scaled measure converges for a sufficiently large number of compartments in a linear
network, which suggests the minimum value for the number of compartments.

123



H.-W. Kang et al.

However, it is not easy in general to compute the minimum value of the number of
compartments using CV

∗
analytically, and therefore we developed an alternate crite-

rion based on convergence of solutions of the deterministic reaction–diffusion system
to a spatially-uniform solution. In previous work, conditions for this convergence were
derived for closed systems in which all species diffuse (Othmer 1977; Ashkenazi and
Othmer 1978), and we extend this here to allow both non-diffusing species and degra-
dation of diffusing species on the boundary of the domain. Of course the system size
plays a role in the convergence, and this leads to an estimate of the minimal compart-
ment size by requiring that the dynamics converge to a spatially-uniform solution for
that compartment size. The exponential convergence condition involved is applicable
to the nonlinear reaction–diffusion networks for which it is known that solutions are
bounded in L2, which include the majority of biologically-realistic systems. We apply
the results to a simple dimerization reaction that illustrates some of the issues that
must be considered in general.
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Appendices

A Proof of the mean first passage time for N walkers

Consider the first passage time for annihilation beginning on a spherical surface of
radius r ∈ (a, b). Define Pi (R, t |r, s) as the probability that the i th particle starts on
a spherical surface of radius r at time s and ends on a spherical surface of radius R at
time t . Define τi (r) ≡ τi as the first passage time for annihilation of the i th particle
when it begins on the spherical surface of radius r and τ(r1, r2, . . . , rN ) ≡ τ as the
first passage time for the first annihilation of the one particle among the N particles,
where for i = 1, 2, . . . , N , the i th particle begins on a spherical surface of radius ri .
Define a cumulative distribution function for τi as

Fi (r, t) ≡ P(τi ≤ t),

=
t∫

0

− d

ds

b∫

a

Pi (R, s|r, 0) d R ds = 1 −
b∫

a

Pi (R, t |r, 0) d R,

and define the operator Δr as

Δr f (r, t) = 1

r2

∂

∂r

(
r2 ∂ f (r, t)

∂r

)
,

Δr g(r) = 1

r2

d

dr

(
r2 dg(r)

dr

)
.
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Then, for i = 1, . . . , N , Fi (r, t) is a solution of

∂

∂t
Fi (r, t) = DΔr Fi (r, t),

Fi (r, t)|{r=a} = 1,

∂

∂r
Fi (r, t)|{r=b} = 0.

(78)

Let F(r1, r2, . . . , rN , t) be the cumulative distribution function of τ when N particles
are initially located on spherical surface of radius ri ∈ (a, b) for i = 1, . . . , N . Then

P(τ > t) = 1 − F(r1, r2, . . . , rN , t)

=
N∏

i=1

(1 − Fi (ri , t)).

The mean first passage time of N particles is defined as λ ≡ E[τ ], and is computed in
terms of the cumulative distribution function of the first passage time of each particle.

λ(r1, r2, . . . , rN ) =
∞∫

0

P(τ > s) ds

=
∞∫

0

N∏

i=1

(1 − Fi (ri , s)) ds

Using (78), λ satisfies

DΔriλ(r1, r2, . . . , rN ) = −
∞∫

0

(
DΔri Fi (ri , s)

)∏

j �=i

(1 − Fj (r j , s)) ds

= −
∞∫

0

∂Fi (ri , s)

∂s

∏

j �=i

(1 − Fj (r j , s)) ds. (79)

Summing (79) over i = 1, . . . , N , we find that

N∑

i=1

DΔriλ(r1, r2, . . . , rN ) =
∞∫

0

∂
∏N

i=1(1 − Fi (ri , s))

∂s
ds

= lim
t→∞

N∏

i=1

(1 − Fi (ri , t))−
N∏

i=1

(1 − Fi (ri , 0))

= −1.
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λ also satisfies the boundary conditions

λ(r1, r2, . . . , rN )|{ri =a} = 0,
∂

∂ri
λ(r1, r2, . . . , rN )|{ri =b} = 0,

for each i = 1, . . . , N . Substituting r0 = a, r1 = b, and τ = τi in (7) in Sect. 1.4, for
each i = 1, . . . , N , E[τi (r)] satisfies

DΔr E[τi (r)] = −1,

E[τi (a)] = 0,

E[τ ′
i (b)] = 0.

Thus, λ is given as

λ(r1, r2, . . . , rN ) = 1

N

N∑

i=1

E[τi (ri )]
∏

j �=i

(1 − δ(r j − a)).

B Spectral representation of the reaction–diffusion matrix Ω

In this section, we give the explicit form of the eigenvalues and eigenvectors of the
reaction–diffusion matrix Ω , which are used in Sect. 2.1. Consider the first-order
chemical reaction–diffusion network in the 3-dimensional parallelepiped with dimen-
sion Lx × L y × Lz . Δn is a finite difference approximation of the 1-dimensional
Laplacian with homogeneous Neumann conditions. Then, modulo terms in h−2

x , the
entries of Δn are

(Δn)i j =

⎧
⎪⎪⎨

⎪⎪⎩

−1 when i = j = 1 or i = j = n,
−2 when i = j, i �= 1, and i �= n,
1 when |i − j | = 1,
0 otherwise.

Let Dx ,Dy , and Dz be diagonal matrices whose diagonal elements are the scaled
diffusion coefficients for diffusion along the x, y, and z directions, respectively. The
reaction–diffusion matrix Ω is expressed as

Ω = Δz ⊗ Dz +Δy ⊗ Dy +Δx ⊗ Dx + (INz ⊗ INy ⊗ INx )⊗ K
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where

Δx ≡ INz ⊗ INy ⊗ΔNx ,

Δy ≡ INz ⊗ΔNy ⊗ INx ,

Δz ≡ ΔNz ⊗ INy ⊗ INx .

Define an index for compartments as l = (l1, l2, l3). Let l = (l, μ) for l1, l2, l3 =
1, . . . , Nx , Ny, Nz , respectively, and for μ = 1, . . . , s. Denote by αl1 , αl2 and αl3 the
eigenvalues of ΔNx ,ΔNy , and ΔNz given as

αl1 = −4 sin2
( πl1

2Nx

)
(1 − δl1 Nx ),

αl2 = −4 sin2
( πl2

2Ny

)
(1 − δl2 Ny ),

αl3 = −4 sin2
( πl3

2Nz

)
(1 − δl3 Nz ),

where δi j is the Kronecker delta. Denote φl1, φl2 , and φl3 as the corresponding eigen-
vectors of ΔNx ,ΔNy , and ΔNz with elements given as

(φl1)l ′1 =
√

2

Nx
cos

(πl1(l ′1 − 1/2)

Nx

)
(1 − δl1 Nx )+

√
1

Nx
δl1 Nx ,

(φl2)l ′2 =
√

2

Ny
cos

(πl2(l ′2 − 1/2)

Ny

)
(1 − δl2 Ny )+

√
1

Ny
δl2 Ny ,

(φl3)l ′3 =
√

2

Nz
cos

(πl3(l ′3 − 1/2)

Nz

)
(1 − δl3 Nz )+

√
1

Nz
δl3 Nz ,

(80)

for l ′1, l ′2, l ′3 = 1, . . . , Nx , Ny, Nz , respectively. Then, the eigenvalue ofΔx +Δy +Δz

is expressed as αl ≡ αl1 + αl2 + αl3 and the corresponding eigenvector and adjoint
eigenvector are given as φl ≡ φl3 ⊗ φl2 ⊗ φl1 and φ∗

l .
Define the complete diffusion matrix as αlD ≡ αl1Dx + αl2Dy + αl3Dz, and then

the eigenvalue λl of Ω is a solution of

∣∣K + αlD − λl Is
∣∣ = 0.

