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Abstract. Eukaryotic cells move through the complex micro-environment of a tissue
either by attaching to the extracellular matrix – sometimes degrading it locally – and
pulling themselves along, or by squeezing through the matrix by appropriate sequences
of shape changes. Some cells can even swim by shape changes, and one mode used is
called blebbing, in which a cell creates a small hemispherical protrusion that may grow
to incorporate the entire cell volume or may be reabsorbed into the primary volume.
Herein we develop and analyze several models for swimming at low Reynolds number
inspired by cell blebbing. These models comprise several connected spheres, and each
connected pair of spheres can exchange volume with their complement in the pair. We
show that the cell can propel itself through the fluid using a suitable sequence of volume
exchanges, and we evaluate the efficiency of this mode of swimming.
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1. Introduction. Cell locomotion is essential for embryonic develop-
ment, angiogenesis, tissue regeneration, the immune response, and wound
healing in multicellular organisms, and plays a very deleterious role in can-
cer metastasis in humans. Locomotion involves the detection and trans-
duction of extracellular chemical and mechanical signals, integration of the
signals into an intracellular signal, and the spatio-temporal control of the
intracellular biochemical and mechanical responses that lead to force gen-
eration, morphological changes and directed movement [10]. While many
single-celled organisms use flagella or cilia to swim, there are two basic
modes of movement used by eukaryotic cells that lack such structures –
mesenchymal and amoeboid [4]. The former, which can be characterized as
‘crawling’ in fibroblasts or ‘gliding’ in keratocytes, involves the extension of
finger-like filopodia or pseudopodia and/or broad flat lamellipodia, whose
protrusion is driven by actin polymerization at the leading edge. This mode
relies on strong adhesion to the substrate, and dominates in cells such as
fibroblasts crawling on a 2D substrate. In the amoeboid mode, which
does not rely on strong adhesion, cells are more rounded and employ shape
changes to move – in effect ’jostling through the crowd’ or ‘swimming’. Re-
cent experiments have shown that numerous cell types display enormous
plasticity in locomotion, in that they sense the mechanical properties of
their environment and adjust the balance between the mesenchymal and
amoeboid modes accordingly by altering the balance between parallel sig-
nal transduction pathways [9]. Pure crawling and pure swimming are the
extremes on a continuum of locomotion strategies, but cells can sense their
environment and use the most efficient strategy in a given context.
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Some cells produce membrane ’blisters’ called blebs, in which the mem-
brane detaches from the cortex locally and the pressure generated by the
cortex forces the membrane outward. Fig. 1(a) shows a Dictyostelium dis-
coideum (Dd) cell that uses blebs to extend the leading edge while moving.
Blebbing is a specialized form of shape change that may produce movement,

Fig. 1. The actin cortex
of a blebbing Dd cell migrating
to the lower right. White ar-
rowheads indicate the successive
blebs and arcs of the actin cortex
(from [12]).

but to understand when it does, and to
understand movement more generally, one
has to integrate the cellular dynamics with
the dynamics of the surrounding complex
medium, the ECM. Here we begin with swim-
ming, motivated by recent experiments which
show that both neutrophils and Dd can swim
– in the strict sense of propelling themselves
through a fluid without using any attach-
ments – in response to chemotactic gradients
[3]. The experimental observations show a
very complex sequence of shape changes in
Dd, but we first study how shape changes
in abstract models of swimmers can lead to
movement in a viscous fluid. Interest in this
classical problem stems from the description
of life at low Reynolds number by Purcell [8].
The essential ideas are as follows – the current state of knowledge is re-
viewed elsewhere [7].

