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Abstract The network that controls chemotaxis in Escherichia coli is one of the
most completely characterized signal transduction systems to date. Receptor clus-
tering accounts for characteristics such as high sensitivity, precise adaptation over
a wide dynamic range of ligand concentrations, and robustness to variations in the
amounts of intracellular proteins. To gain insights into the structure-function relation-
ship of receptor clusters and understand the mechanism behind the high-performance
signaling, we develop and analyze a model for a single trimer of dimers. This new
model extends an earlier model (Spiro et al. in Proc. Natl. Acad. Sci. 94:7263–7268,
1997) to incorporate the recent experimental findings that the core structure of recep-
tor clusters is the trimer of receptor dimers. We show that the model can reproduce
most of the experimentally-observed behaviors, including excitation, adaptation, high
sensitivity, and robustness to parameter variations. In addition, the model makes a
number of new predictions as to how the adaptation time varies with the expression
level of various proteins involved in signal transduction. Our results provide a more
mechanistically-based description of the structure-function relationship for the sig-
naling system, and show the key role of the interaction among dimer members of the
trimer in the chemotactic response of cells.

Keywords E. coli · Adaptation · Robustness · Sensitivity

1 Introduction

In response to environmental signals such as light, temperature, or chemicals, motile
organisms can change their behavior by directed movement toward or away from the
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signal, which is called taxis, by changing their speed of movement and/or frequency
of turning, which is called kinesis, or by a combination of these.1 E. coli employs ki-
nesis to move in a favorable direction, and in particular, it executes the “bakery walk”
in finding a favorable location, which is to take a “sniff” and judge the signal intensity
at the present location, take a “step” and another sniff, compare the signals, and from
the comparison decide on the next step. In this process, it alternates between a more
or less linear motion called running (the “step”) and a highly erratic motion called
tumbling, which produces little translocation but reorients the cell. E. coli has 6–8
motor-driven flagella that can rotate in either direction, and when they rotate counter-
clockwise (CCW) when viewed from behind they form a bundle that propels the cell
forward in a run, but when they rotate clockwise (CW) the bundle flies apart and the
cell tumbles. Since these bacteria are 1–2 μm in length, they are too small to detect
spatial differences in an extracellular signal on the scale of a cell length, and they
choose a new direction essentially at random at the end of a tumble, although it has
some bias in the direction of the preceding run (Berg and Brown 1972). In the absence
of a signal the run times are much longer than the tumbling times, and when bacte-
ria move in a favorable direction (i.e., either in the direction of foodstuffs or away
from noxious substances), the run times are increased further by increasing the prob-
ability p(CCW) of CCW rotation (called the rotational bias) (Berg and Brown 1972;
Berg and Tedesco 1975; Larsen et al. 1974; Silverman and Simon 1974; Spudich
and Koshland 1975; Stock et al. 1991). The effect of alternating these two modes of
behavior is that a bacterium executes a three-dimensional random walk with drift in
the favorable direction, when observed on a sufficiently long time scale (Berg 1975;
Koshland 1980). In addition, E. coli adapts to constant signal levels and only
alters the run length in response to changes in the extracellular signals; in ef-
fect the sensory system functions as a derivative detector. Thus, chemotaxis com-
prises two essential phases: excitation that leads to a change in the tumbling rate,
and adaptation. The former is fast—it occurs in a fraction of a second in re-
sponse to a step change in the signal—while the latter is slow, and takes from
seconds to minutes depending on the size of the stimulus (Block et al. 1982;
Stock 1994).

The signal transduction system that underlies E. coli chemotaxis involves five
dimeric membrane-spanning chemoreceptors (Tsr, Tar, Tap, Trg, and Aer), which
are members of a family of transmembrane methyl-accepting chemotaxis proteins
(MCPs), and six intracellular Che proteins (CheA, CheW, CheY, CheZ, CheR, and
CheB). Tsr and Tar are the major receptors with a few thousand copies per cell;
Tap, Trg, and Aer are minor types with a few hundred copies per cell. Two central
components are the histidine kinase CheA, which autophosphorylates, and the motor
regulator CheY, to which the phosphorylated CheA transfers its phosphoryl group.
CheA and the adapter protein CheW bind to receptors to form a stable ternary signal-
ing complex, and when an extracellular signal binds to receptor sites on the complex,
the autophosphorylation rate of CheA is modulated. CheAp transfers the phosphoryl
group to CheY, which then diffuses to the flagellar motors. When CheYp binds to the

1Usually the distinction between taxis and kinesis is ignored, and we follow this convention here, and refer
to the process as chemotaxis when the signal is a chemical.
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protein FliM at the base of a motor, it increases the probability p(CW) of CW rotation,
and thus increases the tumbling rate. The phosphatase CheZ reduces the CW signal
by catalyzing the dephosphorylation of CheYp. Attractant binding to or repellent re-
lease from the receptors inhibits the kinase activity of CheA, and thereby decreases
the intracellular CheYp level and increases the run time, whereas decreases in attrac-
tants or increases in repellents function oppositely. Thus, the excitation response to a
favorable signal consists of a rapid decrease in the activity of the kinase, a decrease
in the level of CheYp, and a decrease in the probability of tumbling, all on the time
scale of a few hundred milliseconds (Bourret and Stock 2002).

Adaptation to chemotactic signals arises as follows. In addition to their extra-
cellular ligand binding domain, chemoreceptors also have four or more sites in the
cytoplasmic domain that are occupied either by glutamine (Q) or glutamate (E). Glu-
tamate is methylated by the methyltransferase CheR (E → EM ) and demethylated
by the methylesterase CheBp (EM → E), and glutamine is also deamidated to glu-
tamate (Q → E) by CheBp. In addition to the effect of ligand binding, the kinase
activity of CheA is also controlled by the methylation level of receptors; addition of
a methyl group increases the activity and vice versa. CheR is unregulated, whereas
the activity of CheB increases significantly when it is phosphorylated by CheAp, and
when kinase activity is high it leads to a lower methylation level, and thus functions
as a negative feedback in the transduction pathway. Thus, the overall response to an
attractant can be summarized as a rapid decrease in kinase activity and CheYp, fol-
lowed by a slower restoration of the kinase activity due to methylation of occupied
receptors.

E. coli can sense and adapt to ligand concentrations spanning more than five or-
ders of magnitude, and can detect a change in occupancy of the aspartate receptor
Tar as small as 0.1–0.2 %, which corresponds to the binding of one or two ligand
molecules per cell (Bourret et al. 1991). If we define the gain in signal transduction
as the change in rotational bias divided by the change in receptor occupancy, the gain
can be as high as 55 (Segall et al. 1986). If we define the upstream signaling gain
as the ratio of the relative change in kinase activity divided by the change in recep-
tor occupancy, it is up to 35 (Sourjik and Berg 2002a). Most of the MCPs associate
with CheA and CheW, and the ternary signaling complexes aggregate into heteroge-
neous clusters predominantly localized at one cell pole (Maddock and Shapiro 1993;
Kim et al. 1999; Ames et al. 2002; Studdert and Parkinson 2004, 2005). Cooper-
ativity in ligand binding and activity regulation induced by receptor clustering and
interaction contributes to the high sensitivity (Bray et al. 1998; Shi and Duke 1998;
Duke and Bray 1999; Sourjik and Berg 2004), but it is not clear whether long-range
spatial interactions between receptors play an essential role in the high gain; some
models rely on it, but we show that much of the data can be explained without invok-
ing interactions beyond the level of trimers.

Models that invoke receptor clustering fall into two categories: in one cate-
gory, receptors exist in a large, extended weakly-coupled network and conforma-
tional changes spread from ligand-bound receptors to neighbors through protein-
protein interactions, and these can be formulated as a classical Ising model (Shi
and Duke 1998; Duke and Bray 1999; Shimizu et al. 2003; Mello and Tu 2003;
Mello et al. 2004). In the other, it is assumed that receptors exist in smaller but
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more strongly coupled clusters and simultaneously flip between active and inac-
tive states, and these can be thought of as a classical Monod–Wyman–Changeux
(MWC) model (Sourjik and Berg 2004; Mello and Tu 2005; Keymer et al. 2006;
Endres and Wingreen 2006). Both Ising-type and MWC-type models treat the re-
ceptor dimer as the basic functional unit and thus receptor interactions are at the
dimer-dimer level. However, it is now well established that the basic functional
unit is a trimer comprised of three tightly-linked receptor dimers that a large num-
ber of trimers are loosely-arranged in an hexagonal array (Khursigara et al. 2008;
Briegel et al. 2008), and that a trimer of dimers has greater kinase activation than
either a single dimer or a multiple-trimer cluster (Boldog et al. 2006). All the data
suggest that structurally and functionally, the trimer of dimers is the core unit of
receptor clusters. Thus, it is likely that the short-range interaction between dimers
within a trimer is the primary determinant of signal transduction, and that the long-
range interaction between trimers is secondary. This is supported by the observation
that the extremely high cooperativity of receptors (a Hill coefficient for the kinase
activity response larger than 3) is only observed in two special cases: responses by
the cheRcheB mutant cells with Tar or Tsr highly over-expressed (Sourjik and Berg
2004), or by the receptor Tsr in vitro (Li and Weis 2000), while in wild-type cells
and other cheRcheB mutant strains, the cooperativity is more moderate (the Hill co-
efficient is less than 3). A recent study on the effect of CheW also provides indirect
support for the central role of the trimer of dimers (Cardozo et al. 2010). In evo-
lutionary terms, the structure of the trimer of dimers and the underlying signaling
mechanism is highly preserved and could be a universal architecture for many bacte-
rial species (Briegel et al. 2009). Therefore, it is appropriate to thoroughly understand
the dynamics of this basic functional unit before postulating models for the effects of
higher-order organization.

Our objective here is to develop a complete dynamic model for a single trimer of
dimers. Three recent models (Rao et al. 2004a; Endres et al. 2007; Park et al. 2007) of
the network focus on the steady-state or equilibrium behavior and treat the upstream
steps of ligand binding and kinase activity regulation. In contrast, we treat the ternary
complex of a trimer of receptor dimers, a CheA dimer and two CheW monomers
as a signaling unit, we incorporate the sensing scheme into the downstream phos-
phorylation cascade and methylation chain, and we simulate the dynamic behavior
of the overall pathway for different types of stimuli. We also perform detailed sen-
sitivity analysis, robustness analysis and system reduction for the model to arrive at
a more mechanistic understanding of the structure-function relationships in the sig-
naling system. For example, we test the response to variations in the ligand affinity
as a function of the activity of receptors, their methylation level, and the number
of ligands bound to receptors, the factors for which different assumptions are made
in existing models. Furthermore, we do not use data fitting to establish model pa-
rameters; rather, we base the parameter set on the available experimental measures
or estimates. In essence, the model we develop is an updated version of an earlier
model (Spiro et al. 1997), modified to incorporate new findings on the structure of
the receptor complex.
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2 Model Development

The signal transduction pathway in E. coli chemotaxis can be divided into three steps,
ligand binding and kinase activity regulation that occurs on a time scale of millisec-
onds, phosphoryl transfer on intermediate time scales from tenth of seconds to sec-
onds, and methylation/demethylation on time scales ranging from seconds to min-
utes, depending on the size of the stimulus. The input to the signaling module is the
concentration of ligands, and the output is the concentration of the response regu-
lator protein CheYp. Figure 1 illustrates the states of the signaling complex and the
network of transitions among them. The signaling complex, which we denote by T,
consists of a trimer of identical receptor dimers (which we call pure-type; mixed-type
trimers will be discussed later), a CheA dimer and two CheW monomers, the stoi-
chiometry of which is estimated from several experimental studies (Liu et al. 1997;
Francis et al. 2002, 2004; Levit et al. 2002). Receptor trimers and CheA/CheW pro-
teins are assumed to form static signaling complexes in that the estimated half-life
of receptor trimers is much longer than the time scales of the reactions that receptors
and CheA are involved in Liberman et al. (2004).