Let ϕl and ϕ∗
l be the eigenvector and the adjoint eigenvector of K+αlD corresponding

to the eigenvalue λl. Then, φl ⊗ ϕl is an eigenvector of Ω corresponding to λl, and
the projection Pl associated with λl is

Pl = (
φl ∗ φ∗

l

) ⊗ (
ϕl ∗ ϕ∗

l

)
(81)

where ∗ is the dyad product and φ∗
l is the complex conjugate of φ∗

l .
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In Example 2.2, Ny = Nz = 1 and we set Nx = Nc. The eigenvalues of Δ are

αl =
{−4 sin2

(
πl

2Nc

)
, l �= Nc,

0, l = Nc,
(82)

and the corresponding eigenvectors are

φl =

⎧
⎪⎪⎨

⎪⎪⎩

√
2

Nc

(
cos

(
πl

2Nc

)
, . . . , cos

(
(2l ′−1)πl

2Nc

)
, . . . , cos

(
(2Nc−1)πl

2Nc

))T

, l �= Nc,

√
1

Nc
(1, 1, . . . , 1)T , l = Nc.

(83)

In Example 2.2,

K + αlD = − κ5κ7 R

κ−5 + κ7
− κ6 + αl

D

(Lx/Nc)2
,

and the eigenvalue of K + αlD is

λl = − κ5κ7 R

κ−5 + κ7
− κ6 + αl

D

(Lx/Nc)2
.

The corresponding eigenvector and adjoint eigenvector of K+αlD areϕl = 1, ϕ∗
l = 1.

In Example 2.2, we only need the first column of Pl to compute the first and the sec-
ond moments, since we assume that production from a source only occurs in the first
compartment. Thus we have

Plks = κ8 P(1)l

where P(1)l represents the first column of Pl. From (81), we obtain the first column of
the projection as

P(1)l = (
φl ∗ φ∗

l

)(1) ⊗ (
ϕl ∗ ϕ∗

l

)(1)

= (
φl ∗ φ∗

l

)(1)
.

Using φl = φ∗
l , we compute

P(1)l =

⎧
⎪⎨

⎪⎩

2
Nc

cos
(
πl

2Nc

)(
cos

(
πl

2Nc

)
, . . . , cos

(
(2l ′−1)πl

2Nc

)
, . . . , cos

(
(2Nc−1)πl

2Nc

))T

, l �= Nc,

1
Nc
(1, 1, . . . , 1)T , l = Nc.
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C Proof of Proposition1

In this section, we prove Proposition 1 in Sect. 2.1. Using (10) in Sect. 2.1, we have

d
(

M(t)M(t)T
)

dt
= d M(t)

dt
M(t)T + M(t)

d M(t)T

dt

=
(
ΩM(t)+ ks

)
M(t)T + M(t)

(
ΩM(t)+ ks

)T

= ΩM(t)M(t)T + [ΩM(t)M(t)T ]T + C(t)

+C(t)T − W (t)− W (t)T . (84)

where C(t) = W (t) + ks M(t)T and W (t) is a block-diagonal matrix with elements
defined as

[W (t)]i(η),i(ζ ) =
{

K cat
i j [M(t)]i(ζ ), if k = q,

0, otherwise.

Recall that Md(t) = diag
[
M(t)

]
. Using (84), (10), and

Cov(t) = V (t)− M(t)M(t)T + Md(t),

we have

d Cov(t)

dt
= d V (t)

dt
− d

(
M(t)M(t)T

)

dt
+ d Md (t)

dt

=
{
ΩV (t)+ [ΩV (t)]T + C(t)+ C(t)T

}

−
{
ΩM(t)M(t)T + [ΩM(t)M(t)T ]T + C(t)+ C(t)T − W (t)− W (t)T

}

+d Md (t)

dt

= ΩCov(t)+ [ΩCov(t)]T −ΩMd (t)− (
ΩMd (t)

)T + W (t)+ W (t)T

+d Md (t)

dt
. (85)

From this we obtain

d
(
Cov(t)− Md(t)

)

dt
= Ω

(
Cov(t)− Md(t)

) + [Ω(
Cov(t)− Md(t)

)]T

+W (t)+ W (t)T . (86)

Define col(A) as a vector by concatenating all columns of A in order, i.e. col(A) =[
(A(1))T , (A(2))T , . . . , (A(m))T

]T
where A(l) is the lth column of A. Define v(t) =

col(Cov(t)− Md(t)),V = Ω ⊗ Is Nc + Is Nc ⊗Ω , and γ (t) = col(W (t)+ W (t)T ).
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We change matrices in (86) to column vectors, and obtain (Gadgil et al. 2005),

dv(t)

dt
= Vv(t)+ γ (t). (87)

The solution of (87) is

v(t) = eV tv(0)+
t∫

0

eV(t−τ)γ (τ ) dτ

=
∑

l,m

e(λl+λm)t Pl ⊗ Pmv(0)

+
∑

l,m

t∫

0

e(λl+λm)(t−τ)
(

Pl K
cat ⊗ Pm + Pl ⊗ Pm K cat

)
col(Md(τ )) dτ.

(88)

Reverting to the matrix form in (88), we find that

(
Cov(t)− Md(t)

)

=
∑

l,m

e(λl+λm)t Pm
(
Cov(0)− Md(0)

)
PT

l

+
∑

l,m

t∫

0

e(λl+λm)(t−τ)
(

Pm Md(τ )(Pl K
cat )T + Pm K cat Md(τ )P

T
l

)
dτ. (89)

Next we compute Md(t). Following Gadgil et al. (2005), the evolution of the mean
matrix is expressed as

M(t) =
∑

n

eλnt Pn M(0)−
∑

n

1 − eλnt

λn
Pnks . (90)

Define L(t) and S as s Nc × s Nc matrices satisfying

L(t) = [
M(t) M(t) · · · M(t)

]T
,

S = [
ks ks · · · ks

]
.