The governing equations for an incompressible Newtonian fluid of den-
sity ρ and viscosity µ are given by

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇p+ µ∆v + f , ∇ · v = 0 (1.1)

where f is the external force field. The Reynolds number based on a char-
acteristic length scale L and speed scale V is Re = ρLV /µ, and nondimen-
sionalization of Eq. (1.1) shows that when Re� 1 the acceleration terms
can be ignored. This defines a low Reynolds number (LRN) flow. When
there are no external force fields, as we will assume hereafter, the equations
simplify to the Stokes equations

µ∆v −∇p = 0, ∇ · v = 0. (1.2)

The small size and slow speed of cells considered here leads to LRN flows,
and in this regime cells move by exploiting the viscous resistance of the
fluid. However, since time is absent from the equations, a time-reversible
stroke produces no net motion, which is the content of the famous ‘scallop
theorem’ [8]. Because there is no net force or torque on a swimmer in the
Stokes regime, movement is a purely geometric process: the net displace-
ment of a swimmer during a stroke is independent of the rate at which the
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stroke is executed, as long as the Reynolds number remains small enough.
The properties of the exterior fluid come into play only when addressing
the efficiency of a stroke.

A swimming stroke is defined by a time-dependent sequence of shapes,
and a cyclic swimming stroke is a swimming stroke for which the initial and
final shapes are identical. Let B(t) and V be the boundary and velocity
of the swimmer, respectively. V can be decomposed into a part v that
corresponds to the intrinsic shape deformations, and a part U that corre-
sponds to a rigid motion. Then most LRN self-propulsion problems can
be stated as: given a cyclic shape deformation by specifying v, solve the
Stokes equations subject to∑

Fi = 0,
∑

Γi = 0, u|B = V, u|x→∞ = 0, (1.3)

where u is the velocity field of the surrounding fluid, and Fi and Γi are
forces and torques on the swimmer.

Purcell’s model swimmer comprises three connected, rigid links con-
strained to move in a plane, where adjacent links do a constrained rotation
around joints and can thereby change the angle between them. Here the
shape is specified by two parameters, the angles between adjacent links, and
Purcell showed that one can impose sequences of changes in the angles that
produce motion of the swimmer. Despite its geometric simplicity, the rela-
tionships between geometric parameters, speed and efficiency of swimming
are not simple, and various simpler models such as the three-linked-spheres
model and the push-me-pull-you model have appeared since [5].

Fig. 2. The three-linked-spheres swimmer[6].

As an example, consider
a swimmer made of three
spheres and two rods con-
necting them, all immersed
in a LRN fluid (Fig. 2). As-
sume that the lengths L1 and
L2 of the rods connecting
them are changed in a prescribed way. Then for a large separation one
can use the Oseen tensor, which defines the leading-order term for u, to
relate the forces fi on the spheres to the speed v1 of the first sphere as
follows [6]:

v1 =
f1

6πµa1
+

f2
6πµL1

+
f3

6πµ(L1 + L2)
.

There are similar equations for v2 and v3, and the leading order approxi-
mation V0 to the speed V is the mean speed V0 =

∑
i vi/3. After specifying

the velocities L′
i and using the force-free condition at Eq. (1.3), one can

eliminate the forces, and when all spheres have the same radius a one finds
that

V0 =
a

6
[(L′

2 − L′
1

L1 + L2

)
+ 2

(L′
1

L2
− L′

2

L1

)]
(1.4)
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plus terms that average to zero over a cycle [6]. Thus the swimmer can
move for suitable choices of the velocities L′

i. The efficiency of swimming
for this model has been estimated, and an algorithm for finding optimal
strokes exists [1].

2. The linear n-sphere swimmer with volume exchange. As
a generalization of the previous example that is more directly related to
cell motility and blebbing, we consider a connected linear chain of spheres,
each of which can exchange mass with its neighbors. We assume that the
distance between their centers of mass remains unchanged, and that the
distance between each pair is much larger than the radii of the spheres.
It follows from the scallop theorem that a two-sphere model cannot swim,
since it has only one degree of freedom, and therefore a minimal model
must comprise at least three spheres, as in the previous example.

Here we restrict attention to the 3-sphere swimmer shown in Fig. 3,
immersed in a Newtonian fluid with no-slip boundary conditions at the
boundary of the spheres. The connecting rods are massless, the distance

Fig. 3. A cycle of the swimmer

l between the centers of two adjacent spheres is constant, and for simplic-
ity we assume that during the volume exchange process between adjacent
spheres, the volumes remain spherical. Let ai be the radius of the ith
sphere and assume that ε ∼ ai/l � 1.