Each signaling complex is characterized by its ligand occupancy, the state of its
CheA and its methylation level. Throughout we assume that at most one ligand binds
to a receptor dimer, since the binding affinity of the second aspartate to a Tar dimer
is at least 450-fold lower than that of the first (Bjorkman et al. 2001). Thus, there
are three equivalent ligand binding sites and therefore, a signaling complex has four
ligand binding states 0, 1, 2, and 3 denoted by the subscript n on T. Concerning the
kinase activity of CheA, we assume that a receptor trimer has two conformational
states, active and inactive. In the active state, CheA undergoes autophosphorylation
and phosphotransfer, whereas in the inactive state the trimer inhibits the autophospho-
rylation activity of CheA. We assume that both monomers in dimeric CheA phospho-
rylate or dephosphorylate simultaneously, which means that a signaling complex has
three activity states, inactive, active-unphosphorylated and active-phosphorylated,
denoted by the superscript s = i, a or p on T. Concerning methylation, we focus pri-
marily on the chemotactic response to aspartate. The aspartate receptor Tar has four
methylation sites and the wild-type responses probably involve only increases in the
average methylation level above the unstimulated level of about 1.5–2 methyl esters
per receptor monomer (methylation level 1.5–2) (Boyd and Simon 1980). Therefore,
we assume that a trimer with 6 monomers can be methylated to the maximum level
of 12, and thus a signaling complex has thirteen methylation states, denoted by the
subscript m = 0,1, . . . ,12 on T.

Changes in the trimer state are encoded in the transition network (Fig. 1). Vertical
transitions represent ligand binding (downward) and release (upward). Front-to-rear
and reverse transitions involve kinase activity change and phosphoryl transfer. The
first step is activation and deactivation of CheA by the trimer, and the second step in-
volves autophosphorylation of CheA (front to rear) and phosphorylation of CheY and
CheB (in reverse). Upon removal of the phosphoryl group from CheA, the signaling
complex is assumed to return to the active state, i.e., there is no direct transition be-
tween the phosphorylated and the inactive state. CheBp and CheYp autodephosphory-
late and CheZ enhances dephosphorylation of CheYp. Horizontal transitions involve
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Fig. 1 Signal transduction network. The basic unit of the network is the signaling complex, denoted by T.
The three indices used to denote the properties of the complex are shown in the upper left corner. In the
reaction network, vertical transitions are ligand binding and release, horizontal transitions are methylation
and demethylation, and front-to-rear and reverse transitions are kinase activation, deactivation, phospho-
rylation, and dephosphorylation. The details of the phosphotransfer transitions are depicted at the left.
A typical transition chain in the network is expanded in the lower part of the figure, where the reactions of
the same type are marked with the same color and labeled with the same number. See also Table 1 (Color
figure online)
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methylation (left to right) and demethylation (right to left) of trimers by CheR and
CheBp, respectively. We assume that CheR acts only on inactive trimers, and CheBp
only on active ones, either unphosphorylated or phosphorylated. We also assume that
the methylation/demethylation rates are the same for ligand-free and ligand-occupied
trimers, and that the rates do not depend on the methylation state of trimers.

Since the ligand binding reactions are the fastest, the first component of the re-
sponse following an increase in attractants is a shift downward to the higher ligand
occupancy states. The second component of the response is a redistribution of the
activity states from rear to front and a drop in the level of CheYp; this constitutes ex-
citation. The final component of the response involves an increase in the methylation
level, hence a shift from left to right, and a corresponding shift in equilibrium be-
tween active and inactive states toward the active state. As a result, the lower kinase
activity induced by attractant binding on the fast time scale is offset by higher CheA
activity in higher-methylation states, and CheYp returns to the level that prevails in
the absence of a stimulus. This constitutes adaptation and completes the response to
a step change in attractants.

The mathematical description of the network dynamics is based on mass action
kinetics (Table 1) for all steps. For a typical enzyme-catalyzed reaction of the form

E + S
k+

1
�
k−

1

[ES] k2→ E + P , the quasisteady-state assumption (QSSA) for the interme-

diate leads to the rate equation

dP

dt
= k2E0S

K + S
, where K = k−

1 + k2

k+
1

,

and the conservation condition E + [ES] = E0 for the enzyme has been applied.
However, this simple conservation condition does not hold for CheR or CheBp for
an individual methylation or demethylation reaction given by ⑥ or ⑦ in Table 1.
Instead, the conservation condition couples all methylation or demethylation reac-
tions. We therefore simplify this by considering the fast time scale of the bind-
ing step relative to the following production step, and assume that the kinetics of
[ES] can be approximated as ˙[ES] = k+

1 ES − k−
1 [ES]. Applying the QSSA to this

step yields the modified enzyme kinetic description Ṗ = Kak2ES, where the as-
sociation constant Ka = k+

1 /k−
1 . The association and disassociation steps between

CheY/CheR/CheB/CheBp and MCP are fast and can be set to equilibrium and there-
fore, we can apply the above rate law to the bimolecular reactions. Below we only
display the equations that govern the evolution of the amounts in the various states of
the signaling complexes for n = 2; other equations are the same modulo changes in
the sub- and superscripts.

dT i
m,2

dt
= 2km

2 LT i
m,1 − 2km

−2T
i
m,2 − km

3 LT i
m,2 + 3km

−3T
i
m,3

︸ ︷︷ ︸

Ligand binding/release

+ k
m,2
i T a

m,2 − k
m,2
−i T i

m,2
︸ ︷︷ ︸

Activity regulation

+ KRkR1RT i
m−1,2 − KRkR1RT i

m,2
︸ ︷︷ ︸

Methylation

, (1)
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dT a
m,2

dt
= 2km

2 LT a
m,1 − 2km

−2T
a
m,2 − km

3 LT a
m,2 + 3km

−3T
a
m,3

︸ ︷︷ ︸

Ligand binding/release

− k
m,2
i T a

m,2 + k
m,2
−i T i

m,2
︸ ︷︷ ︸

Activity regulation

− kAT a
m,2

︸ ︷︷ ︸

Phosphorylation

+ KY kY1YT
p

m,2 + KBkB1BT
p

m,2
︸ ︷︷ ︸

Phosphotransfer

−KBpkB3BpT a
m,2 + KBpkB3BpT a

m+1,2
︸ ︷︷ ︸

Demethylation

,

(2)

dT
p

m,2

dt
= 2km

2 LT
p

m,1 − 2km
−2T

p

m,2 − km
3 LT

p

m,2 + 3km
−3T

p

m,3
︸ ︷︷ ︸

Ligand binding/release

+ kAT a
m,2

︸ ︷︷ ︸

Phosphorylation

− KY kY1YT
p

m,2 − KBkB1BT
p

m,2
︸ ︷︷ ︸

Phosphotransfer

−KBpkB3BpT
p

m,2 + KBpkB3BpT
p

m+1,2
︸ ︷︷ ︸

Demethylation

.

(3)

The equations for CheYp and CheBp are

dYp

dt
= KY kY1Y

12
∑

m=0

3
∑

n=0

T
p
m,n − kY2Yp − KZkZZYp, (4)

dBp

dt
= KBkB1B

12
∑

m=0

3
∑

n=0

T
p
m,n − kB2Bp. (5)

In addition, the total amounts of MCP, CheY, CheZ, CheB and CheR are conserved
(denoted as Tt , Yt , Zt , Bt , and Rt , respectively, in Table 2). For CheY, CheZ, CheB,
and CheR, this leads to the equations

Y = Yt − (1 + KZZ)Yp

1 + KY

∑12
m=0

∑3
n=0 T

p
m,n

, (6)

Z = Zt

1 + KZYp

, (7)

B = Bt − [1 + KBp

∑12
m=0

∑3
n=0(T

a
m,n + T

p
m,n)]Bp

1 + KB

∑12
m=0

∑3
n=0 T

p
m,n

, (8)

R = Rt

1 + KR

∑12
m=0

∑3
n=0 T i

m,n

. (9)

The four conditions can be used to eliminate four variables, and the resulting sys-
tem can be integrated numerically upon assignment of parameters. In the following
section we define the parameter set.
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Table 2 Amounts of chemotactic proteins

Species Label Concentration (μM) Reference

Signaling complex Tt 5/3a Li and Hazelbauer (2004), Ninfa et al. (1991)

CheR Rt 0.3 Simms et al. (1987)

CheB Bt 2 Simms et al. (1985)

CheY Yt 18 Alon et al. (1998), Scharf et al. (1998)

CheZ Zt 1.1 Sourjik and Berg (2002b)

aA signaling complex comprises one trimer of MCP dimers, one CheA dimer and two CheW monomers.
In the pure-type model, the MCP is assumed to be Tar. The stoichiometry is Tar:CheA:CheW = 3:1:1. In
the mixed-type model, the MCPs are Tar and Tsr, and a receptor trimer consists of one Tar dimer and two
Tsr dimers. The stoichiometry is Tar:Tsr:CheA:CheW = 1:2:1:1

3 Parameter Estimation

Parameters such as the ligand binding rates are known experimentally (Bornhorst
and Falke 2001, 2003; Li and Weis 2000) but others have to be estimated. A major
unknown concerns the activity in the different trimer states. The total kinase activ-
ity Vt of the pure-type receptor population is given by Vt = VaFa + ViFi , where
Fa (Fi ) is the fraction of receptors in the active (inactive) state, and Va (Vi ) is the
activity in the active (inactive) state. Here, we assume that Vi = 0, i.e., “inactive”
receptors are completely inactive, and then Vt = VaFa . The parameters in activity
regulation, k

m,n
i and k

m,n
−i in Table 1, vary with the methylation level because co-

valent adaptation alters the distribution of receptors in activity states (Starrett and
Falke 2005). Concerning other microscopic parameters such as the ligand dissocia-
tion constant of inactive (active) receptors Ki

D (Ka
D) and the individual activity Va ,

Bornhorst and Falke have shown that a homogeneous two-state model (the methy-
lation level has no effect on other microscopic parameters of the active and inac-
tive states) fails to account for the observed linear correlation of the apparent attrac-
tant affinity (K1/2) and the kinase activity in the absence of ligands (V 0) (Bornhorst
and Falke 2003). They tested six heterogeneous models in which one of (1) Ki

D ,
(2) Ka

D , (3) Va , (4) Vi , (5) cooperative interaction between trimers and (6) stabil-
ity of signaling complexes can vary with the methylation level, and found that the
modified model using a variable Ki

D can reproduce the linear correlation (Born-
horst and Falke 2003). Their findings do not rule out the simultaneous change of
any combination of the six parameters, and we assume that both Ki

D and Ka
D can be

altered.
Next, we set up the rate constants in activity regulation, k

m,n
i and k

m,n
−i . There

are no available experimental measures for them, but they can be estimated from the
observed kinase activity of the reconstituted signaling complexes in the absence of
attractants (Table 1 in Bornhorst and Falke 2003). Let Ki = k

m,n
i /k

m,n
−i denote the

deactivation equilibrium constant, and define pm,n as the probability that an unphos-
phorylated signaling complex with n ligands bound and m methyl groups is in the
active state. The two are related by pm,n = 1/(1 + Ki). We start from the ligand-
free case. In the absence of ligands, the linear relation Vt = VaFa is labeled as
V 0

t = V 0
a F 0

a . If we apply the QSSA to the ligand-free activity regulation, we have
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pm,0 ≈ F 0
a = V 0

t /V 0
a . V 0

a , the maximal activity in the absence of ligands, has been
estimated. Assuming that the fully methylated state QQQQ drives a receptor popula-
tion completely into the active state, then V 0

a = 3.5; alternatively, assuming that one
of the most active mutants, G278V in the QQQQ state, traps the population fully in
the active state, which prevents both attractant-triggered inhibition of kinase activ-
ity and demethylation-induced loss of activity, then V 0

a = 5.5 (Bornhorst and Falke
2003). We use the former value to convert the kinase activity to the fraction of ac-
tive signaling complexes. Since aspartate and α-methyl-aspartate inhibit the kinase
activity of Tar, it is expected that pm,n decreases with n. In addition, pm,2 and pm,3
may be significantly less than pm,0 and pm,1, even approaching zero, because the
observed kinase activity approaches zero under a saturating stimulus (Bornhorst and
Falke 2003). Thus, we assume that pm,1, pm,2, and pm,3 are 2, 10, and 100 times
less than pm,0, respectively, and this leads to the ratios of rate constants given in Ta-
ble 3. For the individual rates, we can either impose thermodynamic constraints to
determine specific rates or apply the QSSA to the activity regulation steps, for which
only the relative ratios are necessary because the transition is in essence a confor-
mational change in the cytoplasmic domain of a receptor and it is much faster than
other reactions, which involve two proteins. We have tested both methods, and for
our choice of the transition rates the QSSA is an excellent approximation, and we
use it hereafter. This leads to the following reduced system for the evolution of the
receptor states. Hereafter, Tm,n denotes the combined active and inactive states of a
complex.