Define diag[b1, b2, . . . , bn] as an n ×n diagonal matrix with the i th diagonal element
equal to bi . Define diagonalization of matrices and of vectors as

diag
[
A
] ≡ diag

[
a11, a22, . . . , ann

]
,

diag
[
X
] ≡ diag

[
x1, x2, . . . , xn

]
,
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where A is an n × n matrix with each element ai j and X is an n-dimensional vector
with each element xi . Diagonalizing both sides in (90), we have

Md(t) =
∑

n

eλnt diag
[
Pn L(0)T

] −
∑

n

1 − eλnt

λn
diag

[
Pn S

]
. (91)

In (89), we first calculate
∫ t

0 e(λl+λm)(t−τ)Pm Md(τ )(Pl K cat )T dτ using (91), and find
that

t∫

0

e(λl+λm)(t−τ)Pm Md(τ )(Pl K
cat )T dτ

=
t∫

0

e(λl+λm)(t−τ)Pm

{∑

n

eλnτdiag
[
Pn L(0)T

]

−
∑

n

1 − eλnτ

λn
diag

[
Pn S

]}
(Pl K

cat )T dτ

=
∑

λn �=λl+λm

eλnt − e(λl+λm)t

−(λl + λm)+ λn
Pm diag

[
Pn L(0)T

]
(Pl K

cat )T

+
∑

λn=λl+λm

(teλnt )Pm diag
[
Pn L(0)T

]
(Pl K

cat )T

−
∑

λn �=λl+λm

1

λn

[1 − e(λl+λm)t

−(λl + λm)
− eλnt − e(λl+λm)t

−(λl + λm)+ λn

]
Pm diag[Pn S] (Pl K

cat )T

−
∑

λn=λl+λm

1

λn

[eλnt − 1

λn
− teλnt

]
Pm diag[Pn S] (Pl K

cat )T , (92)

and
∫ t

0 e(λl+λm)(t−τ)Pm K cat Md(τ )PT
l dτ as

t∫

0

e(λl+λm)(t−τ)Pm K cat Md(τ )P
T
l dτ

=
∑

λn �=λl+λm

eλnt − e(λl+λm)t

−(λl + λm)+ λn
Pm K cat diag

[
Pn L(0)T

]
PT

l

+
∑

λn=λl+λm

(teλnt )Pm K cat diag
[
Pn L(0)T

]
PT

l
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−
∑

λn �=λl+λm

1

λn

[1 − e(λl+λm)t

−(λl + λm)
− eλnt − e(λl+λm)t

−(λl + λm)+ λn

]
Pm K cat diag[Pn S] PT

l

−
∑

λn=λl+λm

1

λn

[eλnt − 1

λn
− teλnt

]
Pm K cat diag[Pn S] PT

l . (93)

Now we prove the second and the third cases in Proposition 1, using the results
of the previous computations. First, consider the open system with σ(Ω) ⊂ L H P .
Using (89), (92), and (93) and letting t → ∞, we get

Cov∞ − Md,∞ =
∑

l,m

∑

λn �=λl+λm

Pm

{
diag[Pn S](K cat )T + K cat diag[Pn S]

}
PT

l

λn(λl + λm)

+
∑

l,m

∑

λn=λl+λm

Pm

{
diag[Pn S](K cat )T + K cat diag[Pn S]

}
PT

l

λ2
n

=
∑

l,m,n

Pm

{
diag[Pn S](K cat )T + K cat diag[Pn S]

}
PT

l

λn(λl + λm)
. (94)

From (94), either if there is no production from a source or if there is no catalytic
inputs, which is K S = 0 (S = 0) or K cat = 0, we have Cov∞ = Md,∞.

Second, consider a closed system for which σ(Ω) is in the closed left-half plane.
We only consider the case in which there is exactly one zero eigenvalue of Ω and no
inputs. Then (89) becomes

(
Cov(t)− Md(t)

) =
∑

l,m

e(λl+λm)t Pm
(
Cov(0)− Md(0)

)
PT

l . (95)

Letting t → ∞ in (95) and using the fact that there is exactly one zero eigenvalue of
Ω and that the remaining eigenvalues are negative, we get

Cov∞ − Md,∞ = Ps (Cov(0)− Md(0)) PT
s

where Ps is the projection corresponding to the zero eigenvalue. Assuming that initial
values are deterministic, Cov(0) = 0. As a result, Cov∞ can be expressed in terms
of Md,∞,Md(0), and Ps as follows.

Cov∞ = Md,∞ − Ps Md(0)P
T
s

D Proof of Theorem 1

To prove the theorem, we first introduce and prove a lemma. The proof of the the-
orem is given at the end of this appendix. In the following lemma we show that as
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Nc → ∞, each component of X∞/(NAVc) converges to the corresponding value
of the steady-state concentration in the continuum deterministic reaction–diffusion
system.

Let u∞(x) and v∞(x) be the steady-state solution of the corresponding continuum
model. u∞(x) and v∞(x) represent concentration vectors for diffusing and non-dif-
fusing species, respectively, which satisfy

D̃Δu∞(x)+ Ru∞(x)+ Sv∞(x)+ δ(x, 0)k̃s = 0,

T u∞(x)+ Wv∞(x) = 0.
(96)

In (96), each component of k̃s is defined as

k̃s
i ≡ ks

i(1,i)
Lx

NAV
,

where V is the volume of the system. Letting [ks](1) ≡
[
ks

i(1,i), . . . ,ks
i(1,m)

]T
, k̃s is

written as

k̃s = Lx

NAV
[ks](1). (97)

In (96), D̃ is a diagonal matrix with diagonal elements which are the diffusion coef-
ficients in the continuum description, while diagonal elements of D in (18) are the
corresponding diffusion coefficients in the discretized system. The two are related by

D = D̃
(Lx/Nc)

2 .

Lemma 1 Let X∞ be the solution of (18) and u∞(x) be the solution of (96). Define
U∞(x) as a vector with each element satisfying

(U∞(x))i ≡
Nc∑

k=1

1

NAVc
[X∞]i(k,i) I{[ (k−1)Lx

Nc
,

kLx
Nc

)}(x), i = 1, . . . ,m,

where m is the number of diffusing species. Then, ‖U∞(x)− u∞(x)‖L2 = O
(

ln Nc
Nc

)

and converges to 0 as Nc → ∞.

Note that for x ∈ [ (k−1)Lx
Nc

, kLx
Nc
), (U∞(x))i gives the concentration of the i th species

in the kth compartment.

Proof The proof of the Lemma 1 is lengthy, and we split it into 6 steps:

– Step 1 Express U∞(x) and u∞(x) in terms of the discrete and continuous Green’s
functions;
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– Step 2 Split the error between U∞(x) and u∞(x) into three parts, (I ), (I I ), and
(I I I ) and split (I ) into four parts, (i), (i i), (i i i), and (iv);

– Step 3 To get an upper bound for (i i), we prove ‖Ql‖E ≤ O(1);

– Step 4 Prove
∑
μ

∣∣∣λ̃−1
l

∣∣∣ ≤ O
(

1
l2

)
and finish showing ‖(i i)‖E , ‖(i i i)‖E ≤

O
(

ln Nc
Nc

)
;

– Step 5 Show ‖(i)‖E , ‖(iv)‖E ≤ o
(

1
Nc

)
;

– Step 6 Show ‖(I I )‖E , ‖(I I I )‖E ≤ O
(

1
Nc

)
.

Step 1:
First, we show that U∞(x), which is defined in terms of X∞, is expressed in the form
with a discrete version of Green’s function. X∞ is a solution of (18) and is given as

X∞ =
∑

l

1

λl

(
φl ∗ φ∗

l

)
⊗
(
ϕl ∗ ϕ∗

l

)
ks .

