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1. The Interaction of Structure and Dynamics in Chemical
Reaction Networks

H.G.Othmer

1.1 Inhtroduction

Chemical reaction dynamics or chemical kinetics is concerned with. the prob-
lem of predicting the temporal evolution of the composition of a reacting
mixture, given its composition at an initial instant of time. To do this,
one must know the mechanism and the rate constants of the various elementary
steps, and one aspect of the problem concerns the a priori prediction of
rate constants from bond energies and other properties of the reacting mole-
cules. This aspect is covered in Golden's contribution to this voiume (Chap.
10). Another aspect concerns the question of how the topological structure
of the reaction network, by which we mean the pattern of connections between
species or groups of species imposed by the reactions between them, affects
the dynamical behavior of the system. More precisely, one would 1ike to know
when such phenomena as multiple steady states, temporal oscillations, and
chaotic dynamics can be ruled out solely on the basis of network structure,
or on the basis of network structure and some general properties of the rate
laws, both for well-mixed systems and for systems in which transport occurs
on the same time scale as does reaction.

The latter aspect of chemical kinetics is the subject of Feinberg's paper
(Chap.5) and of this one. In closed systems, the dissipation hypothesis pre-
cludes periodic solutions and chaotic dynamics, but multiple steady states
may exist in nonideal mixtures. An example of this is given in the following
section. In the third section we present a graph-theoretic framework within
which the foregoing questions can be dealt with for open systems. The last
section deals with the problem of diffusive instabilities of a spatially
uniform solution in an open system, both when the uniform solution is time-
invariant and when it is time-periodic.



1.2 Closed, Spatially-Uniform Systems

Suppose that there are n reacting species Mi and r < n - 1 independent reac-
tions amongst them, written as

. M =0 Gl (1.1)

1S
<

The Vi are stoichiometric coefficients that represent the relative molar

proportions of the species in a reaction, For the present we assume that they
are integers and that Vij
actant) in the jth reaction. Throughout we assume that the temperature and

> 0 (<0) according as species i is a product (re-

pressure are constant and that volume changes due to reaction are negligible.
Therefore, the state of the mixture is specified by the concentration vector
T
C = (Cl’ cees cn)
n-dimensional real vector space,

, and this must Tie 1in R;, the nonnegative ‘orthant' of an

Associated with each reaction, all of which are assumed to be reversible,
is a rate Ri(c), and the temporal evolution of the mixture is given by the
solution c(t) of the differential equation

dc

It wR(c) c(0) = ¢y - (1.2)

The nx r matrix v is the stoichiometric matrix and since the r reactions are
independent, rank(v) = p(v) = r. The components Ri(c) of R(c) are polynomials
in ideal systems that follow mass action kinetics and in general are assumed
to be smooth enough that the solution of (1.2) exists locally in t and is
unique and nonnegative for any nonnegative o

In a closed system, the total mass and perhaps other quantities are con-

served, and any such invariant combination of concentrations has the form

<Qj,c(t)> = <Qj’CO> J=1, ... s , (1.3)
where vTQj =0, i.e., Qj € N(vT).1 Since dim R{v) < n, the semiflow defined

by (1.2) is confined to the coset of R(v) defined by (1.3). The intersection
of this Tinear manifold with R: is called the reaction simplex and is de-
noted Q(co). Because the total mass is conserved, one of the Qj's has strictly

positive components, and as a result Q(co) is compact. It follows from

1 Unless specified otherwise, <,> denotes the Euclidean inner product and
the associated norm. N(A) and R(A) are the null space and range,
respectively, of the 1inear transformation A.




Brouwer's fixed point theorem that (1.2) always has at least one time-in-
variant solution, any of which we call a kinetic equilibrium point. Since
p(v) = r, all kinetic equilibria are solutions of the system

Ri(c) =0 =1, ... r . (1.4)
If we introduce intrinsic coordinates {51} in Q(CO) via
C-CO=\J€ s
then (1.2) can be written
de _ R(cy + vE) = ﬁ(g) (1.5)
dt 0 - : :

The thermodynamic properties of the mixture are fixed, at constant T and
P, once the composition dependence of the Gibbs free energy G is prescribed.
G is homogeneous of first degree in the concentrations C; and thus can be

written

G = <u,c> , (1.6)
where

by = 3673, (1.7).

is the chemical potential of species i. It can be written in the form

U

o= (TP + RT In Yok (1.8)

where ;i(c) is the activity coefficient of species i and X; is its mole
fraction. The solution is ideal with respect to species i if %i = 1..In any
case, we require that §1x1 - 0 as X = 0. For convenience, we set
v;(c) = cy;(c) and rewrite (1.8) as

b= 1(T,P) + RT Tnys(c)e; (1.9)