dTm,2

dt
= 2km

2 LTm,1 − 2km
−2Tm,2 − km

3 LTm,2 + 3km
−3Tm,3 − kApm,2Tm,2

+ KY kY1YT
p

m,2 + KBkB1BT
p

m,2 + KRkR1R
[

(1 − pm−1,2)Tm−1,2

− (1 − pm,2)Tm,2
] + KBpkB3Bp(pm+1,2Tm+1,2 − pm,2Tm,2), (10)

dT
p

m,2

dt
= 2km

2 LT
p

m,1 − 2km
−2T

p

m,2 − km
3 LT

p

m,2 + 3km
−3T

p

m,3 + kApm,2Tm,2

− KY kY1YT
p

m,2 − KBkB1BT
p

m,2 − KBpkB3Bp

(

T
p

m,2 − T
p

m+1,2

)

. (11)

Thirdly, we set up the rate constants for ligand binding and release. We begin
with a receptor dimer. The rates of aspartate binding to and release from a Tar dimer
are 70 μM−1 s−1 and 70 s−1, respectively (Stock 1994; Spiro et al. 1997). We use
α-methyl-aspartate as the attractant in the simulations, and the α-methyl-aspartate
affinity of Tar is about 10 times less than aspartate (Albert et al. 2004). Therefore, we
assume that the ligand release rate of a dimer is 10 times larger than the aspartate re-
lease rate, whereas the ligand binding rate is the same as the aspartate binding rate. In
the absence of experimental evidence to the contrary, we assume that receptors have
the same ligand affinity in the active and inactive states. Since a heterogeneous two-
state assumption is adopted, the ligand dissociation constant depends on the methy-
lation level, and we use the factors Ki

D = 8.4 μM, 19 μM, 44 μM, and 67 μM for
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Table 3 Rates of ligand binding and kinase activity regulation in pure-type simulation

Rate Methylation level

0–1 2–4 5–7 8–10 11–12

km
1 (μM−1 s−1) 70 70 70 70 70

km
2 (μM−1 s−1) 70 70 70 70 70

km
3 (μM−1 s−1) 70 70 70 70 70

km−1 (s−1) 700 ∗ 3.6 700 ∗ 8.4 700 ∗ 19 700 ∗ 49 700 ∗ 67

km−2 (s−1) 700 ∗ 3.6/5 700 ∗ 8.4/5 700 ∗ 19/5 700 ∗ 49/5 700 ∗ 67/5

km−3 (s−1) 700 ∗ 3.6/50 700 ∗ 8.4/50 700 ∗ 19/50 700 ∗ 49/50 700 ∗ 67/50

pm,0 0 0.10 0.29 0.51 0.89

pm,1 0 0.10/2 0.29/2 0.51/2 0.89/2

pm,2 0 0.10/10 0.29/10 0.51/10 0.89/10

pm,3 0 0.10/100 0.29/100 0.51/100 0.89/100

receptors in the methylation state QEEE, QEQE, QQEQ, and QQQQ, respectively, as
estimated in Bornhorst and Falke (2003). In addition, Ki

D = 3.6 μM for EEEE is in-
terpolated from the above data, and the corresponding ligand release rates are scaled.
A remaining question is whether the ligand affinity varies when multiple ligands bind
to a trimer. We assume that positive cooperativity exists in the ligand binding se-
quence and that the affinities of the singly- and doubly-bound trimers, either active
or inactive, are 5 and 50 times larger than that of the ligand-free trimers, respectively.
This fixes the ligand binding and release rates for the five methylation states EEEE,
QEEE, QEQE, QQEQ, and QQQQ. We next assume that the rates only depend on
the methylation level (the combination of Q and E), not on the methylation state (a
permutation of Q and E), and thereby we obtain a complete set of rates for a dimer.
As the last step, we map the rates from a dimer to a trimer of dimers. The accurate
mapping is complicated, if not impossible, because it concerns the stochastic nature
of the process, such as which dimer member of the trimer a ligand binds to, whether
CheR and CheBp modify methylation sites in sequence of dimer members, in parallel
among dimer members of the trimer, or in another order. Here, we do a simple linear
mapping: we dissect the full range of the methylation level of a trimer to five sections
and map each to one level of a dimer in order. This enables us to assign the ligand
binding and release rates km

n and km−n as in Table 3. The two assumptions we have
made here, namely, independence of ligand dissociation constants with receptor ac-
tivity, and positive cooperativity when multiple ligands bind to a trimer, are discussed
in Sect. 7.

Lastly, the rates in phosphorylation, phosphoryl transfer, methylation and demethy-
lation are well documented in literature, but vary due to the different experiment set-
tings. We base ours on the most widely-used values with only minor changes (cf. Ta-
ble 1 for details). In the following section, we display the computational results for
several experimental settings.
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4 Results

4.1 Activity Variation with the Methylation Level

In the first set of computations, we remove the methylation and demethylation terms
in (10) and (11)2 to simulate the in vitro experiments reported in Bornhorst and Falke
(2001, 2003), wherein the kinase activity as a function of ligand concentration was
studied for five fixed methylation levels. We compute the fraction of active (both un-
phosphorylated and phosphorylated) receptors and scale it to the relative kinase ac-
tivity using the linear relationship Vt = VaFa , where Va = 3.5 (Bornhorst and Falke
2003). The results of the computation are shown in Fig. 2(A) as open symbols. To
further compare the simulated and experimental results, we fit the computed activities
with the Hill function

Vt = V 0
t

(

1 − LH

LH + KH
1/2

)

. (12)

The parametric values of (12) in data fitting are compared with the experimental
estimates, given in Table 4.

The curves in Fig. 2A capture the observed decay of kinase activity at saturating
ligand concentrations. As expected, the apparent dissociation constant of α-methyl-
aspartate increases dramatically with the methylation level, whereas the Hill coef-
ficients vary little. A linear correlation between the apparent dissociation constant
and the maximal relative activity, as observed in experiments (Bornhorst and Falke
2003), is reproduced in Fig. 2B. The prediction is in good qualitative agreement with
the studies (Bornhorst and Falke 2001, 2003; Li and Weis 2000; Levit and Stock
2002) and in quantitative agreement with the experiments we modeled for Bornhorst
and Falke (2001, 2003).

To further validate the framework and the parameter set, we simulate another in
vitro study in which L-aspartate was used, and the apparent dissociation constant
of L-aspartate for receptors fixed in the QEQE state estimated as 7.5 ± 1.7 μM
(Borkovich et al. 1992). We remove the 10-fold factor in the ligand release rate for a
dimer, which is specifically assumed for α-methyl-aspartate in the simulation. The re-
sulting apparent dissociation constant for QEQE is K1/2 = 2.01 μM, which is three-
fold lower than the reported value, but the difference may result from the different
strains used in the two experiments.

Table 4 Parameters for fitting the simulation results in Fig. 2 (top row) and comparison to the experimen-
tal measures in Bornhorst and Falke (2001, 2003) (bottom row)

V 0
t K1/2 (μM) H

QQQQ QQQE QEQE QEEE QQQQ QQQE QEQE QEEE QQQQ QQQE QEQE QEEE

3.16 1.85 1.06 0.36 96.79 69.45 26.53 11.91 2.10 2.06 2.05 2.06

3.1 ± 0.4 1.4 ± 0.1 1.0 ± 0.1 0.36 ± 0.06 97 ± 4 54 ± 6 23 ± 4 9 ± 1 2.2 ± 0.2 2.0 ± 0.5 1.8 ± 0.1 1.7 ± 0.1

2Of course, we do this for the analogous equations for other (m,n) as well, but we will not repeat this
qualifier hereafter.
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Fig. 2 (A) Relative kinase activity of signaling complexes as a function of α-methyl-aspartate concentra-
tion for five fixed methylation levels, compared to Fig. 2(c) in Bornhorst and Falke (2001) and Fig. 3(b) in
Bornhorst and Falke (2003). (B) Correlation of apparent dissociation constant K1/2 (α-methyl-aspartate)

and relative kinase activity in the absence of ligand V 0
t , compared to Fig. 4 in Bornhorst and Falke (2003)

(Color figure online)

4.2 Excitation and Adaptation

To determine whether the model can reproduce the excitation and adaptation behav-
ior, we simulate the system (10) and (11) with the evolution equations (4) and (5).
The time courses of CheYp in response to small and large stimuli are shown in
Fig. 3. We also remove the proteins CheR and CheB from the system and simu-
late the responses of the cheRcheB mutant. Both can be compared to the observation
with FRET imaging (Fig. 1 in Sourjik and Berg 2002a). Clearly, the time spent to
adapt to addition of α-methyl-aspartate varies with the dose of the input. The time
to adapt to removal of α-methyl-aspartate seemingly does not change much with the
dose. As shown in Fig. 3A4, the adaptation time following addition of a large dose
of α-methyl-aspartate is longer than that for removal, which is in agreement with the
experimental results (see the wt curve in Fig. 1B of Sourjik and Berg 2002a). It in-
dicates that demethylation is more rapid than methylation, which reflects the relative
amounts of CheB and CheR. We show later that an increase in the amount of CheR
reduces the adaption time following addition of attractants, as expected.

4.3 Sensitivity Analysis

To isolate the primary source of high sensitivity, we dissect the signaling pathway
of the excitation phase into multiple steps and perform sensitivity analysis for each.
Using the model for nonadapting cells, we derive analytic formulas for sensitivities
of ligand binding, activity regulation, autophosphorylation of CheA and phospho-
ryl transfer to CheYp. Methylation, demethylation, and phosphoryl transfer to CheBp
are not considered since they are involved in the later adaptation phase. Unlike CheR,
CheB has a minor role in the downstream signaling sensitivity in wild-type cells be-
cause of its competition for phosphoryl groups with CheY. The reaction causes some
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Fig. 3 (A) Time course of CheYp in response to α-methyl-aspartate stimuli predicted by the full system
(labeled wt) and the nonadapting system (labeled cheRcheB). The input is a step of α-methyl-aspartate
from 0 μM to 0.1 μM (A1), 1 μM (A2), 10 μM (A3), 100 μM (A4), and thereafter a removal of the
previous addition. (B) Receptor occupancy of α-methyl-aspartate. The points corresponding to the ligand
concentrations of 0.1 μM, 1 μM, 10 μM, and 100 μM are highlighted on the binding curve (Color figure
online)

differences in the sensitivity formulas derived for a cheRcheB mutant system vs a
wild-type system. However, inclusion of CheBp makes it difficult to obtain analyti-
cal solutions, and thus we restrict attention to the nonadapting system. The sensitiv-
ity profile for each fixed methylation state is similar and therefore, we use the state
QEQE as an example.
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The sensitivity S of a biochemical pathway is defined as the change of a given
state function Y caused by a variation of a given environmental signal X, and can be
expressed with an unscaled response function (13) or a scaled dimensionless func-
tion (14), if infinitesimal changes are considered (Heinrich et al. 1991). We use
the scaled version since it has been widely used in this field (Mello and Tu 2003;
Albert et al. 2004; Park et al. 2007).

