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Abstract We consider deterministic descriptions of reaction networks in which
different reactions occur on at least two distinct time scales. We show that when a
certain Jacobian is nonsingular there is a coordinate system in which the evolution
equations for slow and fast variables are separated, and we obtain the appropriate
initial conditions for the transformed system. We also discuss topological properties
which guarantee that the nonsingularity condition is satisfied, and show that in the new
coordinate frame the evolution of the slow variables on the slow time scale is inde-
pendent of the fast variables to lowest order in a small parameter. Several examples
that illustrate the numerical accuracy of the reduction are presented, and an extension
of the reduction method to three or more time scale networks is discussed.
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1 Background

In many complex reaction networks the reactions occur on vastly different time scales.
Some reactions dominate the initial dynamics and may reach a pseudo-steady state
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quickly, whereas others occur slowly and may dominate the dynamics on a long time
scale. To fix terminology, we call the former fast reactions and the latter slow reactions.
Regardless of whether a deterministic or stochastic model is used, the dynamics of
such systems are described by a large number of variables and differential equations
with kinetic parameters of widely-differing orders of magnitude. As a result, accu-
rate computations that resolve the fast and slow time scale dynamics for very large
networks of the kind that arise in studies of metabolism, signal transduction, gene
control, and developing systems are computationally challenging. Moreover, the slow
dynamics are often of primary interest, and to analyze them one has to construct the
governing equations for slowly-varying quantities. In this paper we introduce tech-
niques for identifying these equations for deterministic models of reaction networks;
a multi-time-scale stochastic analysis will be developed in a sequel. Throughout we
deal only with well-mixed systems at constant temperature and volume, which can be
described by systems of ordinary differential equations.

Classical singular perturbation techniques are based on a separation of variables
into those that vary rapidly and those that change slowly on the chosen time scale.
This leads to a system of equations of the form

dx

dt
= f (x, y, ε)

ε
dy

dt
= g(x, y, ε)

(1)

wherein ε is a small parameter and x (resp., y) is a slow (resp., fast) variable on the
t time scale. Well-known results such as Tikhonov’s theorem (Tikhonov 1952) give
conditions on the function g under which y can be eliminated on the slow time-scale,
and establish precise estimates of how well the reduced system obtained by eliminat-
ing y approximates the dynamics of the full system. In the literature on chemical and
biochemical networks, the reduction is known as the partial-equilibrium assumption
(PEA) if it is obtained by setting the net reaction rate of certain reactions to be zero,
while the quasi-steady-state hypothesis (QSSH) or the quasi-steady-state assumption
(QSSA) is obtained by setting the time derivative of the concentration of fast species
or radicals to be zero (Lam 1993; Lam and Goussis 1994); the Michaelis-Menten
approximation of enzyme kinetics is an example of an application of the QSSA. One
of the earliest rigorous analyses of QSSA in the reaction kinetics is by Acrivos et al.
(1963), who analyzed four kinetic schemes in the framework of singular perturba-
tion theory; another is due to Heineken et al. (1967) who did a rigorous analysis of
the Michaelis-Menten scheme. A review of the technique and other applications to
reaction problems is given in Segel and Slemrod (1982).

However, application of the classical singular perturbation techniques requires a
classification of the variables into slow and fast types, whereas in complex reaction
networks it is the processes i.e., reactions that are classified as either fast or slow, and
species can participate in both fast and slow processes. Typically kinetic equations are
written in the form

dc

dt
= F(c) (2)
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wherein c is a vector of species concentrations (or some other measure of the amounts)
and F(c) is generated by summing all contributions to the rate of change of a species
due to the reactions in which it participates. Except in simple cases such as leads to
the Michaelis-Menten equation, one cannot separate species into fast and slow types,
since a species may participate in both fast and slow reactions, and thus there are both
large and small terms on the right-hand side of (2). Thus a preliminary step is needed
in which one identifies new variables that can be classified as either fast or slow.

There is a long history of different analytical approaches to the reduction of chem-
ical reaction networks and solution of the underlying equations (King and Altman
1956; Kistiakowsky and Shaw 1953; Park 1974; Snow 1966). For example, King and
Altman (1956) were one of the first to apply graph-theoretic methods for the solution
of linear algebraic systems to find steady state distributions in networks of first-order
reactions. More recently Kijma and Kijima (1982) developed procedures for simpli-
fying first-order reversible reactions in which there are slow and fast steps by applying
the QSSA. They classified a species as fast or slow according to whether the species is
a reactant of a fast reaction or not, and lumped species into groups characterized by the
connectivity within the group. It will be seen later that the graph-theoretic framework
we develop subsumes their approach. Schauer and Heinrich considered the outer solu-
tion (which is the slowly varying component) in general nonlinear reactions directly
by constructing a regular expansion in the small parameter and deriving equations for
the evolution of slow variables. Our approach is similar in spirit but more complete,
in that we derive explicit evolution equations for both the slow and the fast variables.
Their approach has been discussed in the framework of Fenichel’s theory of singular
perturbation (Stiefenhofer 1998), but the reduction to evolution equations is not carried
out. More closely related to the present work is that in Kumar and Daoutidis (1999),
where reductions of some typical models in chemical engineering are considered.

In the last twenty-five years there has also been a great deal of work aimed at com-
putational algorithms for the reduction of multi-time-scale chemical kinetics problems
and approximation of the slow evolution. A geometric description of the steady-state
(SSA) and equilibrium approximations (EA) for low-order systems (Fraser 1988), and
more accurate and implicit representations for the slow manifold in enzyme kinet-
ics models amenable to iterative approximation schemes have appeared (Roussel and
Fraser 1990, 1991). In a later work (Roussel and Fraser 2001), these authors developed
geometric methods for model reduction of enzyme kinetics and obtained reduced equa-
tions from the governing differential equations. Mass and Pope developed the intrinsic
low-dimensional manifold (ILDM) method which gives an approximation of the slow
manifold (Maas and Pope 1992). An explicitly computational approach, called com-
putational singular perturbation (CSP) hinges on decomposing the right-hand side
of (2) as a sum of elementary modes and deriving equations for the amplitudes of
the modes (Lam 1993; Lam and Goussis 1994). More recently the CSP method has
been developed into an efficient method for model reduction by many researchers.
A detailed review of the CSP method is given in Gorban and Karlin (2003). Exten-
sions of the CSP method in the form of improved algorithms for approximating fast
and slow dynamics of stiff systems (Goussis and Valorani 2006) or for simplication
of chemical kinetics (Valorani et al. 2006) have been developed. Furthermore, it is
shown in Kaper and Kaper (2004) and Zagaris et al. (2004) that the CSP method gives
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the simultaneous approximation of the slow manifold and the tangent spaces to the
fast fibers at their base points and each iteration of the CSP algorithm improves
the accuracy of the approximation by one order of ε. It will be of interest to study the
computational efficiency of CSP with an implementation of the method developed
herein in the future.

Our objectives here are to reduce the underlying graph of complex reaction net-
works, to develop the methods for identifying fast and slow variables and their corre-
sponding evolution equations in the reduced reaction networks, to identify the correct
initial conditions for the these new variables, to clarify the geometric meaning of the
QSSA in such systems, and to obtain the equations for the slow dynamics explicitly.
Under the nonsingularity condition stated later, our reduction involves setting the rates
of fast reactions equal to zero, and thus there is a similarity to the previously-described
PEA, but our approach guarantees the existence of a local coordinate system based
in part on the level sets of the rates of the fast reactions. We illustrate the numerical
accuracy of the reduction method by applying it to several examples.

2 The deterministic description of chemical reaction networks

We begin with some background for a general deterministic description of reacting
systems; a more detailed exposition is given in Gadgil et al. (2005), Othmer (1979)
and Othmer (1981).

Suppose that the reacting mixture contains the set M of m chemical species Mi

that participate in a total of r reactions. Let νi j be the stoichiometric coefficient of
the i th species in the j th reaction. The νi j are non-negative integers that represent
the normalized molar proportions or stoichiometric coefficients of the species in a
reaction. Each reaction is written in the form

∑

i

reac.
νreac

i j Mi →
∑

i

prod
ν

prod
i j Mi j = 1, . . . r, (3)

where the sums are over reactants and products, respectively in the j th reaction. In this
formulation, the forward and reverse reaction of a reversible pair are considered sepa-
rately, as two irreversible reactions. Once the reactants and products for each reaction
are specified, the significant entities so far as the network topology is concerned are
not the species themselves, but rather the linear combinations of species that appear
as reactants or products in the various elementary steps. These linear combinations of
species are complexes (Horn and Jackson 1972), and we suppose that there are p of
them. A species may also be a complex as is the case for first-order reactions. Once
the complexes are fixed, their composition is specified unambiguously, and we let ν

denote the m × p matrix whose j th column encodes the stoichiometric amounts of
the species in the j th complex. Note that we allow proportional columns of ν to allow
reactions such as A → B and 2A → 2B, which are distinct. Finally, we assume
that changes in temperature, pressure and volume V of the mixture during reaction
are negligible. Thus the state of the system is specified by the concentration vector
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c = (c1, . . . , cm)T ∈ R̄
+
m , where ci is the non-negative concentration of species Mi

measured in moles/liter.
The set of reactions gives rise to a directed graph G as follows. Each complex is

identified with a vertex Vk in G and a directed edge E� is introduced into G for each
reaction. The topology of G is encoded in its vertex-edge incidence matrix E , which
is defined as follows.

Ei� =
⎧
⎨

⎩

+1 if E� is incident at Vi and is directed toward it
−1 if E� is incident at Vi and is directed away from it

0 otherwise
(4)

Since there p complexes and r reactions, E has p rows and r columns, and every col-
umn has exactly one +1 and one −1. Each edge carries a nonnegative weight R�(c)
given by the intrinsic rate of the corresponding reaction.

An undirected graph G0 is obtained from G by ignoring the orientation of the
edges, i.e. G0 consists of the set of vertices and a set of unordered pairs (Vi , Vj ) ∈ V
that are undirected edges. There are at most two edges connecting any pair of ver-
tices in G0 and when it is necessary to distinguish between them they can be writ-
ten (i, j)1 and (i, j)2. Vertices Vi and Vj are said to be adjacent if (i, j) is in the
edge set of G. An edge sequence of length k − 1 is a finite sequence of the form
(Vi1 , Vi2)(Vi2 , Vi3) . . . (Vik−1 , Vik ), k ≥ 2. When the edges in an edge sequence are all
oriented in the same direction, the sequence is a directed edge sequence in G. When
i1 = ik , the sequence is closed, and otherwise it is open. A path in G0 is an open
edge sequence in which all vertices are distinct. A cycle in G0 is a closed path in
which internal vertices are distinct. Directed paths and directed cycles in G are defined
analogously to their counterparts in G0, and Vj is said to reachable from Vi if there is
a directed path from Vi to Vj .

An oriented cycle in G is a cycle in G0 with an orientation assigned by an order-
ing of the vertices in the cycle. A cycle matrix B associated with G is defined as
follows:

Bi j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+1 if E j is in the i th oriented cycle, and the cycle
and edge orientation coincide

−1 if E j is in the i th oriented cycle, and the cycle
and edge orientation are opposite

0 otherwise

B is an r ′ × r matrix, where r ′ is the number of independent cycles in G0. It has a
row in which all nonzero entries have the same sign for every directed cycle in G.
G0(resp., G) is said to be acyclic if it contains no cycles (resp., directed cycles). G0

is connected if every pair of vertices is connected by a path. A subgraph of G0 is a
tree if it is connected and acyclic, and a spanning tree if it is a tree that contains all
the vertices of G0. A directed graph G is a directed tree if the corresponding graph in
G0 is a tree, and a subgraph of G is a directed spanning tree if the tree is directed and
contains all the vertices of G.
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A component is a connected subgraph G1 ⊂ G0 that is maximal with respect to
the inclusion of edges, i.e. if G2 is a connected subgraph and G1 ⊂ G2 ⊂ G0, then
G1 = G2. An isolated vertex is a component and every vertex is contained in one and
only one component. A directed graph G is strongly connected if for every pair of verti-
ces (Vi , Vj ), Vi is reachable from Vj and vice-versa. A strongly connected component
of G (a strong component for short) is a strongly-connected subgraph of a directed
graph G that is maximal with respect to inclusion of edges. As in the undirected graph,
an isolated vertex is a strong component. A directed graph is strongly connected if
and only if there exists a closed, directed edge sequence that contains all the edges
in the graph. Strong components in the directed graph G are classified into three dif-
ferent types: sources, internal strong components and absorbing strong components.
A source is a strong component in which no edges from other strong components
terminate. An internal strong component is a strong component in which edges from
other strong components terminate and from which edges to other strong components
originate. An absorbing strong component is a strong component from which no edges
to other strong components originate. If G has p vertices and q components then it is
easily shown that the rank of E is ρ(E) = p − q (Chen 1971).

A cocycle of G0 is a minimal set of edges whose removal increases the number of
components by one. A cutset is a cocycle or an edge-disjoint union of cocycles, and
an oriented cutset in G is a cutset in G0 with an orientation defined as follows. If V1
and V2 are the disjoint subsets into which V is partitioned by a cutset, the orientation
of the cutset is specified by ordering the subsets as (V1, V2) or as (V2, V1). The cutset
matrix Q of a directed graph G is the matrix obtained by setting

Qi j =

⎧
⎪⎪⎨

⎪⎪⎩

+1 if E j is in cutset i and the orientations of the cutset and edge coincide
−1 if E j is in cutset i and the orientations of the cutset and edge

are opposite
0 otherwise

In the current framework the evolution of the composition of a reacting mixture is
governed by

dc

dt
= νE R(c), c(0) = c0 (5)

where the j th column of ν gives the composition of the j th complex and R�(c) is the
rate of the �th reaction, or equivalently, the flow on the �th edge of G. A flow on G is a
real-valued function on the edge set of G, and for a given choice of cycles and cutsets,
has the unique decomposition

f = f 0 + f 1 = BT w +QT z (6)

where f 0 ∈ N (E) and f 1 ∈ R(ET ). The vectors w and z are the cycle and cutset
weights associated with the flow f . A flow is balanced when z = 0 ( f 1 = 0),
cobalanced when w = 0 ( f 0 = 0), and positive, nonnegative or strictly nonnegative
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according as f > 0, f >=0 or f ≥ 0, respectively.1,2 One can prove that there is a
positive balanced flow at steady state if and only if every component of G is strongly
connected (Othmer 1979).

The matrix ν̂ ≡ νE is called the stoichiometric matrix when the composition of
complexes and the topology of G are not encoded separately, as we do here (Aris
1965). One can interpret the factored form in (5) as follows: the vector R gives the
flows on edges due to reactions of the complexes, the incidence matrix maps this flow
to the sum of all flows entering and leaving a given node (a complex), and the matrix
ν converts the net change in a complex to the appropriate change in the molecular
species.

A special class of rate functions is that in which the rate of the �th reaction can be
written as

R�(c) = k� Pj (c) (7)

for every reaction that involves the j th complex as the reactant. This includes ideal
and non-ideal mass action rate laws, in which the rate is proportional to the product
of the concentrations or activities of the species in the reactant complex, each con-
centration or activity raised to a power equal to the stoichiometric coefficient of the
corresponding species in the complex. Since elementary chemical steps almost always
involve at most two reactants, this form is sufficiently general for most purposes. In
the case of ideal mass action kinetics (IMAK), which are used later,

Pj =
n∏

i=1

(ci )
νi j . (8)

For IMAK (7) implies that

R(c) = K P(c) (9)

where K is an r × p matrix with k�j > 0 if and only if the �th edge leaves the j th
vertex, and k�j = 0 otherwise.