Recall that l = (l, μ) where l = (l1, l2, l3) is an index for the compartment and μ is
an index for the species. Also, recall from Sect. 2.1 that αl and φl are the eigenvalue
and eigenvector of Δ and λl and ϕl are the eigenvalue and eigenvector of K + αlD.
φ∗

l and ϕ∗
l are the corresponding adjoint eigenvectors. Denote

Ql ≡ ϕl ∗ ϕ∗
l

and define a spatial variable ql(x) as

ql(x) ≡
√

Nc

Lx

Nc∑

l ′=1

(φl)l ′ I{[ (l′−1)Lx
Nc

,
l′Lx
Nc

)}(x), l = 1, 2, . . . , Nc. (98)

Then, define each element of a spatial vector for the production rates from a source as

ks
i (x) ≡

Nc∑

k=1

ks
i(k,i)

NAVc
I{[ (k−1)Lx

Nc
,

kLx
Nc

)}(x), i = 1, . . . ,m,

= ks
i(1,i)

NAVc
I{[

0, Lx
Nc

)}(x).

Using [ks](1), ks(x) is written as

ks(x) = 1

NAVc
[ks](1) I{[

0, Lx
Nc

)}(x). (99)
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Using the fact that φl = φ∗
l , define a matrix for a discrete Green’s function as

G(x, ξ) ≡
∑

l

1

λl
ql(x)ql(ξ)Ql. (100)

Then, the vector for the scaled species numbers in different locations is expressed as

U∞(x) =
Lx∫

0

G(x, ξ )ks(ξ) dξ . (101)

Next, we show that u∞(x), which corresponds to U∞(x) in the deterministic reac-
tion–diffusion equations, can also be expressed in terms of a Green’s function. Using
our assumption that σ(W) ⊂ L H P , the steady-state concentration of non-diffusing
species is expressed in terms of the steady-state concentration of diffusing species and
(96) is reduced to

D̃Δu∞(x)+ Ku∞(x)+ δ(x, 0)k̃s = 0, x ∈ [0, Lx ], (102)

where K = R − SW−1T . Consider an eigenvalue problem related to (102).

D̃Δϒ(x)+ (K − λIm)ϒ(x) = 0, x ∈ [0, Lx ],
ϒ ′(x) = 0, x = 0, Lx

(103)

Let λ̃l and ϕ̃l be a solution of the algebraic eigenvalue problem

(K + α̃lD̃ − λ̃l Im)ϕ̃l = 0,

and let ϕ̃∗
l be the solution in the adjoint algebraic eigenvalue problem. We find that

the solution of the scalar problem in (19) is

α̃l = −
(

lπ

Lx

)2

, l = 0, 1, . . . , (104)

and

q̃l(x) =

⎧
⎪⎨

⎪⎩

√
1

Lx
, l = 0,

√
2

Lx
cos

(
lπx
Lx

)
, l �= 0.

(105)

Then, the eigenfunction of (103) is written as ϒl(x) ≡ q̃l(x)ϕ̃l. Using our assumption
that K+ α̃lD̃ is semi-simple, the eigenfunctions are complete and the solution of (103)
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is given as

ϒ(x) =
∑

l

1

λ̃l
q̃l(x)ϕ̃l.

Define

Q̃l ≡ ϕ̃l ∗ ϕ̃∗
l .

Since we assume that σ
(
K + α̃lD̃

) ⊂ L H P , we have λ̃l �= 0 for all l and the Green’s

function of the operator D̃Δ+ K is given as

G̃(x, ξ) ≡
∑

l

1

λ̃l
q̃l(x)q̃l(ξ)Q̃l.

Then, the steady-state concentration vector which is a solution of (102) is written as

u∞(x) =
Lx∫

0

G̃(x, ξ)δ(ξ , 0)k̃s dξ . (106)

Step 2:
Now, we estimate the error between U∞(x) and u∞(x) and show that

‖U∞(x)− u∞(x)‖L2 is O
(

ln Nc
Nc

)
. Define a projection of the Green’s function onto

the space with a finite number of frequencies and its remainder as

πNc G̃(x, ξ) ≡
∑

l<Nc,l

1

λ̃l
q̃l(x)q̃l(ξ)Q̃l, (107)

(Im − πNc )G̃(x, ξ) ≡
∑

l≥Nc,l

1

λ̃l
q̃l(x)q̃l(ξ)Q̃l. (108)

Subtracting (106) from (101) and breaking U∞(x)− u∞(x) into three parts, we get

U∞(x)− u∞(x) =
Lx∫

0

(
G(x, ξ)− πNc G̃(x, ξ)

)
ks(ξ) dξ . . . (I)

+
Lx∫

0

πNc G̃(x, ξ)
(

ks(ξ)− k̃sδ(ξ , 0)
)

dξ . . . (II)

−
Lx∫

0

(Im − πNc )G̃(x, ξ)k̃
sδ(ξ , 0) dξ . . . (III). (109)
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Using (100) and (107), the first part in (109) is computed as

(I ) =
Lx∫

0

(
G(x, ξ)− πNc G̃(x, ξ)

)
ks(ξ) dξ

=
Lx∫

0

∑

l,0<l<Nc

(
1

λl
ql(x)ql(ξ)Ql − 1

λ̃l
q̃l(x)q̃l(ξ)Q̃l

)
ks(ξ) dξ . (110)

In (110), the first term in the parenthesis with l = Nc is canceled out by the second
term in the parenthesis with l = 0. Using (99), (I ) is computed as

(I ) =
Lx∫

0

∑

l,0<l<Nc

(
1

λl
ql(x)ql(ξ)Ql − 1

λ̃l
q̃l(x)q̃l(ξ)Q̃l

)
1

NAVc
[ks](1) I{[

0, Lx
Nc

)}(ξ) dξ

= 1

NAV
max

i
ks

i(1,i)

Lx
Nc∫

0

∑

l,0<l<Nc

Nc

(
1

λl
ql(x)ql(ξ)Ql − 1

λ̃l
q̃l(x)q̃l(ξ)Q̃l

)
um dξ ,

where um is an m-dimensional vector with each element equal to 1. We break (I ) into
four parts by adding and subtracting terms as

ABC D− Ã B̃C̃ D̃ = (A− Ã)BC D+ Ã(B− B̃)C D+ Ã B̃(C − C̃)D+ Ã B̃C̃(D− D̃).

Then, we get

(I ) = 1

NAV
max

i
ks

i(1,i)

×
[

Lx
Nc∫

0

∑

l,0<l<Nc

Nc

(
1

λl
− 1

λ̃l

)
ql(x)ql(ξ)Qlum dξ · · · (i)

+
Lx
Nc∫

0

∑

l,0<l<Nc

Nc
1

λ̃l
(ql(x)− q̃l(x)) ql(ξ)Qlum dξ · · · (i i)

+
Lx
Nc∫

0

∑

l,0<l<Nc

Nc
1

λ̃l
q̃l(x) (ql(ξ)− q̃l(ξ)) Qlum dξ · · · (i i i)

+
Lx
Nc∫

0

∑

l,0<l<Nc

Nc
1

λ̃l
q̃l(x)q̃l(ξ)

(
Ql − Q̃l

)
um dξ

]
· · · (iv).
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Step 3:

We will show that ‖(i i)‖E ≤ O
(

ln Nc
Nc

)
.