Since the composition is restricted to Tie in Q(co), we restrict G(c) to
Q(co) by setting

G(g) = G(cy + vE) . ’ (1.10)
According to the classical definition [1.1], the thermodynamic equilibrium

points occur at the compositions correspending to critical points of G(g),
i.e., points at which the affinity



- i3 (1.11)
vanishes for every reaction. Under the assumption that Yi(c)ci - 0 as
c; = 0 for every i, it can be shown that there is at Teast one thermodynamic
equilibrium point in the interijor of Q(co) and that G has a minimum there.
Furthermore, if the solution is ideal, the thermodynamic equilibrium point
in the interior of Q(co) is unique. If it is also assumed that every species
participates in at least one reaction, then there are no thermodynamic equi-
Tibrium points on the boundary of Q(co). There is no loss of generality in
making this assumption, because when inert species are present, one can simply
work in a Tower-dimensional space. Of course, the dependence of the chemical
potential on inert species must still be taken into account.

We have defined two different types of equilibria and the question arises

as to when they coincide. Let us define a dissipation function ¢ as
p = 298 o AR (1.12)

and postulate that ¢ > 0 along orbits or (1.5), with equality if and only
if R = 0. This 'dissipation hypothesis' is the nonequilibrium generalization
of the second law of thermodynamics, and under it every thermodynamic equi-

1ibrium point is a kinetic equilibrium point (A = 0 = R = 0). Furthermore,
it can be shown that when this hypothesis holds,

a) A =0 at any kinetic equilibrium point that is positively or negatively
stable (i.e., is a sink or source, respectively)

b) A = 0 at any kinetic equilibrium point that is a saddle point if ¢ is
differentiable and 3R/9g is nonsingular there.

Complete equivalence between thermodynamic and kinetic equilibria cannot
be hoped for, because under reasonable assumptions there are no thermodynamic
equilibria on the boundary of Q(CO), but there may be kinetic equilibria
there. For instance, if the reaction is

k
1
M, + M, =——= 2M
1 2 K 1
-1
and
B 2
R = KiCqCp - K_1¢1 >



then it is easily shown that ¢ > 0 if kl/k_1 = Keq’ where Keq is the usual
equilibrium constant. Clearly there is a kinetic equilibrium point on the
bgundary of the simplex, and one finds that d¢/dg - + « as cq - 0+ and that
3R/3g # 0 there. In the terminology used by PRIGOGINE and DEFAY [1.1], points
at which R = 0, but A+ 0, are called false equilibria, and thus all boundary
equilibria are false equilibria.

When the mixture is not ideal, G need not be globally convex and there
may be more than one thermodynamic equilibrium point. Several different
models of solution behavior that can lead to this phenomenon have been
analyzed [1.2] and several real systems in which it might occur have been
suggested [1.3]. We shall not go into details here, but will give one ele-
mentary example. Consider the reaction

"Ml " M2 =0 (1.13)
in a binary regular solutjon for which

2
v = explu(l - )% y, = exp(wx))

The reaction simplex is given by Xp t Xy = 1, and there is no need to in-
troduce ¢ coordinates here. Suppose that

R = kyvyxy = kogvp(l = xq) (1.13)
where k1 and k_1 are positive constants. The affinity for (1.13) is

Y151

A = '(“2 - “1) = -Ap = -Auo + RT 1n ;Ezi—j—izj >

and A = 0 implies that

"1%1 0
@ -x) " exp(au”/RT)

Similarly, R =0 implies that

V1% kg

Y2(1 - Xl) - kl >

and therefore, A =0 if and only if R = 0, provided that

k_q 0
T exp(an/RT) . (1.14)



For simplicity suppose that Auo = 0, and choose w = 3. A bit of com-
putation shows that there are three equilibria, at Xy = 0.0709, 0.5 and
1.0 - 0.0709. The largest and smallest of these are positively asymptotically
stable and the intermediate point is negatively asymptotically stable. The
dissipation function is

2
xq exp[3(1 - x1)7]

¢ = klRT In 5 expl3(1 - xl)z]xl - exp(3x§) (1 - Xl) )
(1 - xl)exp(3x1)

and a sketch of this is shown in the following diagram. The arrows indicate
the evolution of ¢ as t increases. If xl(O) Ties near 0.5, ¢ passes through
a maximum, while if xl(O) Ties sufficiently near either of the sinks, it is

monotone decreasing in t. Thus the 'excess dissipation' ¢ - ¢ (= ¢) is

eq
monotone nonincreasing only in some neighborhood of a sink, and it can only

serve as a Lyapunov function in such a neighborhood.