S(Y |X) = dY

dX
, (13)

S(Y |X) = d lnY

d lnX
. (14)

In the ligand binding step, we define sensitivity as the relative change in ligand
occupancy (O) in response to a unit relative change in ligand concentration (L). In
the activity regulation step, we define it as the relative change in activity of signaling
complexes (A) in response to a unit relative change in ligand occupancy (O). In the
phosphorylation step, it is defined as the relative change in amount of the phospho-
rylated signaling complexes (T p) in response to a unit relative change in activity of
signaling complexes (A). In the phosphoryl transfer step, it is defined as the relative
change in amount of CheYp (Yp) in response to a unit relative change in amount of
the phosphorylated signaling complexes (T p). Using the definition in (14), we obtain
the following results—see the Appendix for the derivation.

S(O|L) = a

bc
, (15)

S(A|O) = cd

ae
, (16)

S
(

T p
∣

∣A
) = n2

1(ATt )
2 + (2n1n3 − n1n2)ATt + n1ATt

√
Δ

Δ + (n1ATt − n2)
√

Δ
, (17)

S
(

Yp

∣

∣T p
) = kY3

kY1T p + kY3
. (18)

L : ligand concentration,

O : fraction of the occupied binding sites, defined as

O =
∑3

n=0(nTn)

3Tt

,

A : fraction of the active signaling complexes, defined as

A =
∑3

n=0(T
a
n + T

p
n )

Tt

=
∑3

n=0(pnTn)

Tt

,

where pn is the probability of the signaling complex with n ligands

bound being active,

T p : concentration of the phosphorylated signaling complex,
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Yp : concentration of the phosphorylated CheYp,

a = 1 + 4L

Kd2
+ 3L2

Kd1Kd2
+ 3L2

Kd2Kd3
+ 4L3

Kd1Kd2Kd3
+ L4

Kd1K
2
d2Kd3

,

b = 1 + 3L

Kd1
+ 3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3
,

c = 1 + 2L

Kd2
+ L2

Kd2Kd3
,

d = (p1 − p0)
3L

Kd1
+ (p2 − p0)

6L2

Kd1Kd2
+ (p2 − p1)

9L3

K2
d1Kd2

+ (p3 − p0)
3L3

Kd1Kd2Kd3
+ (p3 − p1)

6L4

K2
d1Kd2Kd3

+ (p3 − p2)
3L5

K2
d1K

2
d2Kd3

,

e = p0 + p1
3L

Kd1
+ p2

3L2

Kd1Kd2
+ p3

L3

Kd1Kd2Kd3
,

kY3 = kY2 + kZZ,

n1 = kAkY1,

n2 = kAkY3 + kY1kY3YT ,

n3 = kAkY3,

Δ = n2
1(ATt )

2 + (4n1n3 − 2n1n2)ATt + n2
2.

Obviously, the sensitivities are multiplicative because if Z = f (Y ) = f (g(X)),
then S(Z|X) = d lnZ/d lnX = d lnZ/d lnY · d lnY/d lnX = S(Z|Y)S(Y |X), and
thus one can obtain sensitivity for any combination of subsequent steps of the path-
way. To demonstrate the contribution of receptor clustering to signaling sensitivity,
we also derive the formulas for a hypothetical case in which a signaling complex
contains only a receptor dimer (see the Appendix). Figure 4 shows the computational
results in both cases. Comparison of Figs. 4A and 4B demonstrates that clustering of
dimers into trimers of dimers significantly enhances the overall sensitivity S(Yp|L),
and clearly shows that the enhancement lies in the upstream pathway—namely, in
ligand binding and activity regulation. We replot the sensitivities of the two steps in
Figs. 4C and 4D, respectively. The enhancement in sensitivity comes from positive
cooperativity in ligand binding, which induces the higher ligand affinity of the sig-
naling complexes with more ligands bound, and in activity regulation, which induces
a higher degree of activity inhibition (promotion) in the signaling complexes with
more attractants (repellents) bound. As a simple test, when we remove the cooper-
ativity assumed in ligand affinities, as expected, the “trimer of dimers” sensitivity
reduces to the dotted “dimer” sensitivity curve. It was estimated that in the cheRcheB
mutant cells with the receptors fixed in the QEQE state, the amplification factor, de-
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Fig. 4 Sensitivity in signal transduction for two structures of receptor complexes—“trimer of dimers”
and “dimer.” (A) Sensitivities for signaling complexes consisting of “trimer of receptor dimers” in ligand
binding S(O|L), activity regulation S(A|O), phosphorylation S(T p |A), phosphoryl transfer S(Yp |T p)

and the overall pathway S(Yp |L). (B) Sensitivities for signaling complexes consisting of “receptor dimers”
in ligand binding S(O|L), activity regulation S(A|O), phosphorylation S(T p |A), phosphoryl transfer
S(Yp |T p) and the overall pathway S(Yp |L). (C) and (D) Comparison of S(O|L) and S(A|O) between
two structures of receptor complexes (Color figure online)

fined as the fractional change in kinase activity over the fractional change in ligand
occupancy, averages 37 ± 9 in response to the fractional changes in attractant con-
centration of 0.1 or 0.2 (Sourjik and Berg 2002a). In our computation, the sensitivity
can be as large as 32 (see the Trimer curve in Fig. 4D), which is slightly lower but
still close to the measured value.

We also analyze parametric sensitivity in the upstream pathway. Figure 5A shows
the sensitivities of receptor occupancy to two parameters—the ligand dissociation
constant and the cooperativity coefficient in ligand binding, and Fig. 5B shows the
sensitivities of receptor activity to four parameters—the ligand dissociation constant,
the probability of a signaling complex being in the active state, and the cooperativity
coefficients in ligand binding and activity regulation. An increase of the first ligand
dissociation constant reduces receptor occupancy, and the effect declines at saturat-
ing ligand concentrations. The changes of receptor occupancy induced by increases
of the second and third ligand dissociation constants are similar, and are maximized at
intermediate stimuli. An increase of cooperativity in ligand affinity enhances receptor
occupancy, and the enhancement is maximized at the moderate stimulus level. Recep-
tor activity increases with the increasing ligand dissociation constants and decreases
with the increasing cooperativity coefficients in ligand affinity, and both effects reach
a maximum at an intermediate stimulus level. An increase of the probability of a sig-
naling complex being in the active state with any number from 0 to 3 of ligands bound
increases receptor activity. At a low stimulus level, the probability p0 (ligand-free)
dominates, and at a high stimulus level the probability p3 (fully ligand-occupied)
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Fig. 5 Parametric sensitivity of receptor occupancy with respect to ligand dissociation constant (A1) and
to cooperativity in ligand affinity (A2); parametric sensitivity of receptor activity with respect to ligand
dissociation constant (B1), to cooperativity in ligand affinity (B2), to the probability of being in the active
state (B3), and to cooperativity in activity inhibition (B4) (Color figure online)

dominates. The probabilities p1 and p2 (partially ligand-occupied) function primar-
ily at intermediate stimulus levels. The three cooperativity coefficients in activity
regulation have similar effects, that is, an increase of each reduces receptor activity
and the reduction saturates at high stimulus levels.

4.4 Robustness Analysis

Next, we investigate the ability of the system to maintain exact adaptation in the face
of parametric variations. There is evidence that the in vivo signaling network buffers
the chemotactic response to variations in the amounts of the chemotactic proteins,
including variation in concerted expression of all chemotactic proteins (Kollmann
et al. 2005), variation in the expression of CheR (Alon et al. 1999), and variation in
the correlated expression of CheY and CheZ (Lřvdok et al. 2007). We employ sev-
eral simulations to test the robustness of the model to such changes. First, we scale
the expression of all receptors and Che-proteins by the same factor and evaluate the
effect on adaptation. The variation ranges from 0.1 to 50 fold on a log-linear scale,
with the wild-type level treated as fold 1. For each level, we stimulate the cells with
a step input of α-methyl-aspartate from 0 μM to 10 μM and record the steady-state
post-stimulus values of (i) the adapted concentration of CheYp, (ii) the adaptation
time, and (iii) the adaptation precision. The adaptation time is defined as the time at
which the concentration of CheYp in the stimulated cells rises to halfway between
the lowest level following stimulation and the steady-state level. The adaptation pre-
cision is defined as the ratio between the steady-state concentrations of CheYp in the
prestimulated and adapted cells; a precision of 1 corresponds to prefect adaptation of

Author's personal copy



2358 X. Xin, H.G. Othmer

Fig. 6 Robustness of adaptation against variation in concerted expression of all proteins (A), expression
of CheR (B) and correlated expression of CheY/CheZ (C). The wild-type concentrations of the proteins
are defined as the base level. The stimulus protocol is a step of α-methyl-aspartate from 0 μM to 10 μM.
The adaptation precision is robust against the expression levels of all proteins (A1), of CheR (B1) and
of CheY/CheZ (C1), while the adaptation time and the steady level of CheYp are not. The adaptation
time decreases with the level of all chemotactic proteins (A2) and of CheR (B2), and first increases and
then decreases with the levels of CheY/CheZ (C2). The steady-state level of CheYp consistently increases
with overexpression of all proteins (A3), of CheR (B3), and of CheY/CheZ (C3). The simulations can
be compared to the experimental measures of chemotactic efficiency (green circles in A4, open circles in
the top graph of B4, and diamonds in C4 (from Fig. 1(C) in Lřvdok et al. 2007)), the average adaptation
time to a step stimulation with 1mM L-aspartate (open circles in bottom graph of B4), and the average
steady-state tumbling frequency of the unstimulated cells (open squares in the lower graph of B4) (Color
figure online)

CheYp. We use the latter definition to facilitate comparison of our results, shown in
Fig. 6A, with earlier experimental measures.

One sees that the concerted expression level of all proteins has little effect on ex-
act adaptation of CheYp (Fig. 6A1), especially in the case of overexpression relative
to the wild-type, while the adaptation time decreases significantly (Fig. 6A2) and
the adapted steady-state concentration of CheYp increases significantly (Fig. 6A3).
Therefore, the adaptation precision is a robust property of the model, while the adap-
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Fig. 7 Robustness of adaptation against variations in expression of chemoreceptor (A), CheB (B),
CheY (C), and CheZ (D). The definitions of the three displayed variables are as in Fig. 6. The stimu-
lus protocol is a step of α-methyl-aspartate from 0 μM to 10 μM, except in A2, B2, and C2, where three
protocols (top: 0 μM to 1 μM; center: 0 μM to 10 μM; bottom: 0 μM to 100 μM) are used to show the
change of the adaptation time with the stimulus amplitude (Color figure online)

tation time and the steady-state concentration of CheYp are not. The increase in
CheYp can be understood from the fact that there are both first- and second-order
reactions in the mechanism, and these scale differently under an increase of all com-
ponents.

The second simulation uses a similar design except that only the level of CheR is
varied. One sees again that the adaptation precision is insensitive to the protein level
(Fig. 6B1 can be compared to Fig. 2a in Alon et al. (1999), reproduced in Fig. 6A4).
The adaptation time and the steady-state level of CheYp show the decreasing and
increasing variation with the CheR expression level similar to those in A2 and A3,
respectively. However, comparing Figs. 6A2 and 6B2, one sees that the change of
the adaptation time caused by variation of CheR is less than by covariation of all
proteins. Figures 6B2 and 6B3 can be compared to 6B4 (Fig. 2b in Alon et al. 1999).
The adaptation time we observe differs from that measured in Alon et al. (1999),
probably because a step addition of saturating concentrations of attractants was used
as the stimulus. One sees in Fig. 3 that the adaptation time increases significantly
with the stimulus level.