The topology of the underlying graph G enters into K as follows. Define the exit
matrix Ee of G by replacing all 1’s in E by zeroes, and changing the sign of the result-
ing matrix. Let K̂ be the r × r diagonal matrix with the k�’s, � = 1, . . . r , along the
diagonal. Then it is easy to see that K = K̂ET

e and therefore

dc

dt
= νE K P(c) = νE K̂ET

e P(c). (10)

It follows from the definitions that (i) the (p, q)th entry, p �= q, of E K̂ET
e is nonzero

(and positive) if and only if there is a directed edge (q, p) ∈ G, (ii) each diagonal entry

1 Here and hereafter, y > 0 means all components are positive, y ≥ 0 means yi ≥ 0 and not all are zero,
and y >=0 means all may vanish.
2 The balanced flows defined here correspond to the complex-balanced flows in Horn (1972).
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of E K̂ET
e is minus the sum of the k’s for all edges that leave the j th vertex, and (iii)

the columns of E K̂ET
e all sum to zero, and so the rank of E K̂ET

e is≤ p− 1. When all
complexes are species and all reactions are first-order, ν = I for a closed system and
ν = [I|0] for an open system, where I is the m × s identity matrix and 0 is the zero
vector. In this case the right-hand side of (10) reduces to the usual form K c where K
is defined as above.

As it stands, (8) includes all reacting species, but those whose concentration is con-
stant on the time scale of interest can be deleted from each of the complexes in which
it appears and its concentration can be absorbed into the rate constant of any reaction
in which it participates as reactant. As a result of these deletions, it will appear that
reactions which involve constant species do not necessarily conserve mass. Further-
more, some complexes may not comprise any time-dependent species; these will be
called zero or null complexes. Each null complex gives rise to a column of zeroes in ν

and the rate of any reaction in which the reactant complex is a null complex is usually
constant. For instance, any transport reaction of the form M0 → Mi introduces a
null complex and the corresponding flux of Mi represents a constant input to the
reaction network, provided that the rate of the transport step does not depend on the
concentration of a time-dependent species. Of course, a constant species that appears
in a complex which also contains a variable species likewise represents an input to the
network, and to distinguish these from inputs due to null complexes, the former are
called implicit inputs and the latter are called explicit inputs.

2.1 Reaction invariants

Combinations of species that are invariant under the flow defined by (5) play an impor-
tant part in the reduction of any system with multiple time scales, and in this section
we analyze the existence of such invariants. Given the evolution equation

dc

dt
= νE R(c), (11)

a vector a ∈ Rm defines an invariant linear combination of concentrations if

〈a, νE R(c)〉 = 0, (12)

for then

〈a, c(t)〉 = 〈a, c(0)〉
where 〈, 〉 denotes the Euclidean inner product in Rm . The set of solutions a of (12)
can be represented by the direct sum of three disjoint subspaces I j defined as follows.

I1 = N [νT ]
I2 = span{a ∈ Rm | a ∈ R[ν], νT a ∈ N [ET ]}
I3 = span{a ∈ Rm | 〈ET νT a, R(c)〉 = 0 for all c ∈ R̄+m and ET νT a �= 0}.

Hereafter i j ≡ dim I j , j = 1, 2, 3.
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Invariants in I1 depend only on the stoichiometry of the complexes and represent
linear combinations of species that are preserved by the reactions. Since the νi j are
non-negative, there is no non-trivial a ∈ I2 for which a ≥ 0, by which we mean ai ≥ 0
for all i . Thus these invariants represent differences of species that are preserved.

For the second type I2 ⊂ R[ν], and more precisely,

I2 = preimage
(
R[νT ] ∩N [ET ]

)
.

All invariants in I1 ⊕ I2 are independent of the reaction rate functions and thus are
called kinematic invariants. Since N [(νE)T ] = I1⊕ I2, a vector a ∈ Rm is a kinematic
invariant of the kinetics if

a ∈ N [(νE)T ] = N [ν̂T ].

We have the orthogonal direct sum decomposition

Rm = N [(νE)T ] ⊕R[νE].

and call R[νE] the reaction subspace. The intersection of the coset of R[νE] through
a point c0 ∈ R̄+m with R̄+m is called the reaction simplex, denoted Ω , through c0, i.e.,

Ω(c0) = {c0 +R[νE]} ∩ R̄+m .

Given an initial condition c0, the solution of (5) can be written as

c(t)− c0 = νE
t∫

0

R(c(τ ))dτ

and so c(t)−c0 ∈ R[νE]. Therefore all trajectories of the Eq. (5) with an initial condi-
tion c0 lie on the reaction simplex Ω(c0). Clearly the structure of Ω(c0) is determined
by the kinematic invariants, and for example, the existence of a positive kinematic
invariant is equivalent to compactness of the reaction simplex. The following is proven
in Othmer (1979).

Theorem 1 Let 0 ≤ c0 <∞ be given. Then Ω(c0) is compact if and only if there is
a vector y > 0 in N [(νE)T ]

It follows from this theorem that Ω(c0) is compact for all closed systems, since the
total mass of the reacting species is conserved, and this implies that there is a positive
y in N [(νE)T ]. If the system is open, which implies that there is a null complex, one
can show that there is no positive element in N [(νE)T ], and so the reaction simplex
is not compact (Othmer 1979). Thus there is no a priori guarantee that solutions are
bounded, and further analysis is required.
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2.2 The deficiency of a kinetic mechanism

For later purposes we relate the number of kinematic invariants to other indices of the
network as follows. First note that

R[νT ] ∪N [ET ] = N [ν]⊥ ∪R[E]⊥ = (N [ν] ∩R[E])⊥,

where [S]⊥ denotes an orthogonal complement of a subspace S. Thus, it follows that

dimR[νT ] + dimN [ET ] − dim(R[νT ] ∩N [ET ]) = dim(N [ν] ∩R[E])⊥

and so

m − i1 + q − i2 = s + q = p − dim(N [ν] ∩R[E]).

where s ≡ m − (i1+ i2). The integer δ ≡ dim(N [ν] ∩R[E]) is called the deficiency
(Horn and Jackson 1972), and is alternatively given by

δ = p − q − s = ρ(E)− ρ(νE).

Thus δ is the difference between the maximal number of independent reactions based
on the structure of the graph and the actual number of independent reactions when the
stoichiometry is taken into account. When it vanishes ν does not annihilate any ele-
ments in R[E], i.e., ν is one-to-one from R[E] to R[νE] and so the reaction subspace
is isomorphic to R[E]. It is clear that if δ = 0, then either a steady-state flow vanishes
identically or is balanced, and thus an alternate definition of δ is that it is the maximum
number of independent cutsets in any flow that is annihilated by νE (Othmer 1979).

The dimension of the third subspace of invariants, I3, can be determined as follows:
First, notice that one can write R = R1+R2, where R1 ∈ N [E] and R2 ∈ R[ET ]. Any
Ω ∈ I3 can be written as Ω = Ω1 +Ω2, where Ω1 ∈ N [ET νT ] and Ω2 ∈ R[νE].
Thus,

〈ET νT , R(c)〉 = 〈Ω2, νE R(c)〉

and so it is necessary that either R2(c) = 0, in which case R(c) is identically propor-
tional to an oriented cycle, or the cutset part must satisfy

〈Ω2, νE R2(c)〉 = 0.

The latter requires that either Ω2 = 0, which means that Ω2 is not in I3, or νE R2(c)
must vanish identically. Consequently, i3 is certainly zero if δ = 0 and G is acyclic,
and if δ > 0, i3 > 0 only if the cutset part is such that E R2(c) ∈ N [ν] for all c ∈ R̄+m .
Therefore i3 ≤ δ whenever it is positive, and dc/dt = 0 in this case. Obviously this
is a very degenerate situation, and we do not consider it further.
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Next we show that one can choose a basis for N (νE)T of vectors with integer
components. To see this note that since the components of the stoichiometric matrix
νE are integers, the system of linear equations

(νE)T · a = 0. (13)

has integer-valued coefficients. Therefore the solutions of this system are vectors in
Qm , the m-dimensional set of vectors with rational entries, as can be seen by using
Gaussian elimination or another method. Define iN ≡ i1 + i2 = dim[N (νE)T ] and
define {a′i , i = 1, . . . , iN } as a set of independent solutions of (13) over Q. Let L be
the least common multiplier of denominators of components of all a′i , i = 1, . . . , iN ,
and set ai = L ·a′i for i = 1, . . . , iN . Then {ai , i = 1, . . . , iN } is a basis of N [(νE)T ]
with integer components. We define the matrix A over the integers Z as the iN × m
matrix whose rows are the vectors ai , i.e.,

A = [a1| · · · |aiN ]T .

For any c ≥ 0 ∈ Rm , 〈ai , c〉 for i = 1, . . . , iN is constant under the flow of (5),
i.e.

Ac = Ac0

where c0 is an initial condition. Therefore the scalar equation
∑

j Ai j c j = bi

defines a conserved quantity for each i = 1, . . . , iN . Since N [A] = R[νE], the
set of all the points that satisfy the conservation relations is just the reaction simplex
Ω(c0).

With the further restriction that the reaction simplex is compact, it can be shown
that one can choose a basis of N [(νE)T ] in which the components are nonnegative
integers. Thus if the reaction simplex is compact, the equation A · c = b implies
conservation relations for the positive sums of concentrations of certain species.

Theorem 2 If the reaction simplex Ω(c0) is compact, then there is a basis for N [(νE)T]
for which all basis vectors have nonnegative integer components.

Proof First note that if Ω(c0) is compact, Theorem 1 implies that there is a vector
z > 0 such that z ∈ N [(νE)T ]. Consider a basis {b1, . . . , bm−r } of N [(νE)T ] , where
r = ρ(νE). One can choose each bi ∈ Zm since (νE)T is a matrix over Z and further-
more, one may assume by Theorem 1 that one of bi , say, b1 is positive. Thus for each
i = 2, . . . , m − r there are positive integers λi such that

7b′i ≡ bi + λi b1 ≥ 0.

Set b′1 = b1. Then the set {b′1, . . . , b′m−r } is linearly independent and b′i ∈ N [(νE)T ]∩
Z̄+m . Therefore {b′1, . . . , b′m−r } is a basis of N [(νE)T ].
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2.3 Kinetic equilibria

A point c at which νE R(c) = 0 is called a kinetic equilibrium point of the system,
and the set of such points

K ≡ {c : νE R(c) = 0} (14)

is called the kinetic equilibrium manifold. If νE has full rank, then the kinetic equi-
librium manifold can be represented as a set

K ≡ {c : R(c) = 0}.

If the rank of the Jacobian matrix Dc[νE R(c)] ( of Dc[R(c)] if νE has full rank)
is s, then Eq. (2.3) has s functionally independent relations, and it follows from the
implicit function theorem that the set K locally defines an m− s dimensional subman-
ifold.

3 Reduction of the reaction graph

For the analysis done later, and for the general analysis of a large system, it is advanta-
geous to convert the system into a dynamically equivalent system by identifying equal
complexes, removing the cycles, and removing the deficiency.

Step 1: Identification of equal complexes.

A large reaction system may have inflows from many different sources and outflows
into many different sinks. These are all null complexes in the current framework, and
such reaction networks can be simplified by identifying all explicit inputs and outputs
and redefining the graph as follows.

Suppose that the i th complex C(i) is identical to the j th complex C( j), where
i �= j . Let ν(i) denote the i th column of ν and let E ( j) denote the j th row of E .
Then ν(i) = ν( j). In this case, we can remove one of ν(i) or ν( j), say, ν( j) by
reducing

νE = [ν(1) . . . ν(i) . . . ν( j) . . . ν(p)]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

E (1)

. . .

E (i)

. . .

E ( j)

. . .

E (p)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

to

ν′E ′ = [ν(1) . . . ν(i) . . . ν(p)]

⎡

⎢⎢⎢⎢⎣

E (1)

. . .

E (i) + E ( j)

. . .

E (p)

⎤

⎥⎥⎥⎥⎦
.
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Here E ′ is the incidence matrix of a graph G′ obtained from G by moving all edges
incident at the j th node to the i th node and removing the j th node. Notice that G′ may
have cycles even if G has none.

Step 2: Removal of cycles.

We suppose that the directed graph G of a system includes at least one cycle. We
can choose a spanning tree in G and write

E = [E0|E1],

where E0 contains the edges in the chosen tree, and E1 contains all other edges. Since
there are p nodes and q components in G, a set of p − q independent cutsets can be
chosen so that every edge of the tree is in one and only one cutset, and so that the
orientation of the cutset through a tree edge agrees with the orientation of the tree edge.
The resulting cutsets comprise a fundamental set and the cutset matrix for this set is

Q = [I |Q1],

where Q1 contains the edges not in the tree.
Since an edge of the tree intersects exactly one cutset, E1 = E0Q1, and therefore

E = E0[I |Q1]. Thus,

νE R(c) = νE0[I |Q1]R(c) = νE0 R0(c),

where R0(c) = [I |Q1]R(c). Since E0 is the incidence matrix for a tree, the new net-
work, whose incidence matrix is E0, contains no cycles. However, in removing the
cycles we have to reassign the rates on edges not in the tree to the tree edges. The
definition of R0(c) shows that the new rate on a tree edge is the sum of the signed
rates associated with the edges in the unique cutset containing the tree edge, with the
sign of each rate in the sum fixed by the orientation of the corresponding edge.

It may not be easy to find a spanning tree and identify all cycles in the directed
graph G in large networks, but there are established algorithms for doing this. The well-
known algorithms for finding a spanning tree are “depth-first search” and “breadth-
first search” algorithms, and both types have computational complexity O(max(p, r))

where p is the number of vertices and r is the number of edges in the directed graph
(Gibbons 1985). Moreover, the computational complexity for finding all cycles in a
connected graph is O(p3) (Gibbons 1985). Thus in the general case in which the graph
G of the system consists of q components Gi , i = 1, . . . , q, each of which has ri edges
and pi nodes, the computational complexity for finding all cycles in G is O(q p̂3),

where p̂ = maxi {pi }.
Step 3: Removal of elements in N [ν] ∩R[E].

Finally, we remove the elements in N [ν] ∩R[E]. Suppose that the intersection is
spanned by δ column vectors Ê( j) such that

Ê( j) =
p−q∑

i=1

di jE0,(i) j = 1, . . . , δ,
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where E0,(i) denotes i th column of E0. Let D = [di j ] so that D is (p − q) × δ

matrix. Since there are no E0,(i) ∈ N [ν] after equal complexes are identified, we
can assume without loss of generality that the first p − q − δ columns of E0 span
(N [ν] ∩R[E])c ∩R[E], the complement of N [ν] ∩R[E] in R[E]. Then

E R(c) = E0[I |Q1]R(c) = E0 R0(c)

= E0 H H−1 R0(c) ≡ Ẽ R̃(c)

where the matrix H is a (p − q)× (p − q) matrix defined as H = [C |D] and C is a
(p−q)× (p−q− δ) matrix, which can be determined by which reactions are chosen
to be retained, so that

Ẽ = E0 H = [Ẽ0 | Ê(1) · · · Ê(δ)],

where Ẽ0 ≡ E0C is a p × (p − q − δ) submatrix of E0.
The matrix Ẽ is not the incidence matrix of a graph in general, but we recover

one from it by dropping the last δ columns. The truncated Ẽ defines the graph of the
network G̃ equivalent to G. Of course the last δ rows of H−1 must also be dropped, and
the resulting vector R̃(c) gives the rate vector for G̃. It can happen that in the reduced
system there are non-reacting complexes, as indicated by zero rows in Ẽ . These can
be removed from ν and Ẽ can be collapsed vertically. It should also be noted that we
do not remove all z ∈ N [ν], but only those in N [ν] ∩ R[E]. Certain dependencies
between complexes are dynamically irrelevant, and when δ = 0 they all are. The
foregoing shows that every network is dynamically equivalent to one for which δ = 0.
The following example shows the reduction steps in detail.

Example The Prigogine–Lefever mechanism We consider the Prigogine–Lefever
mechanism (Prigogine and Lefever 1968), which is defined as:

A
k1→ X

k2→ E B + X
k3→ Y + D 2X + Y

k4→ 3X.

Assume that A, B, D, E are time-invariant, and thus null complexes. C(1) = X, C(2) =
Y + D, C(3) = 2X + Y, C(4) = 3X, C(5) = A, C(6) = E, C(7) = B + X .