Using (98) and (83), for each l where 0 < l < Nc we get

|ql(x)| =
∣∣∣∣∣

√
2

Lx

Nc∑

l ′=1

cos

(
(2l ′ − 1)πl

2Nc

)
I[ (l′−1)Lx

Nc
,

l′Lx
Nc

)(x)

∣∣∣∣∣

≤ O (1) . (111)

Next, using (98) and (105), for each l where 0 < l < Nc and for x ∈
[
(k−1)Lx

Nc
, kLx

Nc

)
,

a difference between ql(x) and q̃l(x) is estimated as

|ql (x)− q̃l (x)| =
∣∣∣∣∣∣

√
2

Lx

Nc∑

l ′=1

cos

(
(2l ′ − 1)πl

2Nc

)
I[ (l′−1)Lx

Nc
,

l′Lx
Nc

)(x)−
√

2

Lx
cos

(
lπx
Lx

)∣∣∣∣∣∣

=
√

2

Lx

∣∣∣∣cos

(
(2k − 1)πl

2Nc

)
− cos

(
lπx
Lx

)∣∣∣∣

=
√

2

Lx

∣∣∣∣

(
(2k − 1)πl

2Nc
− lπx

Lx

)
sin b

∣∣∣∣ (112)

≤
√

2

Lx
· lπ

2Nc
· | sin b|

≡ O

(
1

Nc

)
× l. (113)

(112) is obtained by the Mean value theorem where b is between (2k−1)πl
2Nc

and lπx
Lx

.
Then using (111) and (113), ‖(i i)‖E is estimated as

‖(i i)‖E =

∥∥∥∥∥∥∥∥

Lx
Nc∫

0

∑

l,0<l<Nc

Nc
1

λ̃l
(ql(x)− q̃l(x)) ql(ξ)Qlu dξ

∥∥∥∥∥∥∥∥
E

≤

∥∥∥∥∥∥∥∥

∑

l,0<l<Nc

|λ̃−1
l |

Lx
Nc∫

0

Nc × O

(
1

Nc

)
× l × O(1) dξ

∥∥∥∥∥∥∥∥
E

max
l

‖Qlum‖E

≤ O

(
1

Nc

) ∑

l,0<l<Nc

l · |λ̃−1
l | max

l
‖Ql‖E . (114)

Now, we will show that maxl‖Ql‖E ≤ O(1) by showing maxl‖Q̃l‖E ≤ O(1),

because Q̃l − Ql = o
(

1
Nc

)
as we will show later in (118). To estimate difference

between Ql and Q̃l, we use a perturbation theory of the linear operator in a finite-
dimensional space (Theorem 5.4, p. 111 Kato 1966). Define the operator A = K+α̃lD̃,
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and express K +αlD as a series of perturbed operators from A. Using (82) and (104),
we obtain

A(ε) = A − α̃lD̃ + αlD

= A − α̃lD̃ + αl
D̃

(Lx/Nc)2

= A +
(

lπ

Lx

)2

D̃ −
⎛

⎝
2Nc sin

(
lπ

2Nc

)

Lx

⎞

⎠
2

D̃

= A +
(

lπ

Lx

)2

D̃ −
⎛

⎝ sin
( lπε

2

)
(

Lx ε
2

)

⎞

⎠
2

D̃

where ε = 1
Nc

. We can show that A(ε) is differentiable at ε = 0 and A′(0) = 0. Let
λ be the semi-simple eigenvalue of A and let Q be the projection of A corresponding
to λ. Then, using Theorem 5.4 in Kato (1966), we get

λ(ε) = λ+ o(ε), (115)

Q(ε) = Q + o(ε), (116)

where λ(ε) and Q(ε) are eigenvalues and projections of A(ε). From (115) and (116),
λ(ε)−λ
ε

and
∥∥∥ Q(ε)−Q

ε

∥∥∥
E

go to zero as ε → 0. In our setting, λ = λ̃l and λ(ε) = λl.

Similarly, Q = Q̃l and Q(ε) = Ql. Since we assume that A = K + α̃lD̃ is semi-sim-
ple, the condition that λ is the semi-simple eigenvalue of A is satisfied. Then, (115)
and (116) yields

λ̃l − λl = o

(
1

Nc

)
, (117)

Q̃l − Ql = o

(
1

Nc

)
. (118)

Using (118) and ‖Qlum‖E ≤ ‖Ql‖E‖um‖E = √
m‖Ql‖E where m is the number

of diffusing species, we only need to show that

max
l

∥∥∥Q̃l

∥∥∥
E

= O(1).

Define the operator B = α̃lD̃ and consider K + α̃lD̃ as perturbation of B as follows:

B(ε) =
(

−K
(

Lxε

π

)2

D̃−1 + I

)
α̃lD̃
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where ε = 1
l . As ε → 0, B(ε) → B and B ′(0) = 0. Therefore, using Theorem 5.4 in

Kato (1966),

J (ε)− J = o (ε)

where J (ε) and J are projections of B(ε) and B. Define M > 0 large enough so that
ε = 1

l is small for l ≥ M . eμ denotes an m-dimensional vector with its μth entry

equal to 1 and all others equal to zero. Since B
( 1

l

) = K + α̃lD̃, J
( 1

l

) = Q̃l, and

J = eμ ∗ eμ, for l ≥ M we estimate the upper bound of
∥∥∥Q̃l

∥∥∥
E

as

∥∥∥Q̃l

∥∥∥
E

≤
∥∥∥Q̃l − Q

∥∥∥
E

+ ‖Q‖E

= o

(
1

l

)
+ ∥∥eμ ∗ eμ

∥∥
E

≤ o

(
1

M

)
+ 1, for l ≥ M .

Since Q̃l and M do not depend on Nc where l = (l, μ), we get

max
l

∥∥∥Q̃l

∥∥∥
E

≤ max

(
max

l<M,μ

∥∥∥Q̃(l,μ)

∥∥∥
E
, o

(
1

M

)
+ 1

)

= O (1) . (119)

Step 4:
Next, we estimate

∑
μ |λ̃−1

l |. Since λ̃l is an eigenvalue of K+α̃lD̃, λ̃−1
l is an eigenvalue

of
(
K + α̃lD̃

)−1
. For l > 0, α̃l �= 0 and we expand the inverse matrix as

(
K + α̃lD̃

)−1 =
[(
α̃lD̃

)(
I +

(
α̃lD̃

)−1
K
)]−1

=
(

I +
(
α̃lD̃

)−1
K
)−1 (

α̃lD̃
)−1

=
⎡

⎣
∞∑

p=0

(
−
(
α̃lD̃

)−1
K
)p

⎤

⎦
(
α̃lD̃

)−1
. (120)

We estimate the upper and lower bounds of the spectrum of −
(
α̃lD̃

)−1
K to show

convergence of the matrix series in (120). Using the fact that all diagonal elements of
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D̃ are positive and using the definition of α̃l , we get

∣∣∣∣σ
(

−
(
α̃lD̃

)−1
K
)∣∣∣∣ ≤

∣∣∣α̃−1
l

∣∣∣
1

minχ D̃χχ

|σ (K)|

=
(

Lx

lπ

)2 1

minχ D̃χχ

|σ (K)| .

Therefore, there exists A > 0 such for l ≥ A

∣∣∣∣σ
(

−
(
α̃lD̃

)−1
K
)∣∣∣∣ ≤ 1.