*1

In the foregoing example the assumed nonideality of the solution was built
into the constitutive relation for the rate and the rate coefficients were
restricted by (1.14) to insure coincidence of thermodynamic and kinetic equi-
libria. The dissipation hypothesis is obviously met in this example and one
can show more generally that it will always be satisfied for rate expressions
of the form

f ajj _ "
j it [Yi(c)ci] kj

.

n 81
RGO (1.15)
1=

provided that
Bov = Qov = Voo (1.16)

WORTy (1.17)

;
EF-: K. = e><p(—2v1.J :
J



These conditions also ensure that kinetic and thermodynamic equilibria coin-
cide. for equilibria in the interior of Q(co). Thus (1.15) provides a valid
constitutive assumption for reactions that obey mass action kinetics in non-
ideal solutions. The question arises whether the simpler form

n .. n ..
mo - n Fii (1.18)
NS J ., i

i=1 i=1 :

where kg and kg are constant and (1.16) and (1.17) hold, is also consistent
with the dissipation hypothesis. Since kinatic equilibria are solutions of

noooL
K. =11 c:1]
A S

and thermodynamic equilibria are solutions of

n Vij n VER 0
‘1] = V1) - R Th
?:1 . <?=1 " >eXp{ zvia“J/RT} ’

they coincide only if

n
Moy, =1, J=1,...r . (1.19)
i= ‘

1 i
If this does not hold, then there is a composition at which A = 0, but

R + 0, which violates the dissipation hypothesis. Thus (1.18) is acceptable
only if the activity coefficients happen to satisfy (1.19).

Suppose that they do satisfy (1.19); then the dissipation hypothesis
guarantees convergence to an equilibrium point, but doesn't determine whether
the ultimate approach to equilibrium is monotonic or oscillatory in time.
ONSAGER's theorem [1.4] is often invoked to prove that the phenomenological
matrix associated with the linearization of (1.5) is symmetric, but one can
show [1.5] that it is not applicable when the rates are given by (1.18) and
the solution is nonideal. The reason for its inapplicability is that the
average regression of fluctuations does not obey the same Taws as the macro-
scopic irreversible processes, because the rate laws are not consistent with
the thermodynamic model of the solution. One can still prove that the decay
to equilibrium is monotonic, but Onsager's theorem cannot be invoked for
this purpose. By contrast, if the rate laws are given by {1.15), the reci-
procal relations are valid. '



1.3 A Sketch of a Graph-Theoretic Analysis of Networks

Open systems can exhibit a greater variety of dynamical behavior because
there is no universal evolution criterion similar to that provided by the
dissipation hypothesis for closed systems. Their analysis is done on more
of a case-by-case basis, but it is desirable to identify general classes of
mechanisms for which the qualitative dynamical behavior can be readily de-
termined. Various aspects of this problem have been discussed by others and
references to some of the recent work can be found in [1.6]. Here we shall
outline a graph-theoretic approach that proves useful in analyzing the sep-
arate effects of stoichiometry, network structure, and reaction phenomeno-
logy on the dynamical behavior of the network. Because the full development
of our approach is presented elsewhere [1.7], we will illustrate the main
ideas with a simple example.

Consider the set of reactions
3 1

A A >B + C , (1.20)
4 2 -

where reactions 3 and 4 represent exchange of A between a reservoir of con-
stant concentration AO and the reacting medium. The significant entities in
(1.20), so far as the topology of the set of reactions is concerned, are not
the species themselves, but rather the Tinear combinations of species that
appear as reactants or products in the various steps. Folliowing HORN and
JACKSON [1.8], we call these combinations complexes, and clearly a species
may also be a complex. Thus (I.20) can be written

3 1

0(l) &==C(l) =&=—=1cC(2) . (1.21)
4 2

A network of reactions consists of a set of complexes ¢ = {C(1), ... C(p)}

together with a binary relation R < ¢ x ¢ with the properties

a) (C(i), C(j)) € r if and only if there is one and only one reaction of
the form C(i) - C(J),

b) for every i there is a j # i such that (C(i), C(J))€ R,

c) (C(1), C(1)) £ R

In this formulation, a reversible reaction is represented by the forward and

reverse pair. The relation IR gives rise to a directed graph G by identify-

ing each complex with a vertex and introducing a directed edge Ez between Vi



and Vj if there is a reaction C(i) » C(j). The topology of G is in turn re-
presented by its vertex-edge incidence matrix E, defined as follows:

+1 if Ej is incident at Vi and directed toward it
Eij =4-1 if Ej is incident at Vi and directed away from it
0 otherwise.