Step 1: Identification of the equal complexes Since A, B, D and E are null complexes,
we can identify C(5) = C(6) and C(1) = C(7) = X and C(2) = Y . Then the graph
is

C(5)
3
�
4

C(1)
1→ C(2), C(3)

2→ C(4). (15)

We see that

ν =
[

1 0 2 3 0
0 1 1 0 0

]
,
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E =

⎡

⎢⎢⎢⎢⎣

−1 0 −1 1
1 0 0 0
0 −1 0 0
0 1 0 0
0 0 1 −1

⎤

⎥⎥⎥⎥⎦
,

and R1 = k3bc1, R2 = k4c2
1c2, R3 = k2c1, R4 = k1a, where c1 and c2 are con-

centrations of species X and Y and a and b are constant concentrations of A and B,
respectively.

Step 2: Removal of cycles By dropping reaction 4 in the graph (15), we define the
spanning tree

C(5)← C(1)→ C(2), C(3)→ C(4).

We define the cutsets in terms of the reactions

C(1)
1→ C(2), C(3)

2→ C(4), C(1)
3→ C(5) (16)

and assume that the orientation of each cut coincides with the orientation of the edge.
The incidence matrix is

E0 =

⎡

⎢⎢⎢⎢⎣

−1 0 −1
1 0 0
0 −1 0
0 1 0
0 0 1

⎤

⎥⎥⎥⎥⎦
,

the cutset matrix is

Q =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 −1

⎤

⎦ = [I3|Q1].

and the rate function is

R0 = QR =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 −1

⎤

⎦

⎡

⎢⎢⎣

R1
R2
R3
R4

⎤

⎥⎥⎦ =
⎡

⎣
R1
R2

R3 − R4

⎤

⎦ .

Thus, after removal of the cycle we have a reduced graph

C(5)
R3−R4←− C(1)

R1−→ C(2), C(3)
R2−→ C(4).

Step 3: Removal of elements in N [ν] ∩R[E] Since ρ(E) = 3, δ = 1 and N [ν] ∩
R[E] = span {(−1, 1,−1, 1, 0)T }. If we choose to retain the reactions 1 and 3 in (16),
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Fig. 1 A flow chart that describes the procedure for the reduction of a graph

then we have

H =
⎡

⎣
1 0 1
0 0 1
0 1 0

⎤

⎦ .

After some elementary computations, we obtain a reduced graph, which is dynamically
equivalent to the given system,

C(5)
R3−R4←− C(1)

R1−R2−→ C(2).

One can also see that if we retain reactions 2 and 3 in (16), then a reduced graph is

C(1)
R3−R4−→ C(5), C(3)

−R1+R2−→ C(4).

The scheme for reducing a general network to a dynamically equivalent network is
shown in detail in Fig. 1.

4 The QSSA in deterministic systems

By a fast or slow reaction we mean one that occurs more or less frequently compared
to other reactions, and this is determined by the magnitude of the reaction rate function
R for the reaction in question in the particular region of composition space that is of
interest. Of course a reaction that is fast in one region of the state space may be slow
in other regions, and the definition of fast and slow reactions may not be uniform
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through the entire state space. For example, consider a cycle, A
k1→ B

k2→ C
k3→ A,

where k1 � k2, k3. For the initial condition (A, B, C) = (100, 1, 1), it is obvious that

the rate of the reaction A
k1→ B is much larger than the others initially. However, as

the system evolves the rate of this reaction decreases and eventually, at steady state, it
becomes the same as the rates of the other two reactions. Thus, it may seem contradic-
tory to separate these, but in fact the separation stems from the initial differences in
the rates. If the QSSA is applicable the fast reactions quickly evolve to a region of state
space in which their rates are small and comparable to the rates of the slow reactions.
In the formal reduction, the leading-order approximation is to solve for the manifold
defined by the vanishing of the rates of the fast reactions. However, as we indicated in
the Introduction, a difficulty in reducing kinetic networks that involve both fast and
slow steps is the identification of appropriate fast and slow variables, since they are
usually not chemical species. To illustrate this we consider a system of the form

dc

dτ
= (K0 + εK1)c, (17)

where c ∈ R+m . As written this is a regular perturbation problem, but as it stands we
cannot determine which components vary rapidly and which components vary slowly.
However it is clear that, to lowest order in ε, the slow reactions encoded in K1 only
affect the stationary modes of the fast dynamics encoded in K0.

We assume that the underlying graph of the kinetic network consists of a single
strongly–connected component, for otherwise we apply the following to each compo-
nent. It follows that ρ(K0 + εK1) = m − 1 and a left eigenvector corresponding to
the zero eigenvalue is um ≡ (1, 1, . . . , 1)T (Othmer 1979). Let P : Rm → N (K T

0 );
then I − P : Rm → R(K0) and we have

c = Pc + (I − P)c ≡ ξ + η. (18)

Using this in (17) leads to

dξ

dτ
+ dη

dτ
= (K0 + εK1)(ξ + η), (19)

and applying P and I − P leads to

dξ

dτ
= εPK1(ξ + η) (20)

dη

dτ
= K0η + ε((I − P)K1)(ξ + η). (21)

The first of these gives the slow dynamics (on the τ -scale) and the second gives the
fast dynamics. On the slow scale t = ετ , we rewrite (20) and (21) to lowest order as

dξ

dt
= PK1(ξ + η). (22)

η = um (23)
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The second of these defines the slow manifold to lowest order in ε, and the first defines
the flow on that manifold, again to lowest order. This example illustrates the general
procedure concisely: first one must find a suitable representation of the solutions of
the ‘fast’ dynamics (governed by K0 in this example), and then eliminate these fast
variables to obtain an evolution equation for the slowly-varying quantities. Of course
the slow manifold has to be ‘attracting’ in a suitable sense, else the reduction is of no
interest. From this example one sees that in general neither the fast nor the slow vari-
ables are chemical species. In addition, when some of the reactions are bimolecular
the reduction is more difficult.

Hereafter we assume that for initial conditions in a specified region of state space
there is a significant separation in the rates of the reactions in the network. When all
slow reactions are switched off in the network, i.e. all arrows for slow reactions are
removed in the directed graph of the system, the remaining system is called the fast
subsystem of the full system. The graph of the fast subsystem, which we denote by
G f , is the disjoint union of the components, denoted by G f

α , which consist of the edges
associated with the fast reactions and nodes connected by those edges. Note that if a
complex is affected by only slow reactions, i.e. a node in G has only edges associated
with slow reactions incident at it, then the node is an isolated node in G f , and so it
is a component G f

α for some α. Thus, in general the graph G f has more components
than G. We assume that there are r f fast reaction and rs = r − r f slow reactions in
the region of interest in concentration space.

In a reaction network with two distinct time scales one can separate the reactions into
fast and slow reactions according to their rates, and the governing evolution equation
takes the form

dc

dτ
= νE f R f (c)+ ενE s Rs(c)

=
[
νE f |νE s

] [ R f (c)
εRs(c)

]
= νE R(c) (24)

on the fast time scale. Here E f , which is p × r f , and E s , which is p × rs , denote the
incidence matrices of fast and slow reactions, respectively, and R f and Rs denote the
scaled rate functions (now of the same order of magnitude), associated with fast and
slow reactions, respectively. Hereafter we denote the ranks of νE f , νE s and νE by
ρ(νE f ) ρ(νE s) and ρ(νE), respectively. Until stated otherwise, we assume that the
graph of the fast subsystem has been reduced following the procedure in Sect. 3, and
therefore νE f has full rank, i.e., ρ(νE f ) = r f , but νE s may not have full rank unless
the slow reactions are independent. Clearly R(νE f ) ⊆ R(νE) with equality only if
there are no slow reactions.

When there are fast and slow reactions one can also define the kinematic invariants
for the fast subsystem by replacing N [(νE)T ] by N [(νE f )T ]. Notice that N [(νE)T ] ⊂
N [(νE f )T ] and so the basis elements of N [(νE)T ] are represented by linear combi-
nations of the basis elements of N [(νE f )T ]. This implies that conservation relations
for the whole system also hold for the fast subsystem, but not necessarily vice-versa.
As a result, one can define the map P f : Rm → Rm−r f for the fast subsystem that
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represents a vector in N [(νE f )T ] in terms of intrinsic coordinates on N [(νE f )T ].
The associated matrix P f has rows given by basis vectors with integer components
of N [(νE f )T ]. It follows that the reaction simplex for the fast subsystem is given by

Ω f (c0) ≡ {c : c ∈ c0 +R[νE f ]} ∩ R̄+m = {c : P f c = P f c0 ≡ c̃ ∈ Rm−r f } ∩ R̄+m ,

Note that c̃ represents a conserved quantity for the fast subsystem, but it may vary as
slow reactions occur.

The kinetic equilibria for the fast subsystem in a two-time scale network is defined
as in the full system; a point c which satisfies the equation

νE f R f (c) = 0

is called a kinetic equilibrium point for the fast subsystem, and the kinetic equilibrium
manifold K f for the fast subsystem is defined as

K f ≡ {c : νE f R f (c) = 0}. (25)

Since it is assumed that νE f has full rank, this reduces to

K f ≡ {c : R f (c) = 0}. (26)

Clearly K f is the set of all the kinetic equilibrium points of the fast subsystem when all
the slow reactions are switched off, and hereafter we will assume the existence of K f

for the fast subsystem. For a more detailed analysis on the existence of kinetic equi-
librium state of a reaction network and in particular the relationship between kinetic
equilibria and thermodynamic equilibria, see Othmer (1976).

4.1 Preliminary steps in the reduction

If we pattern the reduction of (24) after that of the linear system, we represent c as
in (18), and we split (24) by using a projection P onto N [νE f ], and its complement
I − P . The result is the system

dξ

dτ
= εPνE s Rs(ξ + η) (27)

dη

dτ
= νE f R f (ξ + η)+ ε(I − P)νE s Rs(ξ + η). (28)

This is the analog of (20) and (21). On the slow time scale t the equations become

dξ

dt
= PνE s Rs(ξ + η) (29)

ε
dη

dt
= νE f R f (ξ + η)+ ενE s Rs(ξ + η) (30)

123



C. H. Lee, H. G. Othmer

and to lowest order the second of these leads to

R f (ξ + η) = 0. (31)

It appears from this that ξ is a suitable slow variable and η a suitable fast variable.
If one can solve (31) to obtain η = Ξ(ξ), then using this in (29) gives an explicit
relation for the slow dynamics. However (31) suggests that a more natural coordinate
system may be based on the level sets of R f (c) = 0, for then the fast dynamics relax
to R f (c) = 0 under suitable conditions. The following shows how the remaining
coordinates arise naturally.

We begin with a formal reduction of the full system (24), and assume that the
solution depends on two time scales as follows:

c(t, ε) =
∞∑

i=0

εi ri (t)+
∞∑

i=1

εi si

(
t

ε

)
. (32)

The singular part describes the initial dynamics, and by expansion of this part it follows
that

ε

∞∑

i=0

εi dsi
( t

ε

)

dt
= ενE s Rs

( ∞∑

i=0

εi si

(
t

ε

))
+ νE f R f

( ∞∑

i=0

εi si

(
t

ε

))

Replacing t by τ = t
ε

we obtain

∞∑

i=0

εi dsi (τ )

dτ
= ενE s Rs

( ∞∑

i=0

εi si (τ )

)
+ νE f R f

( ∞∑

i=0

εi si (τ )

)

By expanding and comparing powers of εi term we obtain

ε0 : ds0

dτ
= νE f R f (s0) (33)

ε1 : ds1

dτ
= νE s Rs(s0)+ νE f Ds0 [R f (s0)] · s1 (34)

...
...

where Ds0 [·] denotes the Jacobian of a function · with respect to s0. Since our main
interest lies in the dynamics on the slow time scale, we will not consider the sin-
gular part further, nor will we discuss the matching between the inner and outer
solutions.

A detailed prescription for the latter can be found, for example, in Lin and Segel
(1988).
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To obtain the slow dynamics we use the expansion of the regular part
∑∞

i=0 εi ri (t)
in (24) to obtain

ε

∞∑

i=0

εi dri

dt
= νE f R f

( ∞∑

i=0

εi ri

)
+ ενE s Rs

( ∞∑

i=0

εi ri

)

Comparing the ε0 and ε1 terms, we obtain

ε0 : 0 = νE f R f (r0) (35)

ε1 : dr0

dt
= νE s Rs(r0)+ νE f Dr0 [R f (r0)] · r1 (36)

...
...

We will approximate the solution c(t) by r0(t), and the next step is to determine
r0(t) from the Eqs. (35) and (36). First note that (35) defines the kinetic equilibrium
of the fast subsystem and the set of solutions of this equation is the kinetic equilib-
rium manifold. Since νE f is assumed to have full rank, the manifold is defined as
M f = {c : R f (c) = 0} and dim(M f ) ≤ m − s, where s ≡ ρ(Dc[R f (c)]) ≤ r f .
Since s < m, we have an (m − s)-parameter family of solutions, and r0 is not fully
determined by (35).

Thus we have to obtain an evolution equation for r0 from (36) that does not involve
r1, and this equation should determine the evolution of r0 on K f . This can be done
by utilizing the kinematic invariants determined by the stoichiometry νE f of the fast
subsystem. Recall that c̃ = P f c, and multiply (36) by P f to obtain

dP f r0

dt
= P f νE s Rs(r0)+ P f νE f Dr0 [R f (r0)] · r1

= P f νE s Rs(r0),

where the last step follows from the fact that P f νE f = 0. Since c = r0 + O(ε), to
O(ε) we obtain the reduced equation

dc̃

dt
= P f · νE s Rs(c), (37)

where c lies on the equilibrium manifold K f of the fast subsystem. We earlier saw
that c̃ is invariant under the fast dynamics, and now see how it varies under the slow
reactions.

The reduced equation (37) is a system of m − r f differential equations which
depend implicitly on the variable c. The equilibrium manifold K f of the fast subsys-
tem has dimension m − s, and if s < r f then (37) does not define a vector field on
K f since some directions are inaccessible. Thus we have to require that s = r f , i.e.,
that ρ(Dc[R f (c)]) = ρ(νE f ), and we call this “the rank condition”. In essence this
means that the dimension of the range of the fast stoichiometric matrix νE f is equal
to that of the local tangent space to K f .
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4.2 Reduction to the singularly-perturbed form

We have now motivated using as natural coordinates the level sets of the fast reaction
rate R f and coordinates related to the invariants of the fast dynamics. In this section
we reformulate equation (24) into a standard form with a distinct separation of fast and
slow variables through a local coordinate change, and clarify the geometric meaning
of the reduction. This is done under the condition that the product Dc(R f (c)) νE f is
nonsingular on every positive semiorbit of the governing equation

dc

dt
= 1

ε
νE f R f (c)+ νE s Rs(c), (38)

in the domain of attraction A(K f ) of the manifold K f , and we call this the nonsingu-
larity condition.3 We do not formalize this neighborhood, but trajectories are always
understood to remain in this neighborhood. The formal result is stated as follows.

Theorem 3 Let T (c) be the coordinate change defined by

T (c) =
[P f · c

R f (c)

]
≡
[

α

β

]
,

Then the system (38) can be transformed into the two-time-scale singularly-perturbed
system

dα

dt
= P f · νE s Rs(c) (39)

ε
dβ

dt
= εDc(R f (c))νE s Rs(c)+ Dc(R f (c))νE f β (40)

α(0) = P f c0 (41)

β(0) = R f (c0), (42)

where c = T−1(α, β), if and only if the matrix Dc(R f (c)) νE f is nonsingular in
A(K f ).

Proof First we show that Jacobian of the transformation T is nonsingular (and so T is
a local diffeomorphism) if and only if Dc(R f )νE f is nonsingular. Suppose first that
the matrix Dc(R f )νE f is nonsingular. Since

DcT =
[ P f

Dc R f

]
,

N [DcT ] = N [P f ] ∩ N [Dc(R f )], and nonsingularity of the Jacobian of the trans-
formation T is equivalent to

N [P f ] ∩N [Dc(R f )] = {0}.