Since the spectrum of −
(
α̃lD̃

)−1
K is bounded by ±1 for l ≥ A, the matrix series

in (120) converges. From Levy–Hadamard theorem (Bodwig 1959), each eigenvalue,

λ̃−1
l , of

(
K + α̃lD̃

)−1
satisfies

∣∣∣∣∣λ̃
−1
l −

[(
K + α̃lD̃

)−1
]

χχ

∣∣∣∣∣ <
∑

γ �=χ

∣∣∣∣∣

[(
K + α̃lD̃

)−1
]

χγ

∣∣∣∣∣

and the inequality can be rewritten as

[(
K + α̃lD̃

)−1
]

χχ

−
∑

γ �=χ

∣∣∣∣∣

[(
K + α̃lD̃

)−1
]

χγ

∣∣∣∣∣

<

∣∣∣λ̃−1
l

∣∣∣ <
[(

K + α̃lD̃
)−1

]

χχ

+
∑

γ �=χ

∣∣∣∣∣

[(
K+α̃lD̃

)−1
]

χγ

∣∣∣∣∣ . (121)

Using (121) and (120), for each l ≥ A we get

∑

μ

∣∣∣λ̃−1
l

∣∣∣ <
m∑

μ=1

max
χ

∑

γ

∣∣∣∣∣

[(
K + α̃lD̃

)−1
]

χγ

∣∣∣∣∣

< m

(
Lx

lπ

)2

max
χ

∑

γ

∞∑

p=0

∣∣∣∣∣∣

[((
Lx

lπ

)2

D̃−1K
)p]

χγ

∣∣∣∣∣∣
D̃−1
γ γ

≤ m

(
Lx

lπ

)2

max
χ

∑

γ

[
I + O

(
1

l2

)]

χγ

D̃−1
γ γ

≤ C̃

(
1

l

)2

,
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where m is the number of diffusing species. Define C ≡ max
(

C̃,maxl<A(
m A2

∣∣∣λ̃−1
l

∣∣∣
))

. Then, for each l > 0 the eigenvalues are bounded as

∑

μ

|λ̃−1
l | ≤ C

l2 = O

(
1

l2

)
. (122)

Therefore, using (119) and (122) in (114), we get

‖(i i)‖E ≤ O

(
1

Nc

) ∑

l,0<l<Nc

l · |λ̃−1
l | max

l
‖Ql‖E

≤ O

(
1

Nc

) ∑

l,0<l<Nc

l × O

(
1

l2

)
× O(1)

≤ O

(
1

Nc

) ∑

l,0<l<Nc

O

(
1

l

)

≤ O

(
1

Nc

)
O

⎛

⎝1 +
Nc−1∫

1

1

y
dy

⎞

⎠

≤ O

(
ln Nc

Nc

)
. (123)

Now, we estimate an upper bound for ‖(i i i)‖E . Using (105), for l > 0 we get

|q̃l(x)| =
∣∣∣∣∣

√
2

Lx
cos

(
lπx
Lx

)∣∣∣∣∣
≤ O(1). (124)

Since the estimates in (111), (113), and (124) do not depend on x and since the inte-
grands in (ii) and (iii) are the same vice verse when we exchange x and ξ , using (123)
we can get

‖(i i i)‖E ≤ O

(
ln Nc

Nc

)
. (125)

Step 5:

We will show that ‖(i)‖E ≤ o
(

1
Nc

)
. Using (111), (118), and (119), we get
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‖(i)‖E =

∥∥∥∥∥∥∥∥

Lx
Nc∫

0

∑

l,0<l<Nc

Nc

(
1

λl
− 1

λ̃l

)
ql(x)ql(ξ)Qlum dξ

∥∥∥∥∥∥∥∥
E

≤

∣∣∣∣∣∣∣∣

Lx
Nc∫

0

Nc × O(1) dξ
∑

l,0<l<Nc

λ̃l − λl

λlλ̃l

∣∣∣∣∣∣∣∣
× O(1)

= O(1)×
∑

l,0<l<Nc

∣∣∣∣∣
λ̃l − λl

λlλ̃l

∣∣∣∣∣ . (126)

Then using (117) and (122) in (126), we get

‖(i)‖E ≤
∑

l,0<l<Nc

∣∣∣∣∣∣

o
(

1
Nc

)

λ̃l

(
λ̃l + o

(
1

Nc

))

∣∣∣∣∣∣

≤
∑

0<l<Nc

∣∣∣∣∣∣

o
(

1
Nc

)

(
l4 + o

(
1

Nc

))

∣∣∣∣∣∣

≤
o
(

1
Nc

)

(
1 + o

(
1

Nc

)) +
Nc−1∫

1

o
(

1
Nc

)

(
y4 + o

(
1

Nc

) ) dy

≤
o
(

1
Nc

)

(
1 + o

(
1

Nc

)) +
o
(

1
Nc

)

(Nc − 1)3
≤ o

(
1

Nc

)
. (127)

Next, we will show that ‖(iv)‖E ≤ o
(

1
Nc

)
. Using (111), (124), and (118), we get

‖(iv)‖E =

∥∥∥∥∥∥∥∥

Lx
Nc∫

0

∑

l,0<l<Nc

Nc
1

λ̃l
q̃l(x)q̃l(ξ)

(
Ql − Q̃l

)
um dξ

∥∥∥∥∥∥∥∥
E

=

∣∣∣∣∣∣∣∣

Lx
Nc∫

0

Nc × O(1) dξ
∑

l,0<l<Nc

1

λ̃l

∣∣∣∣∣∣∣∣
× o

(
1

Nc

)

=
∑

l,0<l<Nc

∣∣∣λ̃−1
l

∣∣∣ × o

(
1

Nc

)
. (128)
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Using (122) in (128), we get

‖(iv)‖E ≤
∑

l,0<l<Nc

O

(
1

l2

)
× o

(
1

Nc

)

≤ O

⎛

⎝1 +
Nc−1∫

1

1

y2 dy

⎞

⎠ × o

(
1

Nc

)

≤ o

(
1

Nc

)
. (129)

Step 6:

We will show that ‖(I I )‖E ≤ O
(

1
Nc

)
. Using (107), (99), and (97), we get

(I I ) =
Lx∫

0

πNc G̃(x, ξ)
(

ks(ξ)− k̃sδ(ξ , 0)
)

dξ

=
Lx∫

0

∑

l,l<Nc

1

λ̃l
q̃l (x)q̃l (ξ)Q̃l

(
1

NAVc
[ks ](1) I{[

0, Lx
Nc

)}(ξ)− Lx

NAV
[ks ](1)δ(ξ , 0)

)
dξ .

(130)

In (130), the term with l = 0 in the series becomes zero. Using (122), (124), (119) in
(130), we get

‖(I I )‖E ≤
∑

l,0<l<Nc

O

(
1

l2

)
× O(1)× Lx

NAV
max

i
ks

i(1,i)

×
∣∣∣∣∣∣

Lx∫

0

q̃l(ξ)

(
Nc

Lx
I{[

0, Lx
Nc

)}(ξ)− δ(ξ , 0)

)
dξ

∣∣∣∣∣∣

≤
∑

l,0<l<Nc

O

(
1

l2

)
×
∣∣∣∣∣∣

Lx∫

0

q̃l(ξ)

(
Nc

Lx
I{[

0, Lx
Nc

)}(ξ)− δ(ξ , 0)

)
dξ

∣∣∣∣∣∣
.