In the third simulation, we vary the expression levels of CheY and CheZ by the
same factor. The effects of the expression levels on the adaptation precision and the
steady-state level of CheYp are similar to the two previous cases, but interestingly,
the adaptation time increases with underexpression, reaches maximum at the wild-
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type level, and then decreases with overexpression. Increasing only CheY tends to
increase the adaptation time, and increasing only CheZ tends to decrease it (Figs. 7C2
and 7D2). Therefore, the former appears to be the dominating effect when CheY and
CheZ are coordinately underexpressed and the latter dominates when overexpressed.
Lastly, we evaluate the effect on adaptation when the level of chemoreceptors, CheB,
CheY, or CheZ is varied individually, and as one sees in Fig. 7, the robustness of
adaptation is preserved.

The qualitative variation of the adaptation time in response to addition of attrac-
tants that results from under/overexpression of proteins can be understood as follows.
Certainly the adaptation time increases with the stimulus amplitude if all other fac-
tors are fixed. If the stimulus amplitude is fixed, then the adaptation time varies with
the magnitude of the CheYp response and the available number of CheR/CheB per
receptor, and it can be shown that the magnitude of the CheYp response increases
with the steady-state value of CheYp. The effects of other variations are as follows,
wherein under/overexpression is relative to the nominal level.

1. CheR When the amount of CheR per receptor increases, the adaptation time de-
creases (Fig. 6B2).

2. CheZ An increase in the amount of CheZ decreases the turnover time of CheYp

and reduces the adaptation time (Fig. 7D2).
3. CheB An increase in the amount of CheB leads to a monotonic decrease in the

steady-state level of CheYp, because the average methylation level of receptors is
decreased, which produces a lower kinase activity. However, the change in CheB
can have two opposing effects on the adaptation time, as shown in Fig. 7B2, and
which dominates can depend on the stimulus level. An increase in CheB leads to
a higher level of CheBp and thus to a lower average methylation level. This in
turn shifts the activity equilibrium to the inactive state. Since CheR only acts on
inactive receptors, this leads to a higher methylation load and explains the increase
in the adaptation time. On the other hand, an increase in CheB reduces the steady-
state level of CheYp (Fig. 7B3) and induces a smaller response of CheYp and a
decrease in the adaptation time. At low stimulus levels, this dominates and the
adaptation time is monotone decreasing, but at intermediate and high stimulus
levels the larger shift to the inactive state dominates at the low CheB expression
levels (Fig. 7B2).

4. MCP An increase in MCP also involves two opposing effects, the first of which is
an increase in the steady-state level of CheYp and a larger change in the CheYp

response, which lengthens the adaptation time. The second is a decrease in the
ratio of CheBp to MCP , which reduces the adaptation time (Fig. 7A2) (the steady-
state level of CheBp tends to increase, but the ratio of CheBp relative to MCP
decreases due to the direct overexpression of MCP). In addition, the ratio of CheR
to MCP also decreases, which tends to increase the adaptation time, but CheBp

dominates here due to its low abundance compared to CheR.
5. CheY An increase in CheY leads to an increase in the CheYp response and an

increase in the adaptation time, but CheBp decreases and receptors are shifted to
higher methylation levels, which decreases adaptation time; which effect domi-
nates depends on the stimulus level and the CheY expression level (Fig. 7C2).
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6. CheY/CheZ The adaptation time reaches a maximum at the wild-type level,
whereas CheY dominates the trend when CheY and CheZ are underexpressed and
CheZ dominates when overexpressed (Fig. 6C2).

7. All proteins The adaptation time decreases monotonically (Fig. 6A2) because in-
creases in most proteins decrease the adaptation time, which offsets the increase
due to the increase in CheYp (Fig. 6A3).

Changes in the expression levels of MCP, CheB, and CheY all involve two
opposing effects on the adaptation time, and the relative roles of the two vary
with the stimulus amplitude. The qualitative behavior of the adaptation time can
be understood from the roles played by the proteins, but the quantitative aspects
represent predictions of the model that may be testable experimentally.

5 Extension to Mixed-Type Model

E. coli has five types of receptors and the different types may interact with each
other to achieve an optimal response to diverse environmental stimuli. Experimental
evidence shows that receptor trimers may comprise different types of dimers and
their assembly involves random recruitment of members from the different dimer
pools (Ames et al. 2002; Studdert and Parkinson 2004, 2005). To understand the
consequences of receptor heterogeneity, we extend the model for pure receptor types
to mixed types, and specifically focus on a combination of Tar and Tsr. Since trimer
formation is a stochastic process, a trimer can have one of four compositions, namely
three Tar, two Tar one Tsr, one Tar two Tsr, and three Tsr, but the CheYp response
represents an integration over the trimers in all possible compositions. The average
in vivo ratio of the amounts of Tar and Tsr is 1:2, so the combination of one Tar and
two Tsr is the most probable for trimers, and hereafter we neglect the random nature
of trimer formation and assume that a trimer comprises one Tar and two Tsr.

In the study of cheRcheB mutants, the methylation state of the Tar receptor is
fixed at one of EEEE, QEEE, QEQE, and QEQQ, whereas the state of Tsr is fixed
at QEQE (Sourjik and Berg 2002a). To simulate the experiments, we adjust the rate
assignments in ligand release and kinase activity regulation as shown in Table 5 and
Table 6. Here and hereafter, the on rates for ligand binding are as shown in Table 3
and are not repeated. The α-methyl-aspartate affinity of Tsr is roughly one thousand
times lower than that of Tar (Albert et al. 2004), and we find that a value of 1500
fits the experimental data well. In light of the large difference, we assume that the
ligand binding sequence in a trimer is T SS → TLSS → TLSLS → TLSLSL, that is,

Table 5 Ligand release rates in simulations for mixed-type trimers (Tar-Tsr-Tsr)

Rate Methylation level

0–1 2–4 5–7 8–10 11–12

km−1 (s−1) 700 ∗ 3.6 700 ∗ 8.4 700 ∗ 19 700 ∗ 49 700 ∗ 67

km−2 (s−1) 700 ∗ 19 ∗ 1500 700 ∗ 19 ∗ 1500 700 ∗ 19 ∗ 1500 700 ∗ 19 ∗ 1500 700 ∗ 19 ∗ 1500

km−3 (s−1) 700 ∗ 19 ∗ 1500/5 700 ∗ 19 ∗ 1500/5 700 ∗ 19 ∗ 1500/5 700 ∗ 19 ∗ 1500/5 700 ∗ 19 ∗ 1500/5
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Table 6 Rates of kinase activity regulation in mixed-type simulations

Rate Mutant

cheR cheRcheB cheB

State of Tar EEEE EEEE QEEE QEQE QEQQ QQQQ QQQQ

State of Tsr EEEE QEQE QEQE QEQE QEQE QEQE QQQQ

pm,0 0.05 0.61 0.70 0.75 0.84 0.89 0.89

pm,1 0.05/3 0.61/3 0.70/1.8 0.75/1.6 0.84/1.4 0.89/1.2 0.89/1

pm,2 0.05/9 0.61/9 0.70/5 0.75/2.5 0.84/2 0.89/1.5 0.89/2

pm,3 0.05/90 0.61/90 0.70/80 0.75/70 0.84/60 0.89/50 0.89/60

first to the Tar dimer, then to one of the two Tsr dimers, and finally to the remaining
unoccupied Tsr dimer. We assign a cooperativity coefficient of 5 in ligand affinity of
Tsr to keep the same positive cooperativity assumption as in pure-type, but the factor
has little effect here because of the dramatic difference in ligand affinities to Tar and
Tsr. The off rates are given in Table 5, where the scaling factor that varies with the
methylation level for km

−2 and km
−3 is fixed at 19 since the methylation state of Tsr

dimers is fixed at QEQE. The values of the kinase activity parameter pm,n are based
on the estimates in Table 3 and the variable factors in activity regulation are adjusted
to fit the data. Equations (19) and (20) show one set (n = 2, m = fixed methylation
level) for the nonadapting system, in which CheR and CheB are deleted.

dTm,2

dt
= 2km

2 LTm,1 − km
−2Tm,2 − km

3 LTm,2 + 2km
−3Tm,3 − kApm,2Tm,2

+ KY kY1YT
p

m,2, (19)

dT
p

m,2

dt
= 2km

2 LT
p

m,1 − km
−2T

p

m,2 − km
3 LT

p

m,2 + 2km
−3T

p

m,3 + kApm,2Tm,2

− KY kY1YT
p

m,2. (20)

The normalized steady-state concentration of CheYp predicted for various
cheRcheB mutants is shown in Fig. 8A and can be compared to Fig. 2 in Sourjik
and Berg (2002a) (reproduced as Fig. 6C). The four cheRcheB curves have two ap-
parent dissociation constants corresponding to Tar and Tsr and can be fit by a Hill
function of the form (Albert et al. 2004)

FYP
= 1 − β

LH1

LH1 + K
H1
1

− (1 − β)
LH2

LH2 + K
H2
2

. (21)

The values of the Hill coefficient and the half-maximal concentration are re-
ported in Table 7. One sees from Fig. 8 and the table that we obtain both qual-
itative and quantitative agreement with the reported data in terms of the relative
effects of the ligand on the various mutants and the Hill coefficients that fit the
various curves. Furthermore, the response amplitudes for the various strains, rela-
tive to cheRcheB(EEEE) and ordered as cheR, cheRcheB(EEEE), cheRcheB(QEEE),
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Table 7 Parameters for fitting the simulations in Fig. 8 and comparison to the experimental measures in
(Sourjik and Berg 2002a)

cheRcheB cheR cheB

QQQE QEQE QEEE EEEE

β Simulation 0.27 0.37 0.44 0.66

Experiment 0.27 ± 0.02 0.36 ± 0.02 0.46 ± 0.02 0.65 ± 0.02

K1(μM) Simulation 421.41 180.69 84.70 36.14 3.89

Experiment 440 ± 70 150 ± 15 80 ± 15 38 ± 5 3.3 ± 0.5

K2(mM) Simulation 105.05 102.21 85.01 83.85 90.0820

Experiment 110 ± 10 105 ± 19 77 ± 10 83 ± 17 75 ± 18

H1 Simulation 1.08 1.04 1.00 1.01 2.60

Experiment 1.2 ± 0.1

H2 Simulation 1.33 1.36 1.40 1.34 1.41

Experiment 1.2 ± 0.1

cheRcheB(QEQE), cheRcheB(QEQQ), and cheB, are 0.05 : 1 : 1.12 : 1.19 : 1.28 :
1.33, respectively, which is to be compared with the experimental observations of
0.04 : 1 : 1.15 : 1.23 : 1.38 : 1.46 for the same sequence. The cheR and cheB curves
have only one apparent dissociation constant, seemingly that of cheR corresponding
to Tar and that of cheB corresponding to Tsr, and both can be fitted using (12).

We also simulate the sensitivity profile for cheRcheB mutants, which is defined as
the ratio of the relative change in the steady-state level of CheYp to the relative change
in the ligand concentration. We do this by applying a step increase of ambient ligand
concentration of 100.08μM. The result is shown in Fig. 8B and can be compared to
the experimental results shown in Fig. 3B in Sourjik and Berg (2002a) (reproduced
as Fig. 6D). Our model is able to account for these observations, something that other
models have not done to date.

6 Model Reduction

The detailed model is based on the detailed signal transduction network and consists
of 158 differential equations, but the input and output relationship of the system is rel-
atively simple, as seen in Figs. 3. This gives rise to the question of whether we can use
a simpler model to describe the system. Here, “simpler” means a lower-dimensional
system that involves fewer time-varying quantities explicitly. In this section, we apply
two different methods to develop simpler systems.