3 It is easy to see that the nonsingularity condition implies the rank condition stated earlier.
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It is clear that nonsingularity of Dc(R f ) νE f on the solution trajectory implies
that no column of νE f lies in N [Dc R f (c)] at any c in A(K f ), and so R[νE f ] ∩
N [Dc(R f )] = {0}. Since N [P f ] = R[νE f ],

N [P f ] ∩N [Dc(R f )] = {0},

which is equivalent to the nonsingularity of the Jacobian of the transformation T .
Next we suppose that T is a diffeomorphism. Thus the Jacobian of T is nonsingular

and so

R[νE f ] ∩N [Dc R f ] = {0}. (43)

If Dc R f νE f is singular there is y �= 0 such that

Dc R f · νE f y = 0,

which implies that νE f y ∈ N [Dc R f ]. Notice that νE f y �= 0 by the fact that y �= 0
and (νE f ) has full rank. Since νE f y ∈ R[νE f ], one has

0 �= νE f y ∈ R[νE f ] ∩N [Dc R f ],

which is a contradiction to (43). Thus we proved that T is a diffeomorphism if and
only if Dc(R f )νE f is nonsingular.

Differentiating T (c) with respect to t , the first m − r f components lead to

dα

dt
= P f dc

dt
= P f

(
1

ε
νE f R f (c)+ νE s Rs(c)

)
= P f νE s Rs(c),

since P f νE f = 0. The remaining r f components lead to

dβ

dt
= d R f (c)

dt
= Dc[R f (c)]dc

dt
= Dc[R f (c)]

(
1

ε
νE f R f (c)+ νE s Rs(c)

)

= 1

ε
Dc[R f (c)]νE f R f (c)+ Dc[R f (c)]νE s Rs(c)

Thus we obtain the standard form of a singularly-perturbed system written in terms
of m − r f slow variables and r f fast variables:

dα

dt
= P f νE s Rs(c)

ε
dβ

dt
= εDc(R f (c))νE s Rs(c)+ Dc(R f (c))νE f β,

where c = T−1(α, β). ��
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According to this theorem, one can identify the fast and slow variables explicitly in
any system in which Dc(R f )νE f is nonsingular. It should be noted that the nonsin-
gularity of Dc(R f ) νE f depends on the network topology of the fast subsystem but
not that of the slow reactions. Examples given later will illustrate this point.

Remark 1 It should be noted that the existence of the coordinate transformation does
not require that the kinetics are IMAK; only the nonsingularity condition is needed.
However, as stated earlier, there is an implicit assumption that the slow manifold is
attracting, and when there is additional structure in the problem this may follow from
known results. For instance, if the kinetics are IMAK and the deficiency is zero in the
original network, before reduction the results of Horn and Jackson (1972) guarantee
that the slow manifold is attracting.

Example 1 When the fast system includes only linear reactions, one can explicitly
find the inverse of the coordinate transformation T : since all fast reactions are linear,
Dc(R f (c)) ≡ K̂ f is a constant matrix. Thus, one can write

νE f R f (c) = νE f K̂ f c ≡ K f c

where K f is an m × m rate constant matrix for the fast reactions. In this case, the
Eqs. (39) and (42) can be rewritten as

dα

dt
= P f · νE s Rs(c) (44)

ε
dβ

dt
= ε K̂ f νE s Rs(c)+ K̂ f K f c, (45)

where c can be expressed in terms of α and β by solving the linear system

c =
[P f

K̂ f

]−1 (
α

β

)

given that T = [P f |K̂ f ]T is nonsingular.
If all slow reactions are also linear (and so the whole system is a linear reaction

system), we also have

νE s Rs(c) = νE K̂ sc ≡ K sc.

Thus one can write the governing equation as the system of linear equations

d

dt

(
α

εβ

)
=
[ P f K s T−1

ε K̂ f K s T−1 + K̂ f K f T−1

](
α

β

)
. (46)
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4.3 The geometric interpretation of the transformation

One can obtain the fast dynamics of the system to lowest order by defining the time
scale by τ = t/ε and letting ε → 0 in Eqs. (39) and (42) as follows;

dα

dτ
= 0 (47)

dβ

dτ
= Dc(R f (c))νE f β. (48)

Note that Eq. (47) implies α is constant at the initial value α0 = P f c(0). Thus, the
system (47) and (48) can be written, under the nonsingularity of Dc(R f (c)) · νE f , as

dβ

dτ
= Dc(R f (c))νE f β, α = α0, (49)

where c = T−1(α0, β).
Geometrically the nonsingularity of Dc(R f )νE f on the solution trajectory implies

that the family of reaction simplexes Ω f for the fast subsystem is transversal to the
level sets K f,c ≡ {c̄ : R f (c̄) = R f (c)} where c is any point in the solution tra-
jectory. To see this, first notice that since Dc(R f )νE f is nonsingular, no column of
νE f lies in N [Dc R f ](c) at any c in the solution trajectory. Thus R[νE f ] is non-
tangential or transversal to all level sets K f,c since N [Dc R f ](c) is a subspace con-
sisting of vectors tangent to the level set K f,c at any point c. This implies that each
Ω f (c) = {c +R[νE f ]} ∩ (R̄m)+ is transversal to all level sets. Thus for any point c
on the solution trajectory, one can write

Rm = Ω f (c)⊕ TcK f,c,

where TcK f,c is the tangent space to K f,c at c. In the new coordinates the system
evolves rapidly along directions transversal to the level sets K f,c and slowly along the
transversal direction to the family of Ω f . Examples are given in the following section.

By virtue of the assumed nonsingularity of Dc(R f )νE f , the steady state of the fast
dynamics, to lowest order in ε, is β = 0, which then leads to a complete separation
of slow and fast variables, since the first equation is independent of β to lowest order.
More precisely, if one applies the QSSA by formally setting ε → 0, one has that on
the slow time scale

dα

dt
= P f · νE s Rs(c) (50)

α0 = P f c(0) (51)

β = 0. (52)

Under the nonsingularity of Dc(R f (c)) · νE f , the above equation is equivalent to

dα

dt
= P f · νE s Rs(T−1(α, 0)) (53)

which is independent of β.
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Remark 4 If the nonsingularity of Dc(R f (c))νE f fails, then on the slow time scale
variables are subject to evolve in a manifold {c : R f (c) ∈ N [Dc(R f (c))νE f ]} rather
than K f = {c : R f (c) = 0}, since in Eq. (42), as ε → 0, Dc(R f (c))νE f R f (c) = 0,

which implies that under the QSS assumption c lies in the manifold {c : R f (c) ∈
N [Dc(R f (c))νE f ]}.

5 Sufficient conditions for the nonsingularity of Dc(R f )νE f

In a number of cases the network topology guarantees the nonsingularity of Dc(R f (c))
νE f . First, one can see that the nonsingularity holds when the fast subsystem con-
sists of only one reversible or irreversible linear reaction: If the reaction is linear,

the fast subsystem is either (i) A
k f→ B or (ii) A

kr�
k f

B, and in case (i), the reaction

rate function R f (c) = k f c1, where c1 and c2 are concentrations of A and B, respec-
tively. Thus Dc R f νE f = −k f < 0. In the case (ii), R f (c) = k f c1 − kr c2 and so
Dc R f νE f = −(k f + kr ) < 0.

Secondly, suppose that the fast subsystem contains one or more bimolecular reac-
tions. One can easily show that the nonsingularity holds when the fast subsystem
consists of only one reversible or irreversible bimolecular reaction, for in this case
there are only four types of bimolecular reactions:

(i) A + B
k f→ C

(ii) A + B
kr�
k f

C ,

(iii) A + B
k f→ C + D,

and

(iv) A + B
kr�
k f

C + D.

In types (i) and (iii), R(c) = k f c1c2 and Dc R f νE f = −k f (c1 + c2) < 0 unless
(c1, c2) = 0. In type (ii), R(c) = k f c1c2−kr c3 and Dc R f νE f = −k f (c1+c2)−kr <

0. In type (iv), R(c) = k f c1c2 − kr c3c4 and Dc R f νE f = −(k f (c1 + c2)+ kr (c3 +
c4)) < 0 unless (c1, c2, c3, c4) = 0, i.e. the system is degenerate, which is a trivial
case. Therefore fast and slow variables can be identified explicitly when there is only
one fast reversible or irreversible bimolecular reaction in the system. Moreover, for
a system in which any two different fast reactions have no common reactants and
products, Dc(R f )νE f is also nonsingular, for it is a diagonal matrix with negative
diagonal elements.

The following lemma gives more general conditions under which the nonsingularity
of Dc(R f )νE f holds.

Lemma 5 Suppose that a reaction network satisfies following three conditions:
(i) the undirected graph of each fast component G f

α is originally a tree, (ii) any two
different fast components have no common species and (iii) any two different reactants

123



A multi-time-scale analysis of chemical reaction networks

in each fast component contain no common species. Then, the matrix Dc(R f (c))νE f

is nonsingular.

Proof First we note that Dc(R f ) and νE f are block diagonal matrices since any two
different fast components have no common species. Thus Dc(R f )νE f is also a block
diagonal matrix if there are at least two different fast components in the graph G, and so
nonsingularity of Dc(R f )νE f is equivalent to nonsingularity of each block diagonal
matrix [Dc(R f )νE f ]α which corresponds to each fast component G f

α . It suffices to
consider a fast component G f

α and prove that the matrix [Dc(R f )νE f ] corresponding
to G f

α is nonsingular. We recall that if the i th species is a reactant (product) of the
j th reaction, then (νEi j ) < 0 (> 0). Thus reaction rate function R f

j for a reversible
reaction is

R f
j (c) = k f

j

m∏

i=1

(ci )
[(νE)i j ]− − kr

j

m∏

i=1

(ci )
[(νE)i j ]+ ,

where k f
j and kr

j are rate constants of the j th forward and backward reactions and

(νE)−i j = −min{(νE)i j , 0} and (νE)+i j = max{(νE)i j , 0}. Thus

∂ R f
j

∂cl
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k f
j (νE)−l j c

(νE)−l j−1

l

∏
i �=l(ci )

(νEi j )
−

if lth species is a reactant
of j th forward reaction

−kr
j (νE)+l j c

(νE)+l j−1

l

∏
i �=l(ci )

(νEi j )
+

if lth species is a product
of j th forward reaction

0 otherwise.

If the reaction R f
j is irreversible, then reaction rate function R f

j is

R f
j (c) = k j

m∏

i=1

(ci )
(νE)−i j ,

and so

∂ R f
j

∂cl
=
⎧
⎨

⎩
k j (νE)−l j c

(νE)−l j−1

l

∏
i �=l(ci )

(νE)−i j if lth species is a reactant of j th reaction

0 otherwise

Now we can compute the ( j, k)th component of Dc(R f )νE f as follows. Note that by
labeling each species and reaction properly we can ensure that [Dc(R f )νE f ] jk = 0

if j < k, i.e. [Dc(R f )νE f ] is lower triangular, since any two different reactants in G f
α

have no common species and G f
α has a tree structure.

For j = k, first note that if the i th species is a reactant (product) of the j th reaction
in the fast component, then (νE f )i j < 0(> 0) where νE f defines the reaction simplex
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for the fast component G f
α . If the reaction R f

j is reversible, then

[Dc(R f )νE f ] j j = −
⎡

⎣k f
j

⎛

⎝
∑

l=reac

[(νE f )−l j ]2c
(νE f )−l j−1

l

∏

i �=l

(ci )
(νE f )−i j

⎞

⎠

+ kr
j

⎛

⎝
∑

m=prod

[(νE f )+mj ]2c
(νE f )+mj−1
m

∏

i �=m

(ci )
(νE f )+i j

⎞

⎠

⎤

⎦ < 0,

where l and m denote indices of species in reactants and products of the j th reaction,
respectively. If the j th reaction is irreversible, then

[Dc(R f )νE f ] j j = −
⎡

⎣k f
j

∑

l=prod

[(νE f )−l j ]2
⎛

⎝c
(νE f )−l j−1

l

∏

i �=l

(ci )
(νE f )−i j

⎞

⎠

⎤

⎦ < 0

Thus Dc(R f )νE f is lower triangular with nonzero diagonal elements and so
Dc(R f )νE f is nonsingular, which completes the proof. ��

If a fast subsystem is a linear chain network,

A1
k1→ A2

k2→ · · · kn−1→ An,

the matrix Dc(R f (c))νE f is nonsingular, since a linear chain satisfies the three con-
ditions in Lemma 5. Furthermore, for a looped linear network

A1
k1→ A2

k2→ · · · kn−1→ An
kn→ A1,

one can prove that Dc(R f (c))νE f is nonsingular as follows: Note that a reduced graph
for the looped network is

A1
R1−Rn→ A2

R2−Rn→ · · · Rn−1−Rn→ An,

where Ri = ki ci and ci is the concentration of Ai for i = 1, . . . , n. From this reduced
graph, we can find an (n − 1)× (n − 1) matrix

Dc(R f (c))νE f =

⎡

⎢⎢⎢⎢⎢⎣

−k1 0 · · · 0 −kn

k2 −k2 · · · 0 −kn

0 k3 −k3 · · · −kn
...

. . .
. . .

. . .
...

0 0 · · · kn−1 −(kn + kn−1)

⎤

⎥⎥⎥⎥⎥⎦
.

By the induction argument, one can show that the determinant of Dc(R f (c))νE f ,
|Dc(R f (c))νE f | > 0 if n is odd, and |Dc(R f (c))νE f | < 0 if n is even. Thus,
Dc(R f (c))νE f is nonsingular.
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For a more generic case that the graph of a fast subsystem consists of components of
linear chains or looped linear networks, one can show that Dc(R f (c))νE f is invertible
as follows: Suppose the directed graph G f of a fast subsystem consists of components
G f

α , α = 1, . . . , n, where each G f
α is a linear chain or a looped linear network. Let

[Dc(R f (c))νE f ]i , i = 1, . . . , n be the matrices obtained from each component G f
α .

One can easily see that the matrix Dc(R f (c))νE f is block-diagonal, since any two
different components share no common nodes(=species in a linear reaction). Since
each diagonal block is invertible by above lemma, the matrix Dc(R f (c))νE f is also
invertible.

6 An explicit representation of the slow dynamics for IMAK

For ideal, mass-action kinetics (IMAK) one can find an explicit expression of (53) in
terms of the original variable c when the fast subsystem has deficiency zero, i.e. rank
of νE f = rank of E f . At a steady state of the fast subsystem we have

νE f R f (c) = νE f K̂ f (E f
e )T P(c) = 0, (54)

where

Pj (c) =
m∏

i=1

c
νi j
i .

and K̂ f is a diagonal matrix with rate constants of fast reactions along the diagonal,
and (E f

e )T is the exit matrix obtained by replacing all 1’s in E f by zeros. Note that
since the fast subsystem has deficiency zero, its steady state solutions are completely
determined by solving

E f R f (c) = E f K̂ f (E f
e )T P(c) = 0. (55)

To obtain an explicit expression of solution of (55), we first define ν f as the stoichiom-
etry for complexes which are reactants or products of any fast reactions and νs as the
stoichiometry for complexes which are reactants or products of only slow reactions.
For example, in a system

2A1 � A2 � A3,

where the first reversible reaction is fast and the second is slow, 2A1 and A2 are a
reactant or a product of a fast reaction and A3 is a reactant or a product of a slow
reaction. Thus, in this case, we have

ν f =
⎡

⎣
2 0
0 1
0 0

⎤

⎦ , νs =
⎡

⎣
0
0
1

⎤

⎦ and ν = [ν f | νs].
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We suppose there are r f independent fast reactions and p f distinct complexes which
are reactants or products of the fast reactions. We can write ν = [ν f | νs], where ν f

is an m × p f submatrix and νs is an m × (p− p f ) submatrix, where p is the number
of distinct complexes in the whole system. According to the structure of the ν, we can
write

E f =
[

E f
1

0

]
,

where E f
1 is a p f × r f matrix and 0 is a (p − p f )× r f null matrix, and

P(c) =
[

P f (c)

Ps(c)

]
,

where P f
j (c) =∏m

i=1 c
ν

f
i j

i and Ps
k (c) =∏m

i=1 c
νs

ik
i . Note that

νE f = [ν f | νs]
[

E f
1

0

]
= ν f E f

1 .