The solution to Eq. (1.2) for the flow around a single sphere of radius
a subject to a force f and dilated at the rate v̇ is

u(r; a, f , v̇) =
1

24πµ

[(
3 + ξ2

) f
r

+ 3(1 − ξ2)
(f · r)r
r2

]
+

v̇

4πr2
r (2.1)

where u(r; a, f , v̇) is the velocity at position r from the center of the sphere
[2] and ξ ≡ a/r.

In the linear case, by symmetry, both the net velocities of the spheres
and the net forces acting on each sphere should be parallel to the symmetry
axis, thus can be taken as scalars. Let fi be the net force acting on the
ith sphere by the surrounding Stokes fluid. It is reasonable to assume that
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O(f1) ∼ O(f2) ∼ O(f3). To leading order in ε ∼ ai/l,
U1 ∼ f1

6πµa1
− v̇2

4l2
− v̇3

16l2

U2 ∼ f2
6πµa2

+
v̇1
4l2

− v̇3
4l2

U3 ∼ f3
6πµa3

+
v̇1

16l2
+
v̇2
4l2

(2.2)

where Ui is the velocity at the center of the ith sphere.
The swimming velocity of the whole object is the mean translational

velocity, i.e., Ū = (U1 + U2 + U3)/3 Because we assume that the length of
the two connecting arms is always l, we have l̇ = U2 − U1 = U3 − U2 = 0,
and therefore

U1 = U2 = U3 = Ū (2.3)

Since the system is force-free f1 +f2 +f3 = 0 and because the total volume
V is conserved

v̇1 + v̇2 + v̇3 = 0 or a2
1ȧ1 + a2

2ȧ2 + a2
3ȧ3 = 0 (2.4)

From the foregoing we find that

Ū =
(a1 + a2 − 3

4a3)v̇1 − (a3 + a2 − 3
4a1)v̇3

4l2(a1 + a2 + a3)
(2.5)

where a2 =
(
3V/(4π) − a3

1 − a3
3

)1/3

.

To propel the swimmer with v̇i given, the power required is

P =
µ

π

[( 1
a3
1

+
1
a3
2

)
v̇2
1 +

2
a3
2

v̇1v̇3 +
( 1
a3
2

+
1
a3
3

)
v̇2
3

]
(2.6)

and the efficiency of a stroke γ is [2]

e(γ) :=
6πµX2(γ)
τ

∫ τ

0
Pdt

.

Some analytical results on movement can be obtained – detailed proofs
of the folllowing will appear elsewhere [11]. Let d̄X > 0 represent an
infinitesimal displacement to the right in Fig. 3. Given an infinitesimal
shape change (da1, da3), it follows from Eq. (2.5) that

d̄X =
π

l2

[
a2
1

(
1 − 7

4
a3

a1 + a2 + a3

)
da1 − a2

3

(
1 − 7

4
a1

a1 + a2 + a3

)
da3

]
.(2.7)

Using Stokes’ theorem, the translation δX associated with a closed loop is

δX =
7π
4l2

[
a2
1∂a3

a3

a1 + a2 + a3
+ a2

3∂a1

a1

a1 + a2 + a3

]
da1 ∧ da3, (2.8)

where da1 ∧ da3 denotes the signed area enclosed by the loop. Some con-
clusions that can be drawn from this are as follows.
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• When only one dai is non-zero, the direction of movement is always
from the expanding sphere to the contracting one, provided that the
center sphere is large enough. An intuitive explanation of this is [2]:
the expanding sphere acts as a source pushing away the shrinking sphere
which acts as a sink to pull the expanding sphere.