6.1 Model Reduction I: Multi-Time-Scale Analysis

In complex reaction networks, fast reactions dominate the initial dynamics and may
reach a quasi-steady state quickly, whereas slow reactions dominate the dynamics on
a long time scale. The slow dynamics are often of primary interest, and to reduce the
number of variables and differential equations with kinetic rates of widely-differing
orders of magnitude, techniques have been developed to construct governing equa-
tions for slowly-varying quantities that properly account for the fast reactions (Lee
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Fig. 8 (A) Normalized concentration of CheYp as a function of ligand concentration. The curves for
cheRcheB (EEEE), cheRcheB (QEEE), cheRcheB (QEQE), and cheRcheB (QEQQ) are fit with the param-
eter set in Table 5 in the case of m = 0, m = 3, m = 6, and m = 9, respectively. The curve cheR is fit with
the parameters km

1 = km
2 = km

3 = 70 μM−1 s−1, km−1 = 700 ∗ 3.6 s−1, km−2 = 700 ∗ 3.6 ∗ 0.125 s−1,

km−3 = 700 ∗ 3.6 ∗ 0.125/10 s−1, pm,0 = 0.05/1.2, pm,1 = 0.05/1.2/3, pm,2 = 0.05/1.2/9,

pm,3 = 0.05/1.2/90. The curve cheB is fit with the parameters km
1 = km

2 = km
3 = 70 μM−1 s−1,

km−1 = 700 ∗ 67 s−1, km−2 = 700 ∗ 67 ∗ 400 s−1, km−3 = 700 ∗ 67 ∗ 400/10 s−1, pm,0 = 0.89 ∗ 1.2,
pm,1 = 0.89 ∗ 1.2, pm,2 = 0.89 ∗ 1.2/2, pm,3 = 0.89 ∗ 1.2/60. (B) Sensitivity of the cheRcheB mutants
in four fixed methylation states to an 8 % log increase in the α-methyl-aspartate concentration. The sen-
sitivity is defined as the ratio of the relative change in the steady-state concentration of CheYp and the
relative change in ligand concentration. The simulations can be compared to the experimentally measured
responses of the cheR and/or cheB cells to steps of MeAsp at 0 ambient (C above—Fig. 2 of Sourjik and
Berg 2002a) and the sensitivity calculated from the data for the cheRchB mutant cells (D above—Fig. 3B
of Sourjik and Berg 2002a) (Color figure online)

and Othmer 2010). The quasi-steady state assumption (QSSA) approach is one of the
classical techniques.

The signal transduction network of E. coli chemotaxis includes reactions on three
distinct time scales: (1) fast, ligand binding and kinase activity regulation reactions
in milliseconds, (2) intermediate, phosphorylation and phosphoryl transfer reactions
in tenth of seconds to seconds, (3) slow, methylation and demethylation reactions in
seconds to minutes. In Fig. 1, the fast and intermediate reactions are the transitions in
each slice of the network while the slow reactions are the transitions between slices.

Author's personal copy



A “Trimer of Dimers”—Based Model for the Chemotactic Signal 2365

To derive a reduced system, we apply the QSSA to the fast reactions in series, first to
ligand binding and then to activity regulation, while explicitly retaining the dynamics
of the intermediate and slow reactions.

Let T n
m (m = 0, . . . ,12; n = 0, . . . ,3) denote the amount of the signaling com-

plexes with n ligands bound and m methyl groups. Therefore, T n
m = T i

m,n + T a
m,n +

T
p
m,n. The network of transitions among the pure-type T n

m is

T 0
m

3km
1 L

�
km
−1

T 1
m

2km
2 L

�
2km

−2

T 2
m

km
3 L

�
3km

−3

T 3
m.

The equations that govern the evolution of the amounts are

dT 0
m

dt
= −3km

1 LT 0
m + km

−1T
1
m, (22)

dT 1
m

dt
= 3km

1 LT 0
m − km

−1T
1
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2 LT 1
m + 2km

−2T
2
m, (23)

dT 2
m

dt
= 2km

2 LT 1
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−2T
2
m − km

3 LT 2
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−3T
3
m, (24)

dT 3
m

dt
= km

3 LT 2
m − 3km

−3T
3
m. (25)

Applying the QSSA to the fast reactions, we have
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Similarly, for the mixed-type trimers, where a trimer is composed of one Tar homod-
imer and two Tsr homodimers, we have
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We let Tm (m = 0, . . . ,12) denote the amount of the signaling complexes with the
methylation level m, and then T n

m = qn
mTm.

We define pn
m as the probability of a signaling complex with n ligands bound and

m methyl groups being active, or equivalently the proportion of the active signaling
complexes with n ligands bound and m methyl groups. Thus T a

m,n + T
p
m,n = pn

mT n
m

and T i
m,n = (1 − pn

m)T n
m. The kinetic step for activity regulation is

T a
m,n

k
m,n
i
�

k
m,n
−i

T i
m,n

and applying the QSSA yields T i
m,n = Ki

1+Ki
(T n

m − T
p
m,n) and T a

m,n = 1
1+Ki

(T n
m −

T
p
m,n), where Ki = k

m,n
i

k
m,n
−i

. As an estimate, we have pn
m � 1

1+Ki
.

T i , T a , and T p are the amounts of the inactive, active-unphosphorylated, and
active-phosphorylated signaling complexes, respectively. The equations that govern
the evolution of the amounts of T p , Yp , and Bp are

dT p

dt
= kAT a − KY kY1YT p − KBkB1BT p, (28)

dYp

dt
= KY kY1YT p − kY2Yp − KZkZZYp, (29)

dBp

dt
= KBkB1BT p − kB2Bp. (30)

The amount of T a is determined by the upstream part of the pathway-ligand binding
and activity regulation as follows:
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12
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3
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(31)

The conservation conditions for CheY, CheZ, and CheB are as follows:

Y = Yt − (1 + KZZ)Yp

1 + KY T p
, (32)

Z = Zt

1 + KZYp

, (33)

B = Bt − [1 + KBp(T a + T p)]Bp

1 + KBT p
. (34)

The network for the transitions between the Tm (the amount of the signaling com-
plexes with the methylation level m) is
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and the equations for the evolution of the amounts are

dTm

dt
= (1 − δm,0)

(

k+f i
m−1Tm−1 − k−f a

mTm

)

− (1 − δm,M)
(

k+f i
mTm − k−f a

m+1Tm+1
)

, (35)

where δ is the Kronecker delta.
Next, we derive the four coefficients f i

m, f a
m, k+ and k− in (35). f i

m is the propor-
tion of the inactive signaling complexes with m methyl groups and therefore,
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m. (36)

Similarly, f a
m is the proportion of the active (phosphorylated and unphosphorylated)

signaling complexes with m methyl groups and therefore,
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To derive k+ and k−, we use mass action kinetics to describe the methylation and
demethylation reactions. Consider methylation as an example. A typical transition is

T i
m,n + R

kR2
�
kR3

[

T i
m,nR

] kR1→ T i
m+1,n + R,

and if we assume that the reversible step equilibrates rapidly, the evolution equation
can be written as

dT i
m+1,n

dt
= KRkR1RT i

m,n.

Therefore,

k+ = KRkR1R (38)

and similarly,

k− = KBpkB3Bp. (39)

Finally, the conservation conditions on CheR and MCP are as follows:

R = Rt

1 + ( kR2
kR3

)
∑12

m=0
∑3

n=0 T i
m,n

= Rt

1 + KRT i
, (40)

Tt =
12
∑

m=0

Tm. (41)

Therefore, the resulting system, which we refer to as I, consists of 16 differential
equations: (35) for Tm (m = 0, . . . ,12), (28) for Tp , (29) for Yp , and (30) for Bp , as
summarized below:
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dTm

dt
= (1 − δm,0)

(

k+f i
m−1Tm−1 − k−f a

mTm

)

− (1 − δm,M)
(

k+f i
mTm − k−f a

m+1Tm+1
)

,

dT p

dt
= kAT a − KY kY1YT p − KBkB1BT p,

dYp

dt
= KY kY1YT p − kY2Yp − KZkZZYp,

dBp

dt
= KBkB1BT p − kB2Bp,

T a =
12
∑

m=0

3
∑

n=0

pn
mqn

mTm − T p,

Y = Yt − (1 + KZZ)Yp

1 + KY T p
,

Z = Zt

1 + KZYp

,

B = Bt − [1 + KBp(T a + T p)]Bp

1 + KBT p
,

R = Rt

1 + KR(TT − T a − T p)
,

Tt =
12
∑

m=0

Tm,

k+ = KRkR1R,

k− = KBpkB3Bp,

f i
m =

3
∑

n=0

(

1 − pn
m

)

qn
m,

f a
m =

3
∑

n=0

pn
mqn

m,

qn
m =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1

1+ 3L

Km
d1

+ 3L2

Km
d1Km

d2
+ L3

Km
d1Km

d2Km
d3

n = 0

3L

Km
d1

1+ 3L

Km
d1

+ 3L2

Km
d1Km

d2
+ L3

Km
d1Km

d2Km
d3

n = 1

3L2

Km
d1Km

d2

1+ 3L

Km
d1

+ 3L2

Km
d1Km

d2
+ L3

Km
d1Km

d2Km
d3

n = 2

L3

Km
d1Km

d2Km
d3

1+ 3L

Km
d1

+ 3L2

Km
d1Km

d2
+ L3

Km
d1Km

d2Km
d3

n = 3

pure-type,
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qn
m =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1

1+ L

Km
d1

+ 2L2

Km
d1Km

d2
+ L3

Km
d1Km

d2Km
d3

n = 0

L

Km
d1

1+ L

Km
d1

+ 2L2

Km
d1Km

d2
+ L3

Km
d1Km

d2Km
d3

n = 1

2L2

Km
d1Km

d2

1+ L

Km
d1

+ 2L2

Km
d1Km

d2
+ L3

Km
d1Km

d2Km
d3

n = 2

L3

Km
d1Km

d2Km
d3

1+ L

Km
d1

+ 2L2

Km
d1Km

d2
+ L3

Km
d1Km

d2Km
d3

n = 3

mixed-type.

We simulate the time course of CheYp in response to three varying-dose α-methyl-
aspartate stimuli, using both the full system and the reduced system I. The computa-
tional results are shown in Fig. 9, and one sees there that the reduced system not only
achieves perfect adaptation, but also reproduces the transient and steady-state values
of CheYp in the full system.

6.2 Model Reduction II: Mean-Field Theory

A multi-subunit system with interaction among subunits is generally difficult to solve
exactly. The great difficulty lies in the treatment of combinatorics generated by the
interaction terms in the Hamiltonian when summing over all states, especially when
computing the partition function of the system. The mean-field theory, the main idea
of which is to replace all interactions to any one subunit with an average interac-
tion, reduces any multi-subunit problem into an effective one-subunit problem. We
can consider the clustered, interacting chemoreceptor trimers as such a system and
apply the mean-field theory approach to model the methylation states of a trimer of
dimers.

Let Am denote the activity of a signaling complex with the methylation level m,
that is, the probability of a signaling complex with the methylation level m being
active, which is dependent on the ligand concentration L. The activity Am is ap-
proximated as the proportion of the active signaling complexes with the methylation
level m, and the steady-state solution is

Am =
∑3

n=0(T
a,n
m + T

p,n
m )

Tm

=
3

∑

n=0

pn
m

T n
m

Tm

=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

p0
m+p1

m
3L

Km
d1

+p2
m

3L2

Km
d1Km

d2
+p3

m
L3

Km
d1Km

d2Km
d3

1+ 3L

Km
d1

+ 3L2

Km
d1Km

d2
+ L3

Km
d1Km

d2Km
d3

pure-type

p0
m+p1

m
L

Km
d1

+p2
m

2L2

Km
d1Km

d2
+p3

m
L3

Km
d1Km

d2Km
d3

1+ L

Km
d1

+ 2L2

Km
d1Km

d2
+ L3

Km
d1Km

d2Km
d3

mixed-type.