(131)

Using (105) in (131), we estimate

‖(I I )‖E ≤
∑

l,0<l<Nc

O

(
1

l2

)
×
√

2

Lx

∣∣∣∣
Nc

lπ
sin

(
lπ

Nc

)
− 1

∣∣∣∣ . (132)
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By approximating the series in (132), we get

‖(I I )‖E ≤ O(1)×
∑

l,0<l<Nc

∣∣∣∣∣1 − sin
(

lπ
Nc

)

(
lπ
Nc

)

∣∣∣∣∣
l2

≤ O(1)×
∑

l,0<l<Nc

1 −
(

lπ
Nc

)
−

(
lπ
Nc

)3

3!(
lπ
Nc

)

l2

≤ O

(
1

Nc

)
. (133)

Now, we will show that ‖(I I I )‖E ≤ O
(

1
Nc

)
. Using (108) and (97), we compute

(I I I ) =
Lx∫

0

(
Im − πNc G̃(x, ξ)

)
k̃sδ(ξ , 0) dξ

=
Lx∫

0

⎛

⎝
∑

l,l≥Nc

1

λ̃l
q̃l(x)q̃l(ξ)Q̃l

⎞

⎠ Lx

NAV
[ks](1)δ(ξ , 0) dξ

=
∑

l,l≥Nc

(
1

λ̃l
q̃l(x)q̃l(0)Q̃l

)
Lx

NAV
[ks](1). (134)

Using (124), (122), and (119) in (134), we get

‖(I I I )‖E ≤
∑

l≥Nc

O

(
1

l2

)
× O(1)× max

i
ks

i(1,i)

≤ O(1)×
∞∫

Nc−1

1

y2 dy

≤ O

(
1

Nc

)
. (135)

In conclusion, we prove that for any x ∈ [0, Lx ], ‖U∞(x)− u∞(x)‖E ≤ O
(

ln Nc
Nc

)

as shown in (123), (125), (127), (129), (133), and (135). Since the upper bound is inde-

pendent of x, we get ‖U∞(x)− u∞(x)‖L2 = O
(

ln Nc
Nc

)
. ��

Using Lemma 1, we prove the convergence of U∞(x) to u∞(x), and this implies the
convergence of 1

NAVc
X∞ as Nc → ∞. Since Y∞ is expressed in terms of X∞,M∞

converges as Nc → ∞, and this implies the convergence of CV
∗
.
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E Proof of Theorem 2

Before proving the theorem, we first state and prove a lemma which is used to prove
the theorem. The proof of the theorem is given at the end of this appendix. In the
following lemma, we prove that each component of M∞/NA converges to the cor-
responding value of the steady-state concentration in the continuum deterministic
reaction–diffusion system.

The mean vector of the stochastic system with no inputs is governed by

d M(t)

dt
= ΩM(t), (136)

where Ω = Δ⊗ D + INc ⊗ K.
The corresponding deterministic reaction–diffusion system is governed by

∂u(x, t)

∂t
= D̃Δu(x, t)+ Ku(x, t), x ∈ [0, Lx ],

∂u(x, t)

∂x
= 0, x = 0, Lx , (137)

u(x, 0) = u0(x),

where u(x, t) is a concentration vector for species in x ∈ [0, Lx ] at time t . In (137),
the diffusion matrix is given as D̃ = (Lx/Nc)

2D. The integrated initial concentration,

u0(x), between x ∈
[
(k−1)Lx

Nc
, kLx

Nc

)
is expressed in terms of M(0) as follows:

kLx
Nc∫

(k−1)Lx
Nc

(u0(ξ))i dξ = Lx

NAV
[M(0)]i(k,i) . (138)

Lemma 2 Let M∞ be the steady-state solution of (136) and let u∞(x) be the steady-
state solution of (137). Define U∞(x) as a vector with each component satisfying

(U∞(x))i ≡
Nc∑

k=1

1

NAVc
[M∞]i(k,i) I{[ (k−1)Lx

Nc
,

kLx
Nc

)}(x), i = 1, . . . , s,

where s is the number of species. Then, ‖U∞(x)−u∞(x)‖L2 = O
(

1
Nc

)
and converges

to 0 as Nc → ∞.

Proof The proof of Lemma 2 is given in 2 steps:

– Step 1 Express U∞(x) and u∞(x) in terms of the Green’s function;

– Step 2 Show ‖U∞(x)− u∞(x)‖L2 = O
(

1
Nc

)
.
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Step 1:
We first express U∞(x) in terms of the Green’s function. Recall that φNc and φ∗

Nc
are

the eigenvector and the adjoint eigenvector ofΔ corresponding to αNc = 0. Rearrange
the order of species in the mean vector, M(t), so that that ϕ(Nc,s) and ϕ∗

(Nc,s)
become

an eigenvector and an adjoint eigenvector corresponding to the zero eigenvalue ofΩ .
Define

Q(Nc,s) ≡ ϕ(Nc,s) ∗ ϕ∗
(Nc,s)

. (139)

Then, the projection corresponding to the zero eigenvalue is expressed as

Ps =
(
φNc ∗ φ∗

Nc

)
⊗ Q(Nc,s). (140)

Letting t → ∞ in (90) and using (140), the steady-state mean vector for species
numbers is expressed as

M∞ = Ps M(0)

=
(
φNc ∗ φ∗

Nc

)
⊗ Q(Nc,s)M(0).

Here, note that

φNc = φ∗
Nc

=
√

1

Nc
[1, 1, . . . , 1]T . (141)

We define a spatial variable qNc (x) as

qNc (x) ≡
√

Nc

Lx

Nc∑

l ′=1

(φNc)l ′ I{[ (l′−1)Lx
Nc

,
l′Lx
Nc

)}(x)

=
√

1

Lx
. (142)

where the last equality comes from (141). Define a matrix for a discrete Green’s
function as follows, and using (142) we get

G(x, ξ) ≡ qNc (x)qNc (ξ)Q(Nc,s)

= 1

Lx
Q(Nc,s) ≡ G. (143)

Then, U∞(x) is expressed as

U∞(x) = GU0(x). (144)
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Here, U0(x) is defined as follows:

(U0(x))i ≡
Nc∑

k=1

1

NAVc
[M(0)]i(k,i) I{[ (k−1)Lx

Nc
,

kLx
Nc

)}(x), 1 = 1, . . . , s. (145)

Using (138), (145) is written as

(U0(x))i =
Nc∑

k=1

⎛

⎜⎜⎝
Nc

Lx

kLx
Nc∫

(k−1)Lx
Nc

(u0(ξ))i dξ

⎞

⎟⎟⎠ I{[ (k−1)Lx
Nc

,
kLx
Nc

)}(x), 1 = 1, . . . , s.