Furthermore, by the definition of the exit matrix of E f , we can write the exit matrix

E f
e =

[
E f

1e

0

]
,

where E f
1e is the exit matrix of E f

1 and 0 is a (p− p f )× r f null matrix. It follows that

E f K̂ f (E f
e )T P f (c) =

[
E f

1

0

]
K̂ f

[
(E f

1e)
T |0T

] [ P f (c)

Ps(c)

]

=
(

E f
1 K̂ f (E f

1e)
T P f (c)

0p−p f

)
, (56)

where 0p−p f is a (p − p f ) × 1 null column vector. Thus, solving equation (55) is
equivalent to solving

E f
1 K̂ f (E f

1e)
T P f (c) = 0. (57)

To solve E f
1 K̂ f (E f

1e)
T P f (c) = 0, we first consider a fast subsystem in which each

species appears in only one component of the subsystem. Without loss of generality
we can assume that the underlying original graph of the system is a single strongly-
connected component, for otherwise we can apply the following argument to each
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component. Note that the single strongly connected component has a positive bal-
anced flow and for positive ci ’s, we can write

P f
j (c) =

m∏

i=1

c
ν

f
i j

i = e
∑

i ν
f

i j ln ci ,

or in vector form,

P f (c) = e(ν f )T ln c,

where ln c = (ln c1, . . . , ln cm)T . Thus, for a positive balanced flow, we have

e(ν f )T ln c = P f (c) = λQ, (58)

where Q is the unique positive eigenvector associated with the zero eigenvalue of
E f

1 K̂ f (E f
1e)

T and λ is a constant to be determined. Equation (58) is equivalent to

[(ν f )T | − 1p f ]
(

ln c

ln λ

)
= ln Q, (59)

where 1p f is a p f -dimensional vector (1, . . . , 1)T . Note that since there is only one

component, we have p f = r f +1, where r f = ρ(νE f ) = ρ(ν f E f
1 ). Let B = [(ν f )T |

− 1p f ] and let ρ(ν f ) = p′. Clearly r f = ρ(ν f E f
1 ) ≤ ρ(ν f ) = p′, and since r f =

p f − 1 and p′ ≤ p f , we have p f − 1 ≤ p′ ≤ p f . This implies that p′ = p f or
p f − 1.

If p′ = p f , i.e. (ν f )T has full rank p f , one can rewrite B = [(ν f
1 )T | (ν f

2 )T |−1p f ],
where (ν

f
1 )T is a p f ×(m+1− p f ) matrix and [(ν f

2 )T |−1p f ] is a p f × p f invertible

matrix. Let B1 = (ν
f

1 )T and B2 = [(ν f
2 )T | − 1p f ], so that B = [B1 | B2]. Let

c =
(

cb

ca

)
,

where cb and ca are (m + 1 − p f )(= m − r f )-dimensional and (p f − 1)(= r f )-

dimensional vectors corresponding to (ν
f

1 )T and (ν
f

2 )T , respectively. Thus, one can
rewrite equation (59) as

[B1 | B2]
( ln cb

ln

(
ca

λ

)
)
= ln Q. (60)

By multiplying (60) by B−1
2 , one obtains

[B−1
2 B1 | Ip f ]

( ln cb

ln

(
ca

λ

)
)
= B−1

2 ln Q, (61)
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and by expanding (61),

B−1
2 B1 ln cb + ln

(
ca

λ

)
= B−1

2 ln Q, (62)

which gives

(
ca

λ

)
= exp

(
B−1

2 ln Q − B−1
2 B1 ln cb

)
. (63)

Thus, one can write

ca =
(

e(B−1
2 ln Q−B−1

2 B1 ln cb)1, . . . , e(B−1
2 ln Q−B−1

2 B1 ln cb)r f

)
≡ F(cb), (64)

where (B−1
2 ln Q − B−1

2 B1 ln cb)k denotes kth entry of the vector (B−1
2 ln Q −

B−1
2 B1 ln cb) for each k = 1, . . . , r .
Next we consider the case p′ = p f − 1. As in the above, we define a matrix

B ≡ [νT
1 | νT

2 | − 1p f ]. Note that ρ(B) is either p f or p f − 1. If ρ(B) = p f , one

can write B = [B1 | B2], where B1 = (ν
f

1 )T is a p f × (m + 1 − p f ) matrix and

B2 = [(ν f
2 )T | − 1p f ] is a p f × p f invertible matrix. In this case, by applying the

same argument as in the previous case that p′ = p f , we can find an explicit expres-
sion for the zero-order approximation of the slow manifold: it is the intersection of
the manifold defined by

ca =
(

e(B−1
2 ln Q−B−1

2 B1 ln cb)1, . . . , e(B−1
2 ln Q−B−1

2 B1 ln cb)r f

)
≡ F(cb). (65)

with the reaction simplex.
If ρ(B) = p f − 1 we write (ν f )T as

(ν f )T =
[

(ν
f

11)
T (ν

f
21)

T (ν
f

31)
T

(ν
f

12)
T (ν

f
22)

T (ν
f

32)
T

]
, (66)

where (ν
f

11)
T is a (p f −1)× (m− p f +1) submatrix, (ν f

21)
T is a (p f −1)×1 vector,

(ν
f

31)
T is a (p f − 1) × (p f − 2) submatrix, (ν

f
12)

T is a 1 × (m − p f + 1) vector,

(ν
f

22)
T is a 1 × 1 vector(or a scalar), and (ν

f
32)

T is a 1 × (p f − 2) vector. We again
define a matrix B as

B =
[

B11 B21 B31
B12 B22 B32

]
, (67)
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where B11 = (ν
f

11)
T , B21 = (ν

f
21)

T , B31 = [(ν f
31)

T | − 1p f−1], B12 = (ν
f

12)
T ,

B22 = (ν
f

22)
T and B32 = [(ν f

32)
T | − 1]. Thus, we can rewrite (59) as

[
B11 B21 B31
B12 B22 B32

](
ln c
ln λ

)
=
(

ln Q1
ln Q2

)
. (68)

Since B has rank p f − 1, we can reduce the last row of B in Eq. (68) to all zeros
by elementary row operations. Thus, after using elementary row operations, we write
Eq. (68) as

[
B̂11 B̂21 B̂31
0 0 0

]
⎛

⎜⎜⎝
ln cb

ln ca1

ln

(
ca2

λ

)

⎞

⎟⎟⎠ =
(

ln Q̂1
0

)
, (69)

where cb, ca1 , ca2 are (m− p f + 1), 1, (p f − 2)-dimensional subvectors of c, respec-
tively and B̂11, B̂21, B̂31 and ln Q̂1 can be obtained after applying elementary row
operations. Note that we can choose B̂31 as an invertible matrix. Thus, from (69) we
obtain

ln

(
ca2

λ

)
= B̂−1

31

(
ln Q̂1 − B̂11 ln cb − B̂21 ln ca1

)
, (70)

and so

ca2 =
(

e

(
B̂−1

31 (ln R−B̂11 ln cb−B̂21 ln ca1)
)

1, . . . , e

(
B̂−1

31 (ln R−B̂11 ln cb−B̂21 ln ca1 )
)

r f −1

)

≡ F(cb, ca1). (71)

Note that if there is a conservation relation that gives a functional relation ca1 = g(cb)

between ca1 and cb, we can obtain an explicit expression of the slow dynamics from
(71) as

ca = (ca1 , ca2) = (g(cb), F(cb, g(cb)) ≡ H(cb). (72)

Now we consider a system in which some species appear in more than one compo-
nent. Without loss of generality, we can assume that a species appears in two strongly
connected components C1 and C2. Let ν

f
1 and ν

f
2 be stoichiometric matrices for com-

plexes which are reactants or products of fast reactions in the two components C1 and
C2, respectively. Let p fi and r fi be the number of distinct complexes and the number of
independent reactions in Ci for each i = 1, 2, respectively. Note that p f = p f1+ p f2 ,
r f = r f1 + r f2 and p fi = r fi + 1 for each i = 1, 2. For a balanced flow, we have

e(ν
f

1 )T ln c ≡ P f
1 (c) = λ1 Q1 (73)

e(ν
f

2 )T ln c ≡ P f
2 (c) = λ2 Q2, (74)
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where for each i = 1, 2, Qi is the unique positive eigenvector associated with zero
eigenvalue of E f

1i
K̂ f

i (E f
1ei

)T corresponding to the component Ci and λi is a constant
to be determined. From (73) and (74), one obtains

[
(ν

f
1 )T −1p f1

0p f1

(ν
f

2 )T 0p f2
−1p f2

]⎛

⎝
ln c
ln λ1
ln λ2

⎞

⎠ =
(

ln Q1
ln Q2

)
, (75)

where 1k and 0k are k-dimensional column vectors (1, . . . , 1)T and (0, . . . , 0)T ,
respectively. We let

B =
[

(ν
f

1 )T −1p f1
0p f1

(ν
f

2 )T 0p f2
−1p f2

]
.

Here note that r f1 + r f2 = r f = ρ(ν f E f
1 ) ≤ ρ(ν f ) = p′ ≤ p f = p f1 + p f2 . Since

r f1 = p f1 − 1 and r f2 = p f2 − 1, we have

p f1 + p f2 − 2 ≤ p′ ≤ p f1 + p f2 . (76)

Thus, rank of ν f , p′ is p f1 + p f2 , p f1 + p f2 − 1, or p f1 + p f2 − 2.
First we consider the case that p′ = p f1 + p f2 . Note that in this case, B also has

full row rank p f1 + p f2 = p f . We let B1 be a p f × (m − p f + 2) submatrix of B,

[
(ν

f
11)

T

(ν
f

21)
T

]

and let B2 be the p f × p f submatrix of B given by,

[
(ν

f
12)

T −1p f1
0p f1

(ν
f

22)
T 0p f2

−1p f2

]
,

where ν
f

11 and ν
f

12 (ν f
21 and ν

f
22) are submatrices of ν

f
1 (ν f

2 ), so that B2 can be chosen
as an invertible matrix. By applying the same argument as in the case for a single
component system to the Eq. (75), one finds

ca =
(

e(B−1
2 ln Q−B−1

2 B1 ln cb)1, . . . , e(B−1
2 ln Q−B−1

2 B1 ln cb)r f

)
≡ F(cb), (77)

where cb and ca are subvectors of c with dimensions m − r f and r f , respectively and
Q = (QT

1 |QT
2 )T .

Finally, we consider the cases that ρ(ν f ) is either p f1 + p f2 − 1 or p f1 + p f2 − 2.
In either case, ρ(B) can be p f1 + p f2 , p f1 + p f2 − 1, or p f1 + p f2 − 2. If B has
full rank p f1 + p f2 , we can obtain the explicit expression (77) by applying a similar
argument as in the above. If ρ(B) = p f1 + p f2 − 1, by applying the same argument
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as in the case that rank of B = p f − 1 in the previous single component case, one can
again obtain an explicit expression

ca2 = F(cb, ca1), (78)

where ca = (ca1 , ca2), ca1 is a one-dimensional variable, ca2 is a (m− p f +1)-dimen-
sional variable and F is a function which can be obtained similarly to (71). Thus,
in this case, we can obtain an explicit expression of the slow manifold if ca1 can be
written as a function of cb by a conservation relation.

Similarly, if ρ(B) = p f1 + p f2 − 2, one can find an expression

(ca2 , ca3) = F(cb, ca1), (79)

where ca = (ca1 , ca2 , ca3) and ca1 and ca2 are one-dimensional variables, ca3 is a
(m − p f )-dimensional variable and F is a function which can be obtained similarly
to (71). Note that we can obtain an explicit expression of the slow manifold if we can
write ca1 as a function of cb by a conservation relation.

By recalling that α = P f c, we have

dα

dt
= P f dc

dt
= P f d

dt

[
cb

F(cb)

]
= P f

[
Im−r f
∂ F(cb)

∂cb

]
dcb

dt
= S

dcb

dt
, (80)

where

S = P f

[
Im−r f

∂ F(cb)
∂cb

]
.

Next we prove that the matrix S is invertible when Dc(R f )νE f is nonsingular.

Lemma 6 The matrix

S = P f

[
Im−r f

∂ F(cb)
∂cb

]

is nonsingular, provided that Dc(R f )νE f is nonsingular.

Proof First recall that the nonsingularity of Dc(R f )νE f implies that

N [P f ] ∩N [Dc(R f )] = {0}. (81)

(Recall the proof of Theorem 3.) One can see that

Dc(R f )

[
Im−r f

∂ F(cb)
∂cb

]
= 0, (82)
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by showing that

Dc(R f )

[
Im−r f

∂ F(cb)
∂cb

]
=
[

∂ R f (c)

∂cb

∂ R f (c)

∂ca

][
Im−r f
∂ F(cb)

∂cb

]

= ∂ R f (c)

∂cb
+ ∂ R f (c)

∂ca

∂ F(cb)

∂cb

= ∂

∂cb
R f (cb, F(cb)) = 0, since R f (cb, F(cb)) = 0.

Since the nullity of Dc(R f ) = (m − r f ) = rank of

[
Im−r f

∂ F(cb)
∂cb

]
, Eq. (82) implies that

N [Dc(R f )] = R
[

Im−r f

∂ F(cb)
∂cb

]
.

By (81), we have

N [P f ] ∩R
[

Im−r f

∂ F(cb)
∂cb

]
= {0},

which implies that the matrix

S = P f

[
Im−r f

∂ F(cb)
∂cb

]

is nonsingular. ��

From Eq. (80) and the above lemma, if Dc(R f )νE f is nonsingular, one can obtain
an explicit reduced equation

dcb

dt
= S−1 dα

dt
= S−1P f νE s Rs(cb, F(cb)). (83)

Here one should notice that the initial condition of the explicit reduced equation (83)
may not be same as the original initial condition: Note that we obtain Eq. (83) from
(37) by assuming the equation for the equilibrium manifold of the fast subsystem,
ca = F(cb). Thus, the initial condition cb(0) of Eq. (83) should satisfy α(0) = P f c(0)

and ca(0) = F(cb(0)). Details about finding initial condition of the explicit reduced
equation will be shown in the next section.
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7 Applications

In this section we describe the reduction method in detail for four examples of increas-
ing complexity, and show how the reduced system approximates the full system.

7.1 A system with a fast dimerization and a slow isomerization

We consider a reaction system with a fast dimerization and a slow isomerization:

2A1
k−1/ε�
k1/ε

A2
k−2�
k2

A3.

We let c1(t), c2(t), c3(t) be concentrations of A1, A2, A3 at time t , respectively. Let
C(1) = 2A1, C(2) = A2, C(3) = A3, and

C(1)
1
�
3

C(2)
2
�
4

C(3).

One can find

ν=
⎡

⎣
2 0 0
0 1 0
0 0 1

⎤

⎦, E=
⎡

⎣
1 0 −1 0
−1 1 1 −1
0 −1 0 1

⎤

⎦ , and R(c)=

⎡

⎢⎢⎣

R1
R2
R3
R4

⎤

⎥⎥⎦=

⎡

⎢⎢⎣

k−1c2/ε

k−2c3

k1c2
1/ε

k2c2

⎤

⎥⎥⎦ .

Now we reduce the fast subsystem as follows.

Step 1: Identification of the equal complexes.

Since all complexes consists of distinct species, no identification is needed.

Step 2: Removal of cycle.

We first choose a spanning tree

C(1) −→ C(2),

and let E f = [E f
1 | E f

0 ], where

E f
0 =

⎡

⎣
−1
1
0

⎤

⎦ and E f
1 =

⎡

⎣
1
−1
0

⎤

⎦ .