(42)
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Fig. 9 Time course of CheYp in response to α-methyl-aspartate predicted by the full model (blue line)
and the reduced model I (green line). In the simulations for pure-type receptors, the input is a step of
α-methyl-aspartate at t = 200 s from 0 μM to 1 μM (left)/10 μM (middle) and thereafter a removal of the
previous addition at t = 600 s, as well as a step at t = 1000 s from 0 μM to 100 μM (right) and thereafter
a removal of the previous addition at t = 3000 s. In the simulations for mixed-type receptors, the input is a
step of α-methyl-aspartate at t = 200 s from 0 μM to 1 μM (left)/10 μM (middle) and thereafter a removal
of the previous addition at t = 600 s, as well as a step at t = 1000 s from 0 μM to 1000 μM (right) and
thereafter a removal of the previous addition at t = 3000 s (Color figure online)

The equations that govern the evolution of the amounts of T p , Yp , and Bp are the
same as (28)–(30). The amounts of T a and T i are determined by

T a + T p = TtA, (43)

T i + T a + T p = Tt , (44)

and the conservation conditions for CheY, CheZ, CheB, and CheR are the same as
(32)–(34) and (40).

According to the mean-field theory, the continuum methylation level m̄ is defined
as the average methylation level of a trimer of dimers in a large receptor cluster,
that is, m̄ = ∑M

m=0(
mTm

Tt
). The equations that govern the evolution of the amounts

in the various states of the signaling trimers are as in (1)–(3). Applying the QSSA
to the ligand binding reactions, the corresponding ligand binding/release term of the
equations can be dropped, when we focus on the dynamics of slow reactions. To

obtain the evolutionary equations for Tm, we sum
dT s

m,n

dt
over n and s. The resulting
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equation set for Tm is

dTm

dt
=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

−KRkR1RT i
0 + KBpkB3Bp(T a

1 + T
p

1 ) m = 0

KRkR1R(T i
m−1 − T i

m) + KBpkB3Bp(T a
m+1 − T a

m + T
p

m+1 − T
p
m)

0 < m < M

KRkR1RT i
M−1 − KBpkB3Bp(T a

M + T
p
M) m = M.

(45)

Note that the Activity regulation, Phosphorylation and Phosphotransfer terms do not
appear in (45). We then compute the first moment by multiplying by m and summing
over m to obtain

M
∑

m=0

(

m
dTm

dt

)

= KRkR1R

M
∑

m=0

[

m
(

T i
m−1 − T i

m

)]

+ KBpkB3Bp

M
∑

m=0

[

m
(

T a
m+1 − T a

m + T
p

m+1 − T
p
m

)]

= KRkR1R

M
∑

m=1

T i
m−1 − KBpkB3Bp

M
∑

m=1

(

T a
m + T

p
m

)

. (46)

Since

dm̄

dt
= d

dt

M
∑

m=0

(

mTm

Tt

)

= 1

Tt

M
∑

m=0

(

m
dTm

dt

)

,

we have

dm̄

dt
= KRkR1R

∑M
m=1 T i

m−1

Tt

− KBpkB3Bp

∑M
m=1(T

a
m + T

p
m)

Tt

. (47)

We define the average activity Am̄ = (
∑M

m=0(T
a
m +T

p
m))/Tt , that is, the fraction of the

active trimers in a receptor cluster, and obviously 1 − Am̄ = (
∑M

m=0 T i
m)/Tt . Com-

paring the definitions of Am̄ and 1 − Am̄ with the terms (
∑M

m=1(T
a
m + T

p
m))/Tt and

(
∑M

m=1 T i
m−1)/Tt in (47), we see that if we assume that the amounts of the fully

methylated inactive trimers and the fully demethylated active trimers are negligible,
that is T i

M = 0 and T a
0 + T

p

0 = 0, then (47) becomes

dm̄

dt
= KRkR1R(1 − Am̄) − KBpkB3BpAm̄. (48)

This assumption is justified by the fact that methylation tends to activate receptors
and demethylation tends to deactivate receptors, and that a trimer has a wide range of
methylation levels and the probability of fully methylating or demethylating a trimer
is low. With this assumption, we have a mean-field version of the trimer of dimers-
based model. The system has only 4 differential equations to describe the signaling
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behavior of a receptor trimer, whereas the full model requires 158 equations. The 4D
model, which we call II, is summarized below:

dm̄

dt
= KRkR1R(1 − Am̄) − KBpkB3BpAm̄,

dT p

dt
= kAT a − KY kY1YT p − KBkB1BT p,

dYp

dt
= KY kY1YT p − kY2Yp − KZkZZYp,

dBp

dt
= KBkB1BT p − kB2Bp,

Am̄ =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

p0
m̄+p1

m̄
3L

Km̄
d1

+p2
m̄

3L2

Km̄
d1Km̄

d2
+p3

m̄
L3

Km̄
d1Km̄

d2Km̄
d3

1+ 3L

Km̄
d1

+ 3L2

Km̄
d1Km̄

d2
+ L3

Km̄
d1Km̄

d2Km̄
d3

pure-type

p0
m̄+p1

m̄
L

Km̄
d1

+p2
m̄

2L2

Km̄
d1Km̄

d2
+p3

m̄
L3

Km̄
d1Km̄

d2Km̄
d3

1+ L

Km̄
d1

+ 2L2

Km̄
d1Km̄

d2
+ L3

Km̄
d1Km̄

d2Km̄
d3

mixed-type,

TtAm̄ = T a + T p,

Tt = T i + T a + T p,

Y = Yt − (1 + KZZ)Yp

1 + KY T p
,

Z = Zt

1 + KZYp

,

B = Bt − [1 + KBp(T a + T p)]Bp

1 + KBT p
,

R = Rt

1 + KRT i
.

We use the same stimulus protocol and simulate the time course of CheYp with the
full system and the reduced system II, and the results are shown in Fig. 10. Clearly,
the reduced system achieves perfect adaptation and captures the steady-state values
of CheYp in the full system, but there is a small shift in the transient values of CheYp.
The time course of the reduced system consistently lags that of the full system, a dis-
crepancy that is probably due to the linear interpolation we made for the parameters
Km̄

d,n and pn
m̄. Since m̄ is defined as a continuous variable, the m̄-dependent parame-

ters Km̄
d,n and pn

m̄ are also continuous. We assume that Km̄
d,n and pn

m̄ are linear func-
tions of m̄, and for simplicity we used a liner interpolation between the two extreme
points m̄ = 0 and m̄ = M to estimate intermediate values. However, an examination
of the discrete values of the parameters we used in the full model (Tables 3, 5, and 6)
shows that both are convex functions of m, and thus they are overestimated. Thus, we
used larger ligand dissociation constants and higher probabilities of being active in
the simulations. The former induces a lower sensitivity, and the latter causes a higher
level of CheYp, which may explain the discrepancy of the two traces in Fig. 10.
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Fig. 10 Time course of CheYp in response to α-methyl-aspartate predicted by the full system (blue line)
and the reduced system II (green line). In the simulations for pure-type receptors, the input is a step of
α-methyl-aspartate at t = 200 s from 0 μM to 1 μM (left)/10 μM (middle) and thereafter a removal of the
previous addition at t = 600 s, as well as a step at t = 1000 s from 0 μM to 100 μM (right) and thereafter
a removal of the previous addition at t = 3000 s. In the simulations for mixed-type receptors, the input is a
step of α-methyl-aspartate at t = 200 s from 0 μM to 1 μM (left)/10 μM (middle) and thereafter a removal
of the previous addition at t = 600 s, as well as a step at t = 1000 s from 0 μM to 1000 μM (right) and
thereafter a removal of the previous addition at t = 3000 s (Color figure online)

7 Discussion

The model developed here has several new aspects compared with existing models.
Unlike Ising-type models, the model developed here is based on a detailed kinetic
network for all known steps. We do not assume that the transition between the active
and inactive states of receptors only occurs in one ligand-binding state, as in Monod
et al. (1965). We are able to simulate the dynamics in the upstream pathway and
analyze the cooperativity in ligand binding and kinase activity regulation that stems
from receptor clustering. Using this model, we have performed sensitivity analysis
and robustness tests for the full pathway, and have been able to reproduce most of the
experimental observations.

Let Ks
d,n,m denote the ligand dissociation constant of a receptor trimer with n lig-

ands bound (n = 0, . . . ,3), with m methyl groups added (m = 0, . . . ,12), and with the
activity state of s (s = i, a,p). A trimer of dimers undergoes a sequence of three lig-
and binding reactions, and this raises three key questions: (1) whether Ks

d,n,m varies
with m, the methylation level; (2) whether it varies with s, the receptor activity; and
(3) whether it varies with n, the number of ligands bound, that is, whether coopera-
tivity in ligand binding exists in a trimer or a larger cluster.
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Fig. 11 Three potential patterns of chemoattractant dissociation constants of a trimer of receptor dimers.

Ki
d,n

is the attractant dissociation constant of the inactive receptor trimers with n ligands bound, and K
a/p
d,n

is the constant of the active (unphosphorylated and phosphorylated) receptors with n ligands bound. Case I:
Receptor activity has no effect on ligand affinity and positive cooperativity exists in ligand affinity. Case II:
Active receptors have a lower ligand affinity and no cooperativity exists in ligand affinity. Case III: Active
receptors have a lower ligand affinity and positive cooperativity exists in ligand affinity. In the figure, we
only consider the effects of receptor activity and of cooperativity in ligand affinity. Dissociation constants
also vary with the methylation level of receptors and the three patterns could exist for each methylation
level

First, we consider the effect of the methylation level. In the model, we use a hetero-
geneous two-state assumption. This assumption is based on the results in Bornhorst
and Falke (2003), where the authors suggest that methylation/demethylation changes
the dissociation constant of inactive receptors. We assume that the variation holds for
both active and inactive receptors. To test it, we perform three simulations: the first
based on the assumption that only K

a/p
d,n,m is heterogeneous, the second in which only

Ki
d,n,m is heterogeneous, and the third in which both are heterogeneous. It turns out

that the first case cannot reproduce the experimental data (cf. Fig. 2), but the latter
two can. It should be noted that the assigned parameter set is for an inhibitory ligand
(α-methyl-aspartate). In this case, Ki

d,n,m appears to dominate the apparent dissoci-
ation constant K1/2. However, in the case of an activating ligand, by symmetry we

expect that K
a/p
d,n,m will dominate K1/2, and thus the second assumption could be

ruled out. Further, from the view of structural biology, the simultaneous heterogene-
ity of Ki

d,n,m and K
a/p
d,n,m is also feasible. As a result, it is appropriate to assume that

the dissociation constant Ks
d,n,m depends on the methylation level.