The directed graph and incidence matrix associated with (1.21) are as
follows:

3 1
OR=HORE=40) E=]1 -1 0 0 (1.22)
4 2

Since A0 contains no species whose concentration is time-dependent, we
call it a mull complex. When the flux associated with the reaction AO——+A
is constant, it represents a time-independent input to the network. Of
course, a constant species that appears in a complex that contains variable
species also represents an input to the network, and these are called <mpli-
ett inputs, as distinguished from the explicit <mput associated with AO.

The reaction phenomenology is accounted for by associating with each
edge of G a nonnegative function P _(c) that represents the intrinsic rate

4
of the gth reaction. The rate of change of the vector (cl, . cn)T of con-
centrations of the time-dependent species can now be written
g - ver(c) | (1.23)

wherein v is an n x p stoichiometric matrix that gives the stoichiometry of
the complexes and P(c) is the vector of rates. For the previous example

1.0 0 1 0 0
v=]0 1 0 or v o= >
0 1 o 0 1 o0

according as species C is time-dependent or not. Notice that in any case,
a null complex introduces a column of zeroes into v.

It is clear from (1.23) that three separate features of a set of reac-
tions contribute to the rate of change of the concentrations. These are the
stoichiometry of the complexes, which is reflected in v, the abstract struc-
ture of the reaction network, which is embodied in the incidence matrix of
G, and the reaction phenomenology contained in P(c). Given the factorization
of dc/dt in (1.23), we can study the separate effects of the three features

10



on the transient and steady-state behavior of the network and can determine,
for instance, how these behaviors change when new reaction pathways are in-
troduced into the network or old cnes deleted. Some results on these ques-
tions are given later, but first we need some more terminology.

An undirected graph GO is obtained from G by ignoring the orientation of
the edges, represented as pairs (1j,ik) of verticles. A path in 6° is an
open sequence (11,12) e (1k_1,1k) of edges in which all vertices are dis-
tinct, and a cycle in G~ is a closed path in which all but the first and
last vertices are distinct. Directed paths and directed cycles are defined
analogously to their counterparts in GO, and Vj is said to be reachable from
Vs if there is a directed path from Vs to Vj‘ GO(G) is said to be acyclic
if it contains no cycles (directed cycles). An oriented cycle in G is a cycle
in GO with an orientation assigned by ordering of the vertices in the cycle.
A cycle matrix B associated with G has elements

+1 if E5 is in the ith oriented cycle and the cycle
and edge orientation coincide

= -1 if Ej is in the ith oriented cycle and the cycle
and edge orientation are opposite

0 otherwise.

It has a row in which all nonzero entries have the same sign for every direc-
ted cycle in G. A cycle matrix for the graph at (1.22) is

[1 1 0 0]

B =

0o o0 1 1

Here and hereafter we include only independent cycles in a cycle matrix.

A graph is connected if every pair of vertices is connected by a path,
and a component G1 c G is a connected subgraph that is maximal with respect
to inclusion of edges. G is strongly connected if for every pair (Vi’vj)’
Vj 1s reachable from Vi and vice versa. A cutset is a set of edges whose
removal increases the number of components by at least one. Cutsets can be
oriented by ordering the two disjoint sets of vertices produced by the cut-
set and an oriented cutset matrix @ is defined by

1 if E; is in cutset i and the orientation of the

cutset and edge coincide ‘

Qi' =4-1 if E5 is in cutset i and the orientation of the
cutset and edge is opposite

0 otherwise.

11



It is convenient to introduce two vector spaces associated with G or GO
as follows. Suppose that G.has p vertices, q components, and r edges. Let
V(E) denote the vertex (edge) set of G, respectively, and let CO(Cl) denote
the p(r)-dimensional vector space of all real-valued functions on V(E). These
are both Euclidean spaces under the standard inner product and the incidence
matrix E is the representation of the boundary operator E: C1 - CO with
respect to the canonical bases.? It has rank p(E) = p - q. One can regard Q
and B as transformations from C1 to itself, and the row space of B and of Q
is. called the cycle and cutset subspace, respectively, of Cl' These are of
dimension r-p+q and p-q, respectively. They are orthogonal subspaces and
consequently we can write

¢, = R8") e R(Q)
= N(E) ® R(E")
Co = R(E) @ N(E)
= N(v) @ R(v))
R, = R(v) @ N(v)

If we identify a space with its dual in the usual fashion, then the re-
lationship amongst the various sapces and maps are as follows.