One has

Q = [Q1|1] = [−1 | 1],
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and so E f = E f
0 Q. Thus one obtains

νE f R f (c) = νE f
0 [−1 | 1]R f (c),

where

νE f
0 =

⎡

⎣
−2
1
0

⎤

⎦ ,

and

[−1 | 1]R f (c) = [−1 | 1]
(

R1
R3

)
= −R1 + R3 = −k−1c2/ε + k1c2

1/ε

Thus, by the removal of cycle, we have a reduced graph for fast reactions

C(1)
−R1+R3−→ C(2).

Step 3: Removal of elements in N [ν] ∩R[E f ].
Since ρ(νE f ) = 1 and ρ(E f ) = 1, δ = ρ(E)−ρ(νE) = 0. Thus N [ν]∩R[E f ] =

{0}, and so there is no element to remove.
We have obtained, by the reduction of the graph, that

2A1
−R1+R3→ A2

R2�
R4

A3,

where the stoichiometries and reaction rate functions are

νE =
⎡

⎣
−2 0 0
1 1 −1
0 −1 1

⎤

⎦ , νE f =
⎡

⎣
−2
1
0

⎤

⎦ , νE s =
⎡

⎣
0 0
1 −1
−1 1

⎤

⎦

and

R f = −R1 + R3 = (k1c2
1/ε − k−1c2/ε), Rs =

(
R2
R4

)
=
(

k−2c3
k2c2

)
.

Thus the governing equation is

dc

dt
= 1

ε
νE f R f + νE s Rs = 1

ε

⎡

⎣
−2
1
0

⎤

⎦ (k1c2
1 − k−1c2)+

⎡

⎣
0 0
1 −1
−1 1

⎤

⎦
(

k−2c3
k2c2

)
.

(84)
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Now we compute invariants. First note that the reaction simplex Ω(c0) can be repre-
sented by an equation of a plane

{c0 +R[νE]} ∩ (R̄3)
+ = {(c1, c2, c3) ≥ 0 : c1 + 2c2 + 2c3 = c01 + 2c02 + 2c03},

where c0 is the initial condition, and for a point c̄ in Ω(c0), the fast reaction simplex
Ω f (c̄) in Ω(c0) is given by the family of straight lines

{(c1, c2, c3) ≥ 0 : c1 + 2c2 = c̄1 + 2c̄2 c3 = c̄3}.

Moreover, the level sets of R f are the family of paraboloids

{
c : R f (c) = k1ĉ2

1 − k−1ĉ2

}
=
{
(c1, c2, c3) : c2 = k1

k−1
c2

1 +
1

k−1
(k−1ĉ2 − k1ĉ2

1)

}
,

where ĉ = (ĉ1, ĉ2, ĉ3)
T is a point in Ω(c0), which is unique up to level sets R f . Thus

on the reaction simplex Ω(c0) the level sets are described by curves

K f,ĉ ≡
{

c = (c1, c2, c3) ≥ 0 : c2 = k1

k−1
c2

1 +
1

k−1
(k−1ĉ2 − k1ĉ2

1),

c3 = c01 + 2c02 + 2c03 − c1 − 2c2

}

and especially, the equilibrium manifold K f on Ω(c0) is a curve

{
c ≥ 0 : c2 = k1

k−1
c2

1, c3 = c01 + 2c02 + 2c03 − c1 − 2c2

}
.

Furthermore, the Jacobian of R f is

Dc R f = [2k1c1 − k−1 0]

and

Dc R f νE f = −4k1c1 − k−1 < 0

Since Dc R f · νE f is nonsingular, by Theorem 3, the governing equation can be sep-
arated into the equations of fast and slow variables as follows.

dα

dt
=
[−2k2c2 + 2k−2c3

k2c2 − k−2c3

]

ε
dβ

dt
= εk−1(k2c2 − k−2c3)+ (−4k1c1 − k−1)β,
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where
⎡

⎣
α1
α2
β

⎤

⎦ = T (c) =
[P f · c

R f (c)

]
=
⎡

⎣
c1 + 2c2

c3

k1c2
1 − k−1c2

⎤

⎦ . (85)

From Eq. (85), one can find

4k1c2
2 − c2(4α1k1 + k−1)+ k1α

2
1 − β = 0,

and so

c2 = 1

8k1

[
4α1k1 + k−1 ±

√
8α1k1k−1 + k2−1 + 16k1β

]
.

Since

c2 = 1

8k1

[
4α1k1 + k−1 +

√
8α1k1k−1 + k2−1 + 16k1β

]

>
4α1k1

8k1
≥ c2,

we must have

c2 = 1

8k1

[
4α1k1 + k−1 −

√
8α1k1k−1 + k2−1 + 16k1β

]
≡ f (α1, β).

Thus, the explicit equation for α1, α2 and β is

dα

dt
=
[−2k2 f (α1, β)+ 2k−2α2

k2 f (α1, β)− k−2α2

]
(86)

ε
dβ

dt
= εk−1(k2 f (α1, β)− k−2α2)+ (−4k1(α1 − f (α1, β))− k−1)β, (87)

Since

f (α, 0) = 1

8k1

[
4α1k1 + k−1 −

√
8α1k1k−1 + k2−1

]
, (88)

as ε → 0 in (86) and (87), we obtain

dα

dt
=
⎡

⎢⎣
− k2

4k1

[
4α1k1 + k−1 −

√
8α1k1k−1 + k2−1

]
+ 2k−2α2

k2
8k1

[
4α1k1 + k−1 −

√
8α1k1k−1 + k2−1

]
− k−2α2

⎤

⎥⎦ . (89)

Figure 2 illustrates the solutions of the full governing equation and the reduced
equation.
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Fig. 2 When c(0) = (2, 1, 1), ε = 0.1 and ki = 1 for all i , the evolution of the system in time interval
[0, 100]. Simulation by MATLAB. Solution trajectory (blue curve) versus trajectory by QSS approximation
(red circle)

Explicit representation of slow dynamics

To obtain an explicit representation of slow dynamics, we let c = (c2, c3, c1), so that
we have

ν f =
⎡

⎣
0 1
0 0
2 0

⎤

⎦ , [B1|B2]
(

ln c
ln λ

)
≡
[

0 0 2 −1
1 0 0 −1

]
⎛

⎜⎜⎝

ln c2
ln c3
ln c1
ln λ

⎞

⎟⎟⎠ = ln Q, (90)

where Q =
(

k−1
k1+k−1

k1
k1+k−1

)
is the eigenvector corresponding to zero eigenvalue of the

matrix K =
[−k1 k−1

k1 −k−1

]
. Note that since c = (c2, c3, c1), we have

P f =
[

2 0 1
0 1 0

]
, νE s =

⎡

⎣
1 −1
−1 1
0 0

⎤

⎦ .

From Eq. (90), one can obtain

(
c1
λ

)
= exp

(
B−1

2 ln Q − B−1
2 B1 ln

(
c2
c3

))
. (91)
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By solving equation (91), one can obtain

ca ≡ c1 =
√

k−1c2

k1
≡ F(cb) = F(c2, c3).

Since

S = P f
[

I2
∂ F(cb)

∂cb

]
=
[

2 0 1
0 1 0

]
⎡

⎢⎣
1 0
0 1

1
2

√
k−1
k1c2

0

⎤

⎥⎦ =
[

2+ 1
2

√
k−1
k1c2

0

0 1

]
,

one obtains

S−1P f νE s Rs =
⎛

⎝
4
√

c2

4
√

c2 +√k−1/k1
(k−2c3 − k2c2)

k2c2 − k−2c3

⎞

⎠ .

Thus, the reduced equation is

d

dt

(
c2
c3

)
= S−1P f νE s Rs =

⎛

⎝
4
√

c2

4
√

c2 +√k−1/k1
(k−2c3 − k2c2)

k2c2 − k−2c3

⎞

⎠ . (92)

Note that the initial condition (c2(0), c3(0)) ≡ (A2, A3) of (92) should satisfy
A3 = α2(0) and

√
k−1 A2/k1 + 2A2 = α1(0), because the initial condition of (89) is

α1(0) = c1(0) + 2c2(0) and α2(0) = c3(0). From
√

k−1 A2/k1 + 2A2 = α1(0), we
can obtain (See (88))

A2 = 1

8k1

[
4α1(0)k1 + k−1 −

√
8α1(0)k1k−1 + k2−1

]
.

Thus, the initial condition of the explicit reduced equation (92) is

(c2(0), c3(0)) =
(

1

8k1

[
4α1(0)k1 + k−1 −

√
8α1(0)k1k−1 + k2−1

]
, α2(0)

)
.

Remark 7 Note that by letting ε → 0 in the governing equation (84), one can obtain
k1c2

1 − k−1c2 = 0, which is the equation of the equilibrium manifold of the fast
subsystem. If we substitute it into Eq. (84), one can simply obtain a reduced equation

d

dt

(
c2
c3

)
= νE s Rs(c) =

(−k2c2 + k−2c3
k2c2 − k−2c3

)
, (93)

where c1, c2 and c3 are subject to k1c2
1 − k−1c2 = 0. One can see that above Eq. (93)

is not same as the Eq. (92) obtained by our method. Here we note that Eq. (93) is not
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an O(ε)-approximation, since it includes only the first term νE s Rs and ignores the
second term on the right side of Eq. (36). Thus, if (93) would be used for represent-
ing the slow dynamics, errors would be bigger than O(ε). Indeed, when we obtain
the reduced equation (37), we do not just ignore the second term in the right side of
Eq. (36), but we remove the second term by utilizing the projection operator P f . Note
that the explicit equation (92) is equivalent to Eq. (37), which is, for this example,

dα

dt
= P f · νE s Rs(c) =

[−2k2c2 + 2k−2c3
k2c2 − k−2c3

]
, (94)

where α = (c1+ 2c2, c3), and c1, c2, c3 are subject to k1c2
1− k−1c2 = 0; by applying

the operator S on Eq. (92), one can get

S
d

dt

(
c2
c3

)
= P f νE s Rs(c) =

[−2k2c2 + 2k−2c3
k2c2 − k−2c3

]
. (95)

Since

S
d

dt

(
c2
c3

)
= S

dcb

dt
= dα

dt

on the manifold {c ≥ 0 : k1c2
1 − k−1c2 = 0} by Eqs. (80), (95) is equivalent to

dα

dt
= P f νE s Rs(c) =

[−2k2c2 + 2k−2c3
k2c2 − k−2c3

]
,

where c1, c2, c3 are subject to k1c2
1 − k−1c2 = 0. Thus, it is guaranteed by the pertur-

bation analysis done in Sect. 4 that Eq. (92) has errors of at most O(ε).

7.2 Receptor-Ligand binding

We consider a ligand binding network

L + R
k2�
k1

L R, L R + A1
k4�
k3

A2
k5→ φ.

We let c1(t), c2(t), c3(t), c4(t), c5(t) be concentrations of L , R, L R, A1, A2 at time
t , respectively. We denote each complex by

C(1) = L + R, C(2) = L R, C(3) = L R + A1, C(4) = A2, C(5) = φ

and

C(1)
2
�
1

C(2), C(3)
4
�
3

C(4)
5→ C(5).
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Then the stoichiometric matrix for the complexes is

ν =

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0

⎤

⎥⎥⎥⎥⎦
.

Here we assume that the binding and unbinding reactions are fast and others are slow.
As a result

E = [E f | E s] =

⎡

⎢⎢⎢⎢⎣

−1 1 0 0 0
1 −1 0 0 0
0 0 −1 1 0
0 0 1 −1 −1
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
.

By eliminating the cycle in the first step L + R � L R, one obtains L + R → L R,

where the reaction rate function is k1c1c2 − k2c3 and

E = [E f | E s] =

⎡

⎢⎢⎢⎢⎣

−1 0 0 0
1 0 0 0
0 −1 1 0
0 1 −1 −1
0 0 0 1

⎤

⎥⎥⎥⎥⎦
, νE =

⎡

⎢⎢⎢⎢⎣

−1 0 0 0
−1 0 0 0
1 −1 1 0
0 −1 1 0
0 1 −1 −1

⎤

⎥⎥⎥⎥⎦
,

Rs(c) =
⎛

⎝
k3c3c4
k4c5
k5c5

⎞

⎠ ,

and R f (c)
ε
= k1c1c2 − k2c3, where ε > 0 is a separation parameter. Thus, one can

write the governing equation as

d

dt

⎛

⎜⎜⎜⎜⎝

c1
c2
c3
c4
c5

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

−k1c1c2 + k2c3
−k1c1c2 + k2c3

k1c1c2 − k2c3 − k3c3c4 + k4c4
−k3c3c4 + k4c4

k3c3c4 − k4c4 − k5c5

⎞

⎟⎟⎟⎟⎠
, (96)

which could of course be obtained directly for this simple example.
Since Dc(R f (c))νE f = ε(k1c2, k1c1,−k2, 0, 0)(−1,−1, 1, 0, 0)T = −ε(k1(c1+

c1)+ k2) < 0 for all c1, c2 ≥ 0, we can apply Theorem 3 to the system of equations
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and obtain

dα

dt
= d

dt

⎛

⎜⎜⎝

c1 + c3
c2 + c3

c4
c5

⎞

⎟⎟⎠ = P f νE s Rs(c)

=

⎡

⎢⎢⎣

1 0 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0 0 0
0 0 0
−1 1 0
−1 1 0
1 −1 −1

⎤

⎥⎥⎥⎥⎦

⎛

⎝
k3c3c4
k4c5
k5c5

⎞

⎠

=

⎛

⎜⎜⎝

−k3c3c4 + k4c5
−k3c3c4 + k4c5
−k3c3c4 + k4c5

k3c3c4 − k4c5 − k5c5

⎞

⎟⎟⎠ , (97)

where c in the right side satisfies the equation R f = 0, i.e. k1c1c2 − k2c3 = 0. By
using c1 = α1 − c3 and c2 = α2 − c3, one obtains

c3 =
(k1(α1 + α2)+ k2)±

√
(k1(α1 + α2)+ k2)2 − 4k2

1α1α2

2k1
. (98)

Since

(k1(α1 + α2)+ k2)+
√

(k1(α1 + α2)+ k2)2 − 4k2
1α1α2

2k1

≥ k1(α1 + α2)+ k2

2k1
= k1(c1 + c2 + 2c3)+ k2

2k1
> c3,

we have

c3 =
(k1(α1 + α2)+ k2)−

√
(k1(α1 + α2)+ k2)2 − 4k2

1α1α2

2k1
.

Thus, from (97) we obtain the reduced equation

d

dt

⎛

⎜⎜⎝

α1
α2
α3
α4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

−k3c3α3 + k4α4
−k3c3α3 + k4α4
−k3c3α3 + k4α4

k3c3α3 − k4α4 − k5α4

⎞

⎟⎟⎠ , (99)
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Fig. 3 Evolution of slow variables when k1 = k2 = 1, k3 = k4 = k5 = 0.1 and (c1, c2, c3, c4, c5) =
(100, 30, 0, 20, 10) initially. Solution of the full equation (blue solid line) versus solution of the reduced
equation (red circles)

where

c3 =
(k1(α1 + α2)+ k2)−

√
(k1(α1 + α2)+ k2)2 − 4k2

1α1α2

2k1
.

Numerical results obtained from the reduced system are compared with the solution
of the full system in Fig. 3.

Explicit representation of the slow dynamics

To obtain an explicit representation of the slow dynamics, we first let c = (c1, c2, c4,

c5, c3), and have

ν f =

⎡

⎢⎢⎢⎢⎣

1 0
1 0
0 0
0 0
0 1

⎤

⎥⎥⎥⎥⎦
, and [B1|B2]

(
ln c
ln λ

)
≡
[

1 1 0 0 0 −1
0 0 0 0 1 −1

]

⎛

⎜⎜⎜⎜⎜⎜⎝

ln c1
ln c2
ln c4
ln c5
ln c3
ln λ

⎞

⎟⎟⎟⎟⎟⎟⎠
= ln Q,

(100)
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where Q =
(

k2
k1+k2

k1
k1+k2

)
is the eigenvector corresponding to zero eigenvalue of the

matrix

K =
[−k1 k2

k1 −k2

]
.