Next, we consider the effects of receptor activity and cooperativity in ligand bind-
ing jointly. For each fixed methylation level m, there are three possible patterns, as
shown in Fig. 11 (for simplicity, we drop m in Ks

d,n,m). In Case I, the dissociation
constant is independent of receptor activity and positive cooperativity exists in lig-
and affinity (the dissociation constant decreases with more ligands bound); in Case
II, receptor activity lowers chemoattractant affinity (the dissociation constant of ac-
tive receptors is larger than that of inactive receptors) and there is no cooperativity;
and in Case III, both variations are present. With the Case II-based parameter set,
we cannot capture the decay of kinase activity along with saturating concentrations
of chemoattractants observed in Bornhorst and Falke’s experiments (Bornhorst and
Falke 2001, 2003) (data not shown). With the Case I-based parameter set (Table 3
and 5), we are able to reproduce the measures. Case III is a combination of Case I
and II, and logically it cannot be ruled out. The correlation of ligand affinity and re-
ceptor activity remains to be investigated by more experimental and modeling stud-
ies.
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Receptor clusters in E. coli have a multiple-level structural organization. It is
known that two receptor monomers form a helical intertwined homodimer,and three
pure-type or mixed-type dimers associate into a trimer of dimers. The trimer, together
with the histidine kinase CheA and the coupling protein CheW, form a ternary signal-
ing complex, these complexes cluster into patch in the membrane, and some patches
aggregate at a cell pole. Here, we have done detailed modeling of the core structure—
a trimer of dimers, and analyzed the interaction among dimer members of a trimer,
which we call the intratrimer interaction. An extremely high Hill coefficient, as large
as 11, is found in the responses of the cheRcheB mutant cells with Tar or Tsr highly
overexpressed and by the receptor Tsr in vitro. This cannot be reproduced by the
model for a single trimer of dimers, which suggests that the intratrimer interaction
cannot account for the high cooperativity in these cases. The higher-order interac-
tion among trimers of dimers, which we call the intertrimer interaction, could play
a key role here. Extension of our model to a larger cluster would require estimation
of a large number of parameters, most of which are not available experimentally. The
existing Ising-type or MWC-type models can analyze a cluster of 10–20 receptors
where a mean-field theory is applied, but the multiple-level structural organization of
receptor clusters is ignored and the intratrimer and intertrimer interactions are aver-
aged in these models. It would be useful to develop a framework that is able to model
a larger receptor cluster than what we have done, but still keep the ability to explore
the molecular details such as the specific roles of the intratrimer and intertrimer in-
teractions. Investigations in this direction are in progress.

Acknowledgements We thank Sandy Parkinson and David Odde for helpful discussions at various
stages of the model development. This work was supported by NIH grant GM029123 to HGO and by
the University of Minnesota Supercomputing Institute.

Appendix: Sensitivity Analysis

We perform sensitivity analysis for four steps of the signaling pathway—ligand
binding, kinase activity regulation, phosphorylation and phosphoryl transfer in the
cheRcheB mutant system where expression of CheR and CheB is suppressed and the
methylation states of receptors are engineered and do not vary. The mutant cells can
respond to but not adapt to chemoattractants. The involved chemical reactions in the
system only lie in one slice (whose methylation level is the fixed one) of the network
depicted in Fig. 1 excluding CheB-involved phosphoryl transfer. In the analysis, we
fix the state at QEQE, and thus the reaction network lies in the m = 6 slice in Fig. 1
and the corresponding m = 6 parameter sets in Tables 1 and 3 are used in computa-
tion. For simplicity, the subindex m of the signaling complex variables is omitted in
the section.

In the network, the ligand binding and kinase activity regulation transitions are
much faster than autophosphorylation and phosphoryl transfer. Therefore, we apply
the QSSA and dissect the network into two relatively independent parts. In the first
one, we consider redistribution of signaling complexes in the ligand binding states in-
duced by a chemoattractant stimulus. We use Tn to denote the amount of the signaling
complexes with n ligands bound, regardless of the activity state (Tn = T i

n +T a
n +T

p
n ).
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The methylation state is fixed at QEQE and the subindex m is dropped. Tt denotes the
conserved total concentration of signaling complexes. The equations that govern the
evolution of the amounts in four binding states of signaling complexes are as follows:

dT0

dt
= −3k1LT0 + k−1T1, (49)

dT1

dt
= 3k1LT0 − k−1T1 − 2k2LT1 + 2k−2T2, (50)

dT2

dt
= 2k2LT1 − 2k−2T2 − k3LT2 + 3k−3T3, (51)

dT3

dt
= k3LT2 − 3k−3T3. (52)

The steady-state solution of ligand occupancy is

O =
∑3

n=0(nTn)

3Tt

=
L

Kd1
+ 2L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

1 + 3L
Kd1

+ 3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

. (53)

We assume that when redistribution of signaling complexes in the activity states
takes place, the ligand binding transitions have reached equilibrium. Then simply,
T i

n = (1 − pn)Tn, and T a
n + T

p
n = pnTn, where pn is the probability of the signaling

complex with n ligands bound being active. So, the steady-state solution of activity
is

A =
∑3

n=0(T
a
n + T

p
n )

Tt

= p0 + p1
3L
Kd1

+ p2
3L2

Kd1Kd2
+ p3

L3

Kd1Kd2Kd3

1 + 3L
Kd1

+ 3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

. (54)

In the second part, we consider two slow transitions, redistribution of the active
signaling complexes in the unphosphorylated and phosphorylated states, and phos-
phoryl transfer to CheY. We use T i , T a , and T p to denote the amounts of the in-
active, active-unphosphorylated and active-phosphorylated complexes, respectively,
and then T a = ∑3

n=0 T a
n , T p = ∑3

n=0 T
p
n , and T a

n +T
p
n = pnTn hold. The governing

equations on T a , T p . and Yp are as follows:

dT a

dt
= −kAT a + kY1YT p, (55)

dT p

dt
= kAT a − kY1YT p, (56)

dYp

dt
= kY1YT p − kY2Y

p − kZZYp, (57)

Y = Yt − Yp, (58)

ATt = T a + T p. (59)
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The steady-state solutions of T p and Yp are

T p = n1ATt − n2 + √
Δ

2n1
, (60)

Yp = kY1YtT
p

kY1T p + kY3
, (61)

kY3 = kY2 + kZZ,

n1 = kAkY1,

n2 = kAkY3 + kY1kY3Yt ,

n3 = kAkY3,

Δ = n2
1(ATt )

2 + (4n1n3 − 2n1n2)ATt + n2
2.

Finally, we apply the definition of dimensionless sensitivity and obtain S(O|L),
S(A|O), S(T p|A), and S(Yp|T p) as Eqs. (15)–(18) in the text, respectively.

For comparison, we perform a similar analysis in the case of a signaling complex
containing a receptor dimer instead of a trimer of receptor dimers. The occupancy
and activity are

O =
L

Kd1

1 + L
Kd1

, (62)

A = p0 + p1
L

Kd1

1 + L
Kd1

. (63)

The sensitivities of ligand binding and activity regulation are

S(O|L) = 1

1 + L
Kd1

, (64)

S(A|O) = (p1 − p0)
L

Kd1

p0 + p1
L

Kd1

. (65)

The sensitivities of the remaining steps are the same as Eqs. (17) and (18) in the text.
The variation in the composition of a signaling complex does not change the formula
of the downstream sensitivities, but we need adjust the values of the rate constants in
the CheA related reactions due to the change in the stoichiometry of receptors and
CheA, and quantitatively it would rescale the downstream sensitivities.

Using a similar technique, we perform a parametric sensitivity analysis for the
upstream signaling pathway. Specially, we have interests in the sensitivities of re-
ceptor occupancy to ligand dissociation constant S(O|Kdi

) and to cooperativity in
ligand affinity S(O|ti ), where ti = Kdi

/Kdi+1 (i = 1,2), and in the sensitivities of
receptor activity to ligand dissociation constant S(A|Kdi

), to cooperativity in ligand
affinity S(A|ti ), to probability of being active S(A|pi), and to cooperativity in activ-
ity inhibition S(A|si), where si = pi−1/pi (i = 1,2,3). The formula are Eqs. (66)
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to (82).

S(O|Kd1) = −1

1 + 3L
Kd1

+ 3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

, (66)

S(O|Kd2) =
3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

1 + 3L
Kd1

+ 3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

−
2L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

L
Kd1

+ 2L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

, (67)

S(O|Kd3) =
L3

Kd1Kd2Kd3

1 + 3L
Kd1

+ 3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

−
L3

Kd1Kd2Kd3

L
Kd1

+ 2L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

, (68)

S(O|t1) =
2t1L

2

K2
d1

+ (3t1+2t2
1 t2)L

3

K3
d1

+ 4t2
1 t2L

4

K4
d1

+ t3
1 t2L

5

K5
d1

(1 + 3L
Kd1

+ 3t1L
2

K2
d1

+ t2
1 t2L

3

K3
d1

)( L
Kd1

+ 2t1L
2

K2
d1

+ t2
1 t2L

3

K3
d1

)

, (69)

S(O|t2) =
t2
1 t2L

3

K3
d1

+ 2t2
1 t2L

4

K4
d1

+ t3
1 t2L

5

K5
d1

(1 + 3L
Kd1

+ 3t1L
2

K2
d1

+ t2
1 t2L

3

K3
d1

)( L
Kd1

+ 2t1L
2

K2
d1

+ t2
1 t2L

3

K3
d1

)

, (70)

S(A|p0) = p0

p0 + p1
3L
Kd1

+ p2
3L2

Kd1Kd2
+ p3

L3

Kd1Kd2Kd3

, (71)

S(A|p1) = p1
3L
Kd1

p0 + p1
3L
Kd1

+ p2
3L2

Kd1Kd2
+ p3

L3

Kd1Kd2Kd3

, (72)

S(A|p2) = p2
3L2

Kd1Kd2

p0 + p1
3L
Kd1

+ p2
3L2

Kd1Kd2
+ p3

L3

Kd1Kd2Kd3

, (73)

S(A|p3) = p3
L3

Kd1Kd2Kd3

p0 + p1
3L
Kd1

+ p2
3L2

Kd1Kd2
+ p3

L3

Kd1Kd2Kd3

, (74)

S(A|s1) = −
1
s1

3L
Kd1

+ 1
s1s2

3L2

Kd1Kd2
+ 1

s1s2s3

L3

Kd1Kd2Kd3

1 + 1
s1

3L
Kd1

+ 1
s1s2

3L2

Kd1Kd2
+ 1

s1s2s3

L3

Kd1Kd2Kd3

, (75)

S(A|s2) = −
1

s1s2

3L2

Kd1Kd2
+ 1

s1s2s3

L3

Kd1Kd2Kd3

1 + 1
s1

3L
Kd1

+ 1
s1s2

3L2

Kd1Kd2
+ 1

s1s2s3

L3

Kd1Kd2Kd3

, (76)

S(A|s3) = −
1

s1s2s3

L3

Kd1Kd2Kd3

1 + 1
s1

3L
Kd1

+ 1
s1s2

3L2

Kd1Kd2
+ 1

s1s2s3

L3

Kd1Kd2Kd3

, (77)
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S(A|Kd1) =
3L
Kd1

+ 3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

1 + 3L
Kd1

+ 3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

− p1
3L
Kd1

+ p2
3L2

Kd1Kd2
+ p3

L3

Kd1Kd2Kd3

p0 + p1
3L
Kd1

+ p2
3L2

Kd1Kd2
+ p3

L3

Kd1Kd2Kd3

, (78)

S(A|Kd2) =
3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

1 + 3L
Kd1

+ 3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

− p2
3L2

Kd1Kd2
+ p3

L3

Kd1Kd2Kd3

p0 + p1
3L
Kd1

+ p2
3L2

Kd1Kd2
+ p3

L3

Kd1Kd2Kd3

, (79)

S(A|Kd3) =
L3

Kd1Kd2Kd3

1 + 3L
Kd1

+ 3L2

Kd1Kd2
+ L3

Kd1Kd2Kd3

− p3
L3

Kd1Kd2Kd3

p0 + p1
3L
Kd1

+ p2
3L2

Kd1Kd2
+ p3

L3

Kd1Kd2Kd3

, (80)

S(A|t1) =
p2

3t1L
2

K2
d1

+ p3
2t2

1 t2L
3

K3
d1

p0 + p1
3L
Kd1

+ p2
3t1L

2

K2
d1

+ p3
t2
1 t2L

3

K3
d1

−
3t1L

2

K2
d1

+ 2t2
1 t2L

3

K3
d1

1 + 3L
Kd1

+ 3t1L
2

K2
d1

+ t2
1 t2L

3

K3
d1

, (81)

S(A|t2) =
p3

t2
1 t2L

3

K3
d1

p0 + p1
3L
Kd1

+ p2
3t1L

2

K2
d1

+ p3
t2
1 t2L

3

K3
d1

−
t2
1 t2L

3

K3
d1

1 + 3L
Kd1

+ 3t1L
2

K2
d1

+ t2
1 t2L

3

K3
d1

. (82)
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