(146)

Next, we express u∞(x) in terms of the Green’s function. Let α̃0 = 0 and q̃0(x) be
a solution of the scalar problem

Δq̃(x) = α̃q̃(x), x ∈ [0, Lx ],
q̃ ′(x) = 0, x = 0, Lx ,

satisfying ‖q̃(x)‖L2
= 1. Then, we get

q̃0(x) =
√

1

Lx
. (147)

Let λ̃(0,s) = 0 and ϕ̃(0,s) be a solution of the algebraic eigenvalue problem

(
K + α̃lD̃ − λ̃l Is

)
ϕ̃l = 0,

and let ϕ̃∗
(0,s) be the solution of the corresponding adjoint eigenvalue problem. Define

Q̃(0,s) ≡ ϕ̃(0,s) ∗ ϕ̃∗
(0,s),

and the Green’s function as

G̃(x, ξ ) ≡ q̃0(x)q̃0(ξ)Q̃(0,s)

= 1

Lx
Q̃(0,s) ≡ G̃,

where (147) is used to compute G̃(x, ξ ). Note that

Q(Nc,s) = Q̃(0,s),
(148)

G = G̃.
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Then, the steady-state concentration vector is given as

u∞(x) = G̃u0(x). (149)

Step 2:

We will show that ‖U∞(x)− u∞(x)‖L2 is O
(

1
Nc

)
. Subtracting (149) from (144) and

using (148), we get

‖U∞(x)− u∞(x)‖L2 =
⎛

⎝
Lx∫

0

∥∥∥GU0(x)− G̃u0(x)
∥∥∥

2

E
dx

⎞

⎠
1/2

≤ ‖G‖E

⎛

⎝
Lx∫

0

‖U0(x)− u0(x)‖2
E dx

⎞

⎠
1/2

. (150)

Using (143) and (139) we get

‖G‖E =
∥∥∥∥

1

Lx
Q(Nc,s)

∥∥∥∥
E

=
∥∥∥∥

1

Lx

(
ϕ(Nc,s) ∗ ϕ∗

(Nc,s)

)∥∥∥∥
E

≤ O(1), (151)

where the last inequality comes from the fact that ϕ(Nc,s) and ϕ∗
(Nc,s)

do not depend
on Nc, which are the eigenvector and adjoint eigenvector of K + αlD corresponding

to αNc = 0. Using (146) for x ∈
[
(k−1)Lx

Nc
, kLx

Nc

)
, we have

∣∣(U0(x))i − (u0(x))i
∣∣2 ≤

∣∣∣∣∣∣∣∣

1

Lx/Nc

kLx
Nc∫

(k−1)Lx
Nc

[
(u0(ξ))i − (u0(x))i

]
dξ

∣∣∣∣∣∣∣∣

2

≤ max
b∈

[
(k−1)Lx

Nc
,

kLx
Nc

) (u0(b))
2
i

(
Lx

Nc

)2

= O

(
1

N 2
c

)
. (152)

When A is an m × n matrix, ‖A‖E ≤ √
mn‖A‖max. Therefore, using (152) we get

‖U0(x)− u0(x)‖E ≤ √
s ‖U0(x)− u0(x)‖max

= √
s max

i

∣∣(U0(x))i − (u0(x))i
∣∣

≤ O

(
1

Nc

)
. (153)
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Using (150), (151), and (153), we get

‖U∞(x)− u∞(x)‖L2 = O

(
1

Nc

)
.

��

In Lemma 2, we prove the convergence of U∞(x) to u∞(x). Now, we show the con-
vergence of CV

∗
as Nc → ∞. Define Md(0)(k) and M (k)

d,∞ be s × s diagonal matrices
where diagonal elements are given as

(
Md(0)

(k)
)

i i
= [Md(0)]i(k,i) ,

(
M (k)

d,∞
)

i i
= [

Md,∞
]

i(k,i) ,

for k = 1, . . . , Nc and for i = 1, . . . , s. Among the terms in (15), we first compute
Ps Md(0)PT

s using (140) and (141) as follows:

Ps Md(0)P
T
s =

((
φNc ∗ φ∗

Nc

)
⊗ Q(Nc,s)

)
Md(0)

((
φNc ∗ φ∗

Nc

)
⊗ QT

(Nc,s)

)

= 1

N 2
c
(uNc ∗ uNc )⊗

Nc∑

p=1

Q(Nc,s)Md(0)
(p)QT

(Nc,s),

where uNc is an Nc-dimensional vector with each element equal to 1. Then, each
component of M−1

d,∞ Ps Md(0)PT
s M−1

d,∞ is written as

[
M−1

d,∞ Ps Md(0)P
T
s M−1

d,∞
]

i(k,i),i(q, j)

= 1

N 2
c

⎡

⎣
(

M (k)
d,∞

)−1

⎛

⎝
Nc∑

p=1

Q(Nc,s)Md(0)
(p)QT

(Nc,s)

⎞

⎠
(

M (q)
d,∞

)−1

⎤

⎦

i j

. (154)

Using the fact that sum of the initial mean species numbers in all compartments is
bounded and using (151), we get

∥∥∥∥∥∥

Nc∑

p=1

Q(Nc,s)Md(0)
(p)QT

(Nc,s)

∥∥∥∥∥∥
E

≤
∥∥∥∥∥∥

Nc∑

p=1

Md(0)
(p)

∥∥∥∥∥∥
E

∥∥Q(Nc,s)
∥∥

E

∥∥∥QT
(Nc,s)

∥∥∥
E

≤ O(1). (155)

Since each component of
(

M (k)
d,∞

)−1
is bounded by O(Nc), using (155), (154) is

bounded by O(1). Therefore, we get
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CV
∗ =

√
Vc × λmax

(
M−1

d,∞ − M−1
d,∞ Ps Md(0)PT

s M−1
d,∞

)

=
√√√√σ

((
Md,∞

Vc

)−1

− O

(
1

Nc

)
us Nc ∗ us Nc

)

−→
√

1

mini,x (u∞(x))i

as Nc → ∞ where us Nc is an s Nc-dimensional vector with each element equal to 1.
Therefore, this gives the convergence of CV

∗
.

References

Anderson DF, Craciun G, Kurtz TG (2009) Product-form stationary distributions for deficiency zero chem-
ical reaction networks. Bull Math Biol 72(8):1947–1970

Andrews SS, Bray D (2004) Stochastic simulation of chemical reactions with spatial resolution and single
molecule detail. Phys Biol 1(3–4):137–151

Ashkenazi M, Othmer HG (1978) Spatial patterns in coupled biochemical oscillators. J Math Biol 5:305–
350

Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus IC (1975) Dynamics of ligand binding to
myoglobin. Biochemistry 14(24):5355–5373

Bamford CH, Tipper CFH, Compton RG (1985) Diffusion limited reactions. Comprehensive chemical
kinetics, vol 25. Elsevier, Amsterdam

Baras F, Mansour MM (1996) Reaction-diffusion master equation: a comparison with microscopic simu-
lations. Phys Rev E 54:6139–6148

Bernstein D (2005) Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm. Phys
Rev E 71(4 Pt 1):041103

Bodwig E (1959) Matrix calculus. Interscience, New York
Bokinsky G, Rueda D, Misra VK, Rhodes MM, Gordus A, Babcock HP, Walter NG, Zhuang X (2003) Sin-

gle-molecule transition-state analysis of RNA folding. Proc Natl Acad Sci 100(16):9302–9307
Conway E, Hoff D, Smoller J (1978) Large time behavior of solutions of systems of nonlinear reaction-dif-

fusion equations. SIAM J Appl Math 35(1):1–16
Crick FH (1970) Diffusion in embryogenesis. Nature 225:420–422
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