• For any stroke γ homotopic to S1 in the (a1, a2) plane, an increase
of the stroke amplitude will increase the net translation per stroke,
while an increase in the initial radius a20 of the central sphere (with
a10 and a30 fixed) will decrease the net translation per stroke. A first-
order approximation to the displacement is |X(γ)| ∼ ε

l Area(Ω), where
ε ∼ ai/l, Ω is the region enclosed by γ, and Area(Ω) is the signed area
of Ω.

• Increasing the initial radius a20 of the central sphere (with a10 and a30

fixed) decreases the efficiency. Also, for infinitesimal strokes, increasing
the stroke amplitude |da1∧da3| symmetrically by a factor r (i.e., d̃a1 =
rda1 and d̃a3 = rda3) will increase the efficiency by r2. In particular, if
we assume that ai ∼ a and dai ∼ da, then we have the approximation:
d̄e ∼ a|da|2/l4.
For finite-amplitude changes we must compute the displacement and

efficiency numerically, and for this we consider the cycle shown in Fig. 3. We
suppose that initially a10 = a, a20 = s2a, and a30 = s3a, where si measures
the initial relative size. At the end of each step within a stroke, the radius
of sphere i (i = 1, 3) is either ai0 or ai0 + δi. Let δ1 = r1a, δ3 = r3a, where
ri measures the stroke amplitude, and let ∆ be the net translation after
one full cycle. Figs. 4 and 5 show the effect of varying the initial size of the
central sphere and the stroke amplitude on the displacement and efficiency.
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Fig. 4. (a) The relationship between the net translation l2∆/(πa3) and the initial
size s2 of the center sphere, and (b) between the efficiency l4e/(π2a3) and s2, for
s3 = r1 = r3 = 1.

Fig. 4 shows that increasing the initial volume of the center sphere will
decrease both the net translation and the efficiency of the cycle, whereas
in Fig. 5 one sees that increasing the amplitude in each step of the cycle
will increase both the net translation of the swimmer after a full cycle and
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Fig. 5. (a) The relationship between the net translation l2∆/(πa3) and the stroke
amplitude r, and (b) between the efficiency l4e/(π2a3) and r, for s3 = 1, r2 = r3 = r,
and s2 = 15.

its efficiency, as predicted by the analysis.

3. The planar 3-sphere swimmer. Next consider a 3-sphere swim-
mer that can move in the plane as shown in Fig. 6, wherein the 1st and 2nd
spheres can exchange volume with the 0th sphere while preserving the total
volume. We assume that ai/lα � 1, and suppose that other constraints
and the notation are as before.

Fig. 6. The planar 3-sphere swimmer.

The motion of the structure can be uniquely determined by (O0;ω),
where O0(t) is the position of the center of sphere 0 in a global chart, and
ω(t) measures the rotation of the structure with respect to sphere 0.

If, as before, we solve the Stokes equations plus the volume conserva-
tion constraint Eq. (2.4), we obtain

nω̇ =
a0

(
a2v̇1 − a1v̇2

)
sinα

4πl3
[
a0

(
a1 + a2

)
+ 2a1a2

(
1 − cosα

)]( 1
8 sin3 α

2

− 1
)
. (3.1)

The assumption that ai/lα � 1 ensures that (8 sin3 α
2 )−1 − 1 will not be



8

too large, and it follows that

U0 = −
( v̇1

4πl2
[
a0 + a1 + a2

(
cosα+

1
4 sin α

2

)]
+

v̇2
4πl2

[
a0 cosα

+a1

(
1 − 1

4 sin α
2

)
+ a2 cosα

]
− a2lω̇ sinα

)(cosω ex + sinω ey

a0 + a1 + a2

)
−

(a2v̇1
4πl2

sinα
(
1 − 1

8 sin3 α
2

)
+

v̇2
4πl2

(
a0 sinα+ a2 sinα

+
a1

4 sin α
2 tan α

2

)
+

(
a1 + a2 cosα

)
lω̇

)(− sinω ex + cosω ey

a0 + a1 + a2

)
(3.2)

where ω(t) =
∫ t

0
ω̇ dt.