By multiplying equation (100) by B−1
2 =

[−1 1
−1 0

]
, we obtain

(
c3
λ

)
= exp

(
B−1

2 ln Q − B−1
2 B1 ln (c1, c2, c4, c5)

T
)

, (101)

and by solving Eq. (101), one finds that

ca ≡ c3 = k1

k2
c1c2 ≡ F(cb) = F(c1, c2, c4, c5).

Since

S = P f
[

I4
∂ F
∂cb

]
=

⎡

⎢⎢⎣

1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

k1
k2

c2
k1
k2

c1 0 0

⎤

⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎣

1+ k1
k2

c2
k1
k2

c1 0 0

k1
k2

c2 1+ k1
k2

c1 0 0

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎥⎥⎦
,

one obtains

S−1 =

⎡

⎢⎢⎢⎢⎢⎣

k1c1+k2
k2+k1c1+k1c2

−k1c1
k2+k1c1+k1c2

0 0

−k1c2
k2+k1c1+k1c2

k1c2+k2
k2+k1c1+k1c2

0 0

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎥⎥⎦
.

123



C. H. Lee, H. G. Othmer

Thus the explicit form of the slow dynamics is

d

dt

⎛

⎜⎜⎝

c1
c2
c4
c5

⎞

⎟⎟⎠ = S−1P f νE s Rs(c) =

⎛

⎜⎜⎜⎜⎜⎜⎝

−k1k3c1c2c4+k2k4c5
k2+k1c1+k1c2

−k1k3c1c2c4+k2k4c5
k2+k1c1+k1c2

−k1k3
k2

c1c2c4 + k4c5

k1k3
k2

c1c2c4 − k4c5 − k5c5

⎞

⎟⎟⎟⎟⎟⎟⎠
. (102)

Note that the initial condition of Eq. (102) is given by

c1(0) = α1(0)− c3(0), c2(0) = α2(0)− c3(0), c4(0) = α3(0), c5(0) = α4(0),

where

c3 =
(k1(α1 + α2)+ k2)−

√
(k1(α1 + α2)+ k2)2 − 4k2

1α1α2

2k1
.

7.3 PFK reaction system

We consider a model for the glycolytic reactions given in Othmer and Aldridge (1978).
In the model, fructose-6-phosphate (F6P) is phosphorylated to give fructose diphos-
phate (FDP). Phosphofructokinase (PFK) is activated by AMP and FDP, and inhibited
by ATP. Under conditions that lead to oscillations, PFK is fully activated with respect
to FDP, and ATP has a negligible effect on activity. The complete set of reactions is
as follows.

φ
k→ A1

A1 + E1
k−1�
k1

E1 A1
k2→ E1 + A2

A1 + E∗1
k−3�
k3

E∗1 A1
k4→ E∗1 + A2

A2 + E2
k−5�
k5

E2 A2
k6→ E2 + Product

Ê1 + A3
k−7�
k7

Ê∗1 , 2A2
k−8�
k8

A3 + A4,

where we denote F6P, ADP, AMP and ATP by A1, A2, A3 and A4. E1 and E∗1 represent
the low activity and activated forms of free PFK, respectively. E2 is the enzyme for the
ADP sink reaction. E1 A1, E∗1 A1 and E2 A2 represent enzyme-substrate complexes.
Ê∗1 and Ê1 are the total activated and low-activity enzymes, both in free and bound
form. Here note that we assume that the last two reversible reactions are always at the
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equilibrium. Thus the equations k7[Ê1][A3] = k−7[Ê∗1 ] and k8[A2]2 = k−8[A3][A4]
hold at any time.

Assuming mass-action kinetics for the various kinetic steps, one obtains the fol-
lowing system of ODEs.

d[A1]
dt
= k − k1[A1][E1] + k−1[E1 A1] − k3[A1][E∗1 ] + k−3[E∗1 A1]

d[A2]
dt
= k2[E1 A1] + k4[E∗1 A1] − k5[A2][E2] + k−5[E2 A2] − k8[A2]2

+ 1

2
k−8[A3][A4]

d[A3]
dt
= k7[A3][Ê1] − k−7[Ê∗1 ] + k8[A2]2 − k−8[A3][A4]

d[A4]
dt
= k8[A2]2 − k8[A3][A4]

d[E1]
dt
= −k1[A1][E1] + k−1[E1 A1] + k2[E1 A1]

d[E∗1 ]
dt
= −k3[A1][E∗1 ] + k−3[E∗1 A1] + k4[E∗1 A1] + k7[Ê1][A3] − k−7[Ê1∗]

d[E2]
dt
= −k5[A2][E2] + k−5[E2 A2] + k6[E2 A2]

d[Ê1]
dt
= −k7[Ê1][A3] + k−1[Ê∗1 ]

d[E1 A1]
dt

= k1[A1][E1] − k−1[E1 A1] − k2[E1 A1]
d[E∗1 A1]

dt
= k3[A1][E∗1 ] − k−3[E∗1 A1] − k4[E∗1 A1]

d[E2 A2]
dt

= k5[A2][E2] − k−5[E2 A2] − k6[E2 A2]

To reduce the ODE system by utilizing the QSS assumption, we let c1(t), c2(t), c3(t),
c4(t), c5(t), c6(t), c7(t), c8(t) and c9(t) be concentrations of A1, E1, E1 A1, E∗1 ,

E∗1 A1, A2, E2, E2 A2 and Product at time t respectively. We assume that the three
reversible reactions i.e. binding and unbinding of enzymes, are much faster than other
three irreversible reactions.

We define

C(1)= A1, C(2)= A1+E1, C(3)=E1 A1, C(4)=E1+A2, C(5)= A1+E∗1 ,

and

C(6) = E∗1 A1, C(7)=E∗1 + A2, C(8)= A2 + E2, C(9)=E2 A2,

C(10) = E2 + Product, C(11) = φ.

Then one obtains the following graph.

123



C. H. Lee, H. G. Othmer

C(11)
1→ C(1)

C(2)
3
�
2

C(3)
4→ C(4)

C(5)
6
�
5

C(6)
7→ C(7)

C(8)
9
�
8

C(9)
10→ C(10)

One can write the matrices ν and E as

ν =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0
0 1 −1 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and in particular, E f and νE f as

E f =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
−1 1 0 0 0 0
1 −1 0 0 0 0
0 0 0 0 0 0
0 0 −1 1 0 0
0 0 1 −1 0 0
0 0 0 0 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, νE f =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 1 0 0
−1 1 0 0 0 0
1 −1 0 0 0 0
0 0 −1 1 0 0
0 0 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 −1 1
0 0 0 0 1 −1
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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By removing cycles in the fast subsystem, one can obtain

E f =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
−1 0 0
1 0 0
0 0 0
0 −1 0
0 1 0
0 0 0
0 0 −1
0 0 1
0 0 0
0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, νE f =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0
−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 −1
0 0 1
0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and

R f (c)

ε
=
⎛

⎝
k1c1c2 − k−1c3
k3c1c4 − k−3c5
k5c6c7 − k−5c8

⎞

⎠ ,

where ε > 0 is a separation parameter.
One finds that ρ(E f ) = 3 and ρ(νE f ) = 3. Thus, the deficiency δ = 0 and so

there is no element in N [ν] ∩R[E f ] to be removed.
We compute

Dc R f (c) = ε

⎡

⎣
k1c2 k1c1 −k−1 0 0 0 0 0 0
k3c4 0 0 k3c1 −k−3 0 0 0 0
0 0 0 0 0 k5c7 k5c6 −k−5 0

⎤

⎦

and

Dc R f · νE f = ε

⎡

⎣
−k1c2 − k1c1 − k−1 −k1c2 0
−k3c4 −k3c4 − k3c1 − k−3 0
0 0 −k5c7 − k5c6 − k−5

⎤

⎦ .

Thus, the determinant of Dc R f · νE f is

|DcR f · νE f |= ε(−k1c2 − k1c1 − k−1)(−k3c4 − k3c1 − k−3)(−k5c7−k5c6−k−5)

+ εk1c2k3c4(k5c7 + k5c6 + k−5)

= ε(k5c7 + k5c6 + k−5)
[−(k1c2 + k1c1 + k−1)(k3c4 + k3c1 + k−3)

+ k1k3c2c4]

= −ε(k5c7 + k5c6 + k−5)
[
(k1c1 + k−1)(k3c4 + k3c1 + k−3)

+ k1c2(k3c1 + k−3)
]

< 0 for all c ≥ 0.

and so Theorem 3 can be applied to this example.
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Since

P f =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
and νE s =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 1 1 0
0 0 0 1
0 0 0 −1
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

one can obtain the reduced equation

dα

dt
= d

dt

⎛

⎜⎜⎜⎜⎜⎜⎝

c1 + c3 + c5
c2 + c3
c4 + c5
c6 + c8
c7 + c8

c9

⎞

⎟⎟⎟⎟⎟⎟⎠

= P f νE sRs(c) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 0
0 0 0 0
0 0 0 0
0 1 1 −1
0 0 0 0
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎝

k
k2c3
k4c5
k6c8

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎝

k − k2c2 − k4c5
0
0

k2c3 + k4c5 − k6c8
0

k6c8

⎞

⎟⎟⎟⎟⎟⎟⎠
.

By solving P f c = α for c with constraint R f (c) = 0, one can obtain

c2 = k−1α2

k1c1 + k−1
, c3 = k1c1α2

k1c1 + k−1
, c5 = k3c1α3

k3c1 + k−3
(103)

and

c8= 1

2k5

[
k5(α4 + α5)+ k−5−

√
k2

5(α4 − α5)2 + k2−5 + 2k5k−5(α4 + α5)

]
, (104)

where c1 is a positive solution of the cubic equation

k1k3c3
1 + c2

1(k1k−3 + k3k−1 + k1k3α2 + k1k3α3 − k1k3α1 + c1(k−1k−3 + k1k−3α2

+ k3k−1α3 − α1k−3k1 − α1k−1k3)− α1k−3k−1 = 0. (105)

Figure 4 illustrates the numerical accuracy of the reduction method.
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Fig. 4 Comparison of solutions of the reduced ODE system (circles) to those of the full sys-
tem (dotted). Time evolution of slow variables α1, α4 and α6(=Product) during 500 seconds when
(A1, E1, E1 A1, E∗1 , E∗1 A1, A2, E2, E2 A2, Product) = (100, 5, 0, 5, 0, 100, 5, 0, 0) initially and reac-
tion rates (k, k1, k−1, k2, k3, k−3, k4, k5, k−5, k6) = (0.1, 1, 1, 0.1, 1, 1, 0.1, 1, 1, 0.1)

Explicit representation of slow dynamics

To obtain an explicit representation of slow dynamics, we first let c = (c1, c2, c4, c6,

c7, c9, c3, c5, c8), so that we have

ν f =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[B1|B2] ln c ≡

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 −1 0 0
1 0 1 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 1 1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 0 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ln c1
ln c2
ln c4
ln c6
ln c7
ln c9
ln c3
ln c5
ln c8
ln λ1
ln λ2
ln λ3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ln

⎛

⎝
Q1
Q2
Q3

⎞

⎠ , (106)
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where ν f is the stoichiometry for complexes C(2), C(3), C(5), C(6), C(8) and C(9)

which are reactants or products of fast reactions, Q1 =
(

k−1
k1+k−1

k1
k1+k−1

)
, Q2 =

(
k−3

k3+k−3
k3

k3+k−3

)

and Q3 =
(

k−5
k5+k−5

k5
k5+k−5

)
are eigenvectors corresponding to zero eigenvalue of the matri-

ces K1 =
[−k1 k−1

k1 −k−1

]
, K2 =

[−k3 k−3
k3 −k−3

]
and K3 =

[−k5 k−5
k5 −k−5

]
, respec-

tively.
From Eq. (106), one can obtain

ca ≡ (c3, c5, c8, λ1, λ2, λ3)
T

= exp
(

B−1
2 ln Q − B−1

2 B1 (ln c1, ln c2, ln c4, ln c6, ln c7, ln c9, )
)

, (107)

where

B−1
2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1
−1 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 −1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

By solving equation (107), one can obtain

⎛

⎝
c3
c5
c8

⎞

⎠ =

⎛

⎜⎜⎝

k1
k−1

c1c2
k3

k−3
c1c4

k5
k−5

c6c7

⎞

⎟⎟⎠ ≡ F(cb) = F(c1, c2, c4, c6, c7, c9).

Thus, one can compute

S = P f
[

I6
∂ F
∂cb

]
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
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×

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

k1
k−1

c2
k1

k−1
c1 0 0 0 0

k3
k−3

c4 0 k3
k−3

c1 0 0 0

0 0 0 k5
k−5

c7
k5

k−5
c6 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+ k1
k−1

c2 + k3
k−3

c4
k1

k−1
c1

k3
k−3

c1 0 0 0

k1
k−1

c2 1+ k1
k−1

c1 0 0 0 0

k3
k−3

c4 0 1+ k3
k−3

c1 0 0 0

0 0 0 1+ k5
k−5

c7
k5

k−5
c6 0

0 0 0 k5
k−5

c7 1+ k5
k−5

c6 0

0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

After some computations to obtain S−1P f νs Rs(c), one obtains the explicit reduced
equations

dc1

dt
=

(k−1 + k1c1)(k−3 + k3c1)

(
k − k1k2

k−1
c1c2 − k3k4

k−3
c1c4

)

(k−1k−3 + k−1k3c1 + k−3k1c1 + k1k3c2
1 + k1k−3c2 + k1k3c2c1 + k3k−1c4 + k1k3c4c1)

dc2

dt
=

(k−3 + k3c1)

(
−kk1c2 +

k2
1k2

k−1
c1c2

2 +
k1k3k4

k−3
c1c2c4

)

(k−1k−3 + k−1k3c1 + k−3k1c1 + k1k3c2
1 + k1k−3c2 + k1k3c2c1 + k3k−1c4 + k1k3c4c1)

dc4

dt
=

(k−1 + k1c1)

(
−k3c4k + k1k2k3

k−1
c1c2c4 +

k2
3k4

k−3
c1c2

4

)

(k−1k−3 + k−1k3c1 + k−3k1c1 + k1k3c2
1 + k1k−3c2 + k1k3c2c1 + k3k−1c4 + k1k3c4c1)

dc6

dt
= (k−5 + k5c6)

(k−5 + k5c6 + k5c7)

(
k1k2

k−1
c1c2 + k3k4

k−3
c1c4 − k5k6

k−5
c6c7

)

dc7

dt
= k5c7

(k−5 + k5c6 + k5c7)

(
− k1k2

k−1
c1c2 − k3k4

k−3
c1c4 + k5k6

k−5
c6c7

)

dc9

dt
= k5k6

k−5
c6c7.

Note that the initial condition (c1(0), c2(0), c4(0), c6(0), c7(0)) of above ODE system
is obtained from Eqs. (103)–(105).
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Fig. 5 A model of intracellular viral infection. Dotted lines represent catalytic reactions. Both RNA and
proteins are subject to degradation

7.4 Intracellular viral infection model

We consider an intracellular viral infection model proposed by Srivastava et al. (2002)
(Fig. 5).

We denote DNA, RNA, viral protein and viral cell by D, R, P and V respectively.
Reactions and parameters are obtained from (Srivastava et al. 2002) as follows.

R1 : D
k1→ R + D (108)

R2 : R
k2→ φ (109)

R3 : R
k3→ R + D (110)

R4 : D + P
k4→ V (111)

R5 : R
k5→ P + R (112)

R6 : P
k6→ φ (113)

Parameter Value

k1 0.025 day−1

k2 0.25 day−1

k3 1.0 day−1

k4 7.5× 10−6 molecules−1day−1

k5 1000 day−1

k6 1.99 day−1

We denote the numbers of molecules of D, R, P and V by c1, c2, c3 and c4.
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We assume that two reactions R5 and R6 are much faster than other reactions as in
Haseltine and Rawlings (2002). Thus, the fast subsystem is given by

R5 : R
k5→ P + R (114)

R6 : P
k6→ φ (115)

We define the complexes as follows:

C(1)=D, C(2)= R, C(3)= P, C(4)=V, C(5)= R + D, C(6)= P + R,

C(7) = D + P, C(8) = φ.

Thus, the stoichiometric matrix ν for complexes is

ν =

⎡

⎢⎢⎣

1 0 0 0 1 0 1 0
0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 0

⎤

⎥⎥⎦ .

After identification of equal complexes, one can obtain the graph of the reaction system
with the complexes:

C(1)
1→ C(5)

C(2)
2→ C(8)

C(2)
3→ C(5)

C(7)
4→ C(4)

C(2)
5→ C(6)

C(3)
6→ C(8).

One finds the incidence matrices E and E f

E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
0 −1 −1 0 −1 0
0 0 0 0 0 −1
0 0 0 1 0 0
1 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 1 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, E f =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−1 0
0 −1
0 0
0 0
1 0
0 0
0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the reaction rate functions

R1(c) = k1c1, R2(c) = k2c2, R3(c) = k3c2, R4(c) = k4c1c3, R5(c) = k5c2,

R6(c) = k6c3.

123



C. H. Lee, H. G. Othmer

Now we reduce the fast subsystem. One can see that ρ(E f ) = 2 and so E has full
column rank. This implies the graph contains no cycles, which is also obvious from
the graph of the fast subsystem.

Next we remove the elements in N [ν] ∩R[E f ]. Since

νE f =

⎡

⎢⎢⎣

0 0
0 0
1 −1
0 0

⎤

⎥⎥⎦ ,

the deficiency is δ = ρ(E f ) − ρ(νE f ) = 1. Thus, there is a basis vector that spans
N [ν] ∩ R[E f ]. One can find the basis vector as (0,−1,−1, 0, 0, 1, 0, 1)T , and so
N [ν] ∩R[E f ] = span{(0,−1,−1, 0, 0, 1, 0, 1)T }.

If we choose to retain the edge 5, then we obtain

E f
(

R5
R6

)
= E f

0 H H−1
(

R5
R6

)
= Ẽ f

0 R̃0,

where

E f
0 =E f , H =

[
1 1
0 1

]
, H−1 =

[
1 −1
0 1

]
, Ẽ f

0 = E f
0 H, R̃0 = H−1

(
R5
R6

)
.

Dropping the last δ(= 1) row of H−1, one obtains a reduced graph C(2)
R5−R6→ C(6)

for the fast subsystem. Thus, after removal of the elements in N [ν] ∩R[E f ], one can
obtain the graph for the whole system

C(1)
R1→ C(5)

C(2)
R2→ C(8)

C(2)
R3→ C(5)

C(7)
R4→ C(4)

C(2)
R5−R6→ C(6).

In the reduced graph, one obtains the reaction rate functions

R(c) =

⎡

⎢⎢⎢⎢⎣

k1c1
k2c2
k3c2

k4c1c3
k5c2 − k6c3

⎤

⎥⎥⎥⎥⎦
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and the stoichiometry

νE =

⎡

⎢⎢⎣

0 0 1 −1 0
1 −1 0 0 0
0 0 0 −1 1
0 0 0 1 0

⎤

⎥⎥⎦ .

Since the last reaction is fast and others are slow, one has

R f

ε
= k5c2 − k6c3, Rs =

⎡

⎢⎢⎣

k1c1
k2c2
k3c2

k4c1c3

⎤

⎥⎥⎦ ,

where ε > 0 is a separation parameter, and

νE s =

⎡

⎢⎢⎣

0 0 1 −1
1 −1 0 0
0 0 0 −1
0 0 0 1

⎤

⎥⎥⎦ , νE f =

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ .

One can see that

Dc(R f )νE f = −εk6 �= 0.

Thus, by Theorem 3, one obtains the reduced equation

dα

dt
= P f νE s Rs(c)

=
⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎦

⎡

⎢⎢⎣

0 0 1 −1
1 −1 0 0
0 0 0 −1
0 0 0 1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

k1c1
k2c2
k3c2

k4c1c3

⎤

⎥⎥⎦

=
⎡

⎣
k3c2 − k4c1c3
k1c1 − k2c2

k4c1c3

⎤

⎦ ,

where

α = P f c =
⎡

⎣
c1
c2
c4

⎤

⎦ .

From the equation 0 = R f = k5c2 − k6c3, one can obtain an explicit evolution
equation for α,
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Fig. 6 Evolution of numbers of molecules of DNA, RNA, protein and viral cells when (D, R, P, V ) =
(0, 1, 0, 0) initially. Solution of the full equation (blue solid line) versus solution of the reduced equation
(red circles)

dα

dt
= d

dt

⎡

⎣
α1
α2
α3

⎤

⎦ =

⎡

⎢⎢⎣

k3α2 − k4k5
k6

α1α2

k1α1 − k2α2

k4k5
k6

α1α2

⎤

⎥⎥⎦ (116)

or alternatively, an explicit expression of the slow dynamics in terms of original vari-
ables c1, c2 and c4

d

dt

⎡

⎣
c1
c2
c4

⎤

⎦ =

⎡

⎢⎢⎣

k3c2 − k4k5
k6

c1c2

k1c1 − k2c2

k4k5
k6

c1c2

⎤

⎥⎥⎦ (117)

A comparison of the numerical results the full and reduced systems is given in Fig. 6.

8 Conclusion

In this paper we presented a reduction method for chemical reaction networks with
coupled fast and slow reactions. In the general reduction process, which can be applied
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to all networks, we first identify null complexes, then remove cycles, and finally reduce
the deficiency to zero. The result is a dynamically equivalent systems, and using this
we eliminated the fast kinetic steps using singular perturbation. When Dc(R f (c))νE f

is nonsingular there is a change of coordinates that leads to a standard form in which
slow and fast variables are identified explicitly. This reduction also clarifies the geo-
metric meaning of the reduction, proving that under the QSS assumption, the solution
of the reduced system is a projection of a solution trajectory onto the steady state
manifold along a family of reaction simplexes for the fast subsystem.

We also identified network topologies that guarantee the separation of fast and slow
variables, and showed that if the fast subsystem is a linear loop, the nonsingularity
condition holds. It also holds if the fast subsystem has a tree structure, with some
additional conditions. Several examples of increasing complexity, including a recep-
tor-ligand binding model, an intracellular viral infection model, and a reaction model
for the glycolytic reactions were presented to illustrate the reduction method. Using a
similar approach, the result for two-time scale reaction networks can be extended to
three or more time scale reaction networks (see the appendix.)

Acknowledgment This work was supported by NIH grant GM29123, NSF grant DMS-0517884 and the
University of Minnesota Supercomputing Institute.

Appendix A: Extension to three or more time scale networks

The analysis presented in previous sections can be extended to three or more time
scale reaction networks under suitable conditions. Here we describe the procedure for
the reduction of the three-time scale reaction network.

Suppose that reactions are separated into subsets of three different time scale reac-
tions: slow, medium and fast reactions, with O(1), O(1/ε1) and O(1/ε2), respectively,
where 0 < ε2 � ε1 � 1. We denote slow, medium and fast reactions by superscripts
s, m and f respectively. We let Rk be the reaction rate function, νEk be the stoichiom-
etric matrix, and rk be ρ(νEk) for each k = s, m, f . As in the two time scale networks,
we can make the reduction of the graphs of fast and medium subsystems, so that we
assume a reduced graph of the given system and two stoichiometric matrices νE f and
νEm have full rank. Thus, one can write the governing equation,

dc

dt
= 1

ε2
νE f R f (c)+ 1

ε1
νEm Rm(c)+ νE s Rs(c). (118)

The QSS approximations on two different time scales is done as follows.

I. Dynamics after the QSS approximation of fast dynamics

We first assume the rank condition, ρ(νE f ) = ρ(Dc(R f (c)). By Theorem 3, if the
matrix Dc(R f (c))νE f is nonsingular, then by a coordinate change

T1(c) =
[P f · c

R f (c)

]
≡
[

α

β

]
,
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we obtain

dα

dt
= 1

ε1
P f · νEm Rm(c)+ P f νE s Rs(c) (119)

ε2
dβ

dt
= ε2 Dc(R f (c))

[
1

ε1
νEm Rm(c)+ νE s Rs(c)

]
+ Dc(R f (c))νE f R f (c),

(120)

where c = T−1(α, β).
Under the QSS assumption, i.e. letting ε2 → 0, we obtain a reduced equation

dα

dt
= 1

ε1
P f · νEm Rm(S(α))+ P f νE s Rs(S(α)), (121)

where c = T−1(α, 0) ≡ S(α). Note that the variable c evolves on the manifold
K f = {c : R f (c) = 0}.

II. Slow dynamics after the QSS approximations of fast and medium dynamics

We can obtain a reduced equation on the slow time scale by applying a similar method
as in the above to the two-time scale equation (121). To do so, we assume P f νEm has
full column rank, and the rank condition, ρ(P f νEm) = ρ(Dα(Rm S(α))).

We define a matrix Bm whose rows are basis vectors of P f νEm and a transformation

T2(α) =
[

Bm · α
Rm S(α)

]
≡
[

η

ζ

]
.

Under the nonsingularity of Dα[Rm(S(α))]P f νEm , we can obtain

dη

dt
= BmP f νE s Rs S(α) (122)

ε1
dζ

dt
= ε1 Dα(Rm(α))P f νE s Rs S(α)+ Dα(Rm S(α))P f νEmζ, (123)

where α = T−1
2 (η, ζ ).

Under the QSS assumption, i.e. by letting ε1 → 0, we obtain

dη

dt
= BmP f · νE s Rs ST−1

2 (η, 0). (124)

Notice that the original variable c evolves on the set K f ∩ Km , where Km = {c :
Rm(c) = 0}.

A similar procedure can be used for reaction networks with more than three time
scales.

123



A multi-time-scale analysis of chemical reaction networks

References

Aris R (1965) Prolegomena to the rational analysis of chemical reactions. Arch Ration Mech Anal
19(2):81–99

Acrivos A, Bowen J, Oppenheim A (1963) Singular perturbation refinement to quasi-steady state approxi-
mation in chemical kinetics. Chem Eng Sci 18:177–188

Chen WK (1971) Applied graph theory. North-Holland series in applied mathematics and mechanics,
vol 13. North-Holland, Amsterdam

Fraser SJ (1988) The steady state and equilibrium approximations: a geometrical picture. J Chem Phys
88:4732

Gadgil C, Lee CH, Othmer HG (2005) A stochastic analysis of first-order reaction networks. Bull Math
Biol 67:901–946

Gibbons A (1985) Algorithmic graph theory. Cambridge University Press, Cambridge
Gorban AN, Karlin IV (2003) Method of invariant manifold for chemical kinetics. Chem Eng Sci

58(21):4751–4768
Goussis DA, Valorani M (2006) An efficient iterative algorithm for the approximation of the fast and slow

dynamics of stiff systems. J Comput Phys 214(1):316–346
Haseltine EL, Rawlings JB (2002) Approximate simulation of coupled fast and slow reactions for stochastic

chemical kinetics. J Chem Phys 117(15):6959
Heineken F, Tsuchiya H, Aris R (1967) On the mathematical status of the pseudo-steady state hypothesis

of biochemical kinetics. Math Biosci 1:95–113
Horn F (1972) Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch Ration

Mech Anal 49(3):172–186
Horn F, Jackson R (1972) General mass action kinetics. Arch Ration Mech Anal 48:81
Kijma H, Kijima S (1982) Steady/equilibrium approximation in relaxation and fluctuation. Biophys Chem

16:181–192
King EL, Altman C (1956) A schematic method of deriving the rate laws for enzyme-catalyzed reactions.

J Phys Chem 60(10):1375–1378
Kistiakowsky GB, Shaw WHR (1953) On the mechanism of the inhibition of Urease. J Am Chem Soc

75(4):866–871
Kumar A, Daoutidis P (1999) Control of nonlinear differential algebraic equation systems. Chapman and

Hall/CRC, London
Lam SH (1993) Using CSP to understand complex chemical kinetics. Combust Sci Technol 89(5):375–404
Lam SH, Goussis DA (1994) The CSP method for simplifying kinetics. Int J Chem Kinet 26(4):461–486
Lin CC, Segel LA (1988) Mathematics applied to deterministic problems in the natural sciences. SIAM
Maas U, Pope SB (1992) Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composi-

tion space. Combust Flame 88(3–4):239–264
Othmer HG (1976) Nonuniqueness of equilibria in closed reacting systems. Chem Eng Sci 31:993–1003
Othmer HG (1979) A graph-theoretic analysis of chemical reaction networks. Lecture Notes, Rutgers Uni-

versity—available at www.math.umn.edu/~othmer/graphrt.pdf
Othmer HG (1981) The interaction of structure and dynamics in chemical reaction networks. In: Ebert KH,

Deuflhard P, Jager W (eds) Modelling of chemical reaction systems. Springer, New York, pp 1–19
Othmer HG, Aldridge JA (1978) The effects of cell density and metabolite flux on cellular dynamics.

J Math Biol 5:169–200
Park DJ (1974) The hierarchical structure of metabolic networks and the construction of efficient metabolic

simulators. J Theor Biol 46(1):31–74
Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative structures. J Chem Phys

48:1695–1700
Srivastava JSR, You L, Yin J (2002) Stochastic versus deterministic modeling of intracellular viral kinetics.

J Theor Biol 218:309–321
Roussel MR, Fraser SJ (1990) Geometry of the steady-state approximation: Perturbation and accelerated

convergence methods. J Chem Phys 93:1072
Roussel MR, Fraser SJ (1991) On the geometry of transient relaxation. J Chem Phys 94:7106
Roussel MR, Fraser SJ (2001) Invariant manifold methods for metabolic model reduction. Chaos Interdiscip

J Nonlinear Sci 11:196
Segel LA, Slemrod M (1982) The quasi-steady-state assumption: a case study in perturbation. Biophys

Chem 16:181–192

123

www.math.umn.edu/~othmer/graphrt.pdf


C. H. Lee, H. G. Othmer

Snow RH (1966) A chemical kinetics computer program for homogeneous and free-radical systems of
reactions. J Phys Chem 70(9):2780–2786

Stiefenhofer M (1998) Quasi-steady-state approximation for chemical reaction networks. J Math Biol
36:593–609

Tikhonov AN (1952) Systems of differential equations containing small parameters in the derivatives.
Matematicheskii Sbornik 73(3):575–586

Valorani M, Creta F, Goussis DA, Lee JC, Najm HN (2006) An automatic procedure for the simplification
of chemical kinetic mechanisms based on CSP. Combust Flame 146(1–2):29–51

Kaper ZA, Kaper TJ (2004) Fast and slow dynamics for the computational singular perturbation method.
Multiscale Model Simul 2(4):613–638

Zagaris A, Kaper HG, Kaper TJ (2004) Analysis of the computational singular perturbation reduction
method for chemical kinetics. J Nonlinear Sci 14(1):59–91

123


	A multi-time-scale analysis of chemical reaction networks: I. Deterministic systems
	Abstract
	1 Background
	2 The deterministic description of chemical reaction networks 
	2.1 Reaction invariants
	2.2 The deficiency of a kinetic mechanism
	2.3 Kinetic equilibria

	3 Reduction of the reaction graph
	4 The QSSA in deterministic systems
	4.1 Preliminary steps in the reduction
	4.2 Reduction to the singularly-perturbed form
	4.3 The geometric interpretation of the transformation

	5 Sufficient conditions for the nonsingularity of Dc(Rf) Ef
	6 An explicit representation of the slow dynamics for IMAK
	7 Applications
	7.1 A system with a fast dimerization and a slow isomerization
	7.2 Receptor-Ligand binding
	7.3 PFK reaction system
	7.4 Intracellular viral infection model

	8 Conclusion
	Acknowledgment


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