As was true for the linear array, some analytical results can be obtained
[11]. From Eq. (3.1), we have

d̄ω =
sinα
l3

( 1
8 sin3 α

2

− 1
) a0a1a2(a1da1 − a2da2)
a0(a1 + a2) + 2a1a2(1 − cosα)

(3.3)

where d̄ω > 0 represents an infinitesimal rotation counterclockwise. The
swimming rotation δω associated to an infinitesimal closed loop is

δω = φ · (a1∂a2 + a2∂a1)ψ da2 ∧ da1 (3.4)

where

φ(α) =
sinα
l3

( 1
8 sin3 α

2

− 1
)

ψ(a1, a2;α) =
a0a1a2

a0(a1 + a2) + 2a1a2(1 − cosα)
.

In Eq. (3.4), da2 ∧da1 denotes the signed area enclosed by the loop. From
this one can conclude that:

(1.) Any linear or equilateral triangular swimmer cannot rotate at
any time.

(2.) If the loop is chosen so that da2 ∧ da1 < 0 and |2(1 −
cosα)a2

1a2
2

a4
0
| < 1 holds throughout the stroke, then the swimmer

rotates clockwise when α < π/3, and rotates counterclockwise
when π/3 < α < π.

(3.) When α satisfies the standing constraint, we have

δω ∼ ε

l2
sinα

( 1
8 sin3 α

2

− 1
)
|da2 ∧ da1| (3.5)

which implies that either increasing ai or increasing the stroke
amplitude |da2∧da1| will increase the net rotation δω of a stroke.
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To extend these results to finite changes, consider a full cycle compris-
ing the following four steps.

(1) sphere 1 transfers volume δ1 > 0 to sphere 0;
(2) sphere 2 transfers volume δ2 > 0 to sphere 0;
(3) sphere 0 transfers volume δ1 back to sphere 1;
(4) sphere 0 transfers volume δ2 back to sphere 2.

We assume that the initial state of a stroke is (O0, ω)(t = 0) = (0, 0),
and let Ω = ω(T ) and ∆ = O0(T ) be the rotation angle and the net
translation of the swimmer at the end of the stroke, respectively, where T
is the period of the stroke. We express ∆ in global polar coordinates as
∆ = R · er + Θ · eθ. Fig. 7 illustrates some of the computational results
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Fig. 7. The rotation 4πl3Ω(α)/v (left) and the translation 4πl2R(α)/v and Θ(α)
(right) of the swimmer as a function of the acute angle α.

for 4πl3

v Ω(α), 4πl2

v R(α) and Θ(α) with a10 = a20 = a, a00 = 21/3a, and
δ1 = δ2 = 0.9v for α ∈ [π/6, π]. From this computational experiment one
can conclude the following.
• There are two zeros of Ω(α), one at α = π/3 (corresponding to an

equilateral triangle), and the other at α = π (a straight line, the case
discussed earlier). (This confirms the general result (1) stated above.)

• When α < π/3, Ω < 0 (which corresponds to clockwise rotation), and
|Ω| increases rapidly as α decreases. When π/3 < α < π, Ω > 0
(counterclockwise rotation), and 4πl3|Ω|/v has a maximum value of
about 0.0830 at α = π/2.

• Under the assumption that ε ∼ ai/l � 1, Ω ∼ o(ε3), which implies that
the effect of rotation is not significant.

• α has complicated effects on both the translation distance and the trans-
lation direction. 4πl2

v R has a minimum of about 0.0884 at around α =
0.44π; while Θ has a maximum of about −0.48π at around α = 0.26π,
and a minimum of about −1.13π at around α = 0.60π.

4. Discussion. In this paper we have briefly sketched some results
for a 3-sphere model in which movement results from volume exchange
between the spheres. Here we only considered square loops in the control
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space, but an open problem is to determine the optimal loop in the control
space. Another generalization under consideration is a model in which
volume exchange is coupled with active contraction of the connecting rods
to more closely approximate movement in cells. In reality, microorganisms
execute much more complicated shape deformations in order to swim, but
important insights can be gained from abstract models such as considered
here.
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