(vE)T

The lower leg of the triangle corresponds to the usual formulation of kine-
tics, in which vE is regarded as a single transformation. We shall see that
there are good reasons for factoring this product through CO.

We call any element of C1 a flow and for a given choice of cycles and
cutsets, each flow has the representation

0 1 T

f=f0 sl oBlwaol, , (1.24)

2 To simplify notation, we use the same symbol for a Tinear transformation
and any of its representations.

12



where w and z are the cycle and cutset weights, respectively, associated
with f. A flow is balanced when z = 0; cobalanced when w = 0; and positive,
nonnegative, or strictly nonnegative according as f > 0, f > 0, or f » O,
respectively. In particular, the rate vector P(c) is a flow for any fixed

¢ and can be written

P(c) = Py(c) + Pz(c) , (1.25)
where P1 € N(E) and P2 € R(ET). Consequently, (1.23) becomes

& - e (o)
and so only the cutset part of any flow enters the transient equations.
Said otherwise, a time-dependent flow can never be balanced.

As in closed systems, invariants may exist, but since there is no a prior<
reason that the total mass must be constant, the reaction simplex Q(co) need
not be compact. Indeed, one can prove that when there is at least one null
complex in the network, there is no strictly positive invariant @ and Q(co)
cannot be compact [1.7]. The kinematic invariants, those that are independent

of the rate functions, span a subspace Il & I2 c Rn’ where

I T

il

{Q€Rn|QEN(\) ), 2 # 0}

1

=R EeR[vVaENE), @, =0vzEl)

N
Il

Furthermore,

Since Vi 2 0, there are no o > 0 in I;.

T T

I, = preimage[R(v ) n N(E' )] ,

and therefore,

i, = dinll,] = din(R(v') 0 N(ET)T < mintn - ip,q}

where 11 = dim[Il]. Therefore, there can be no more independent invariants
in 12 than there are components in G. In particular, if G is connected then
i, < 1.

The number of kinematic invariants is related to other indices of the

network in the following way. Since

T T

R(v') + N(E') = N(w)T + R(E)T = [N(v) n R(E)IE



it follows that

n-1i;+9-i,=p-dimN(v) n R(E)]

If we let & = dim[N(v) n R(E)], then

§=p-q-(n- (i +1i,))=p-q-s=0o(F)-o(vE) ,

and thus & is the difference between the maximal number of independent re-
actions based on the graph structure and the actual number of independent
reactions. This number, which is clearly nonnegative, is called the defi-
ciency by Feinberg, and when it vanishes, v does not annihilate any elements
in R(E). Therefore v has a left inverse N from R(vE) to R(E) and the reac-
tion subspace is isomorphic to R(E). Consequently, the dynamical behavior
can be described in terms of complexes alone, because the complex concen-
tration can be defined as C = Nc and c(t) - c¢(0) = v[C(t) - C(0)]. This is
equivalent to introducing intrinsic coordinates in Q(co).

In the previous section we specifically assumed that the reactions were
independent, but this is not the case for the reactions at (1.20) and it is
not true in general. One may ask more generally what transformations of the
complexes, reactions, and rate functions leave the dynamical behavior of the
network invariant. Since that behavior is completely determined by the triple
(v,E, P(c)), we say that two networks with (v,E, P(c)) and (v',E', P'(c))
are dynamically equivalent if

a) the domains of P(c) and P'(c) are identical,
b) vEP(c) = v'E'P'(c) for all ¢ in the domain of P.

It is shown in [1.7] that the following operations lead to equivalence trans-
formation of a network.

a) The identification of equal complexes.
b) The removal of cycles in the graph.
c) The removal of elements in N(v) n R(E).

The first of these Teaves r fixed and changes p and perhaps q, the second
changes r and 1eéves.p and q fixed, and the third changes r and perhaps p
and q. By applying the first transformation one can always reduce the number
of null complexes in the network to one, by applying the second transform-
ation one can produce an acyclic graph for the transformed network, and by
using the third transformation one can éiways produce a dynamically equi-
valent network for which § = 0. From a theoretical standpoint it is not

14



always convenient to fully reduce a network by eliminating cycles and so
forth, but there may be computational advantages to doing so; this remains
to be seen.

As we remarked earlier, when there are null complexes in the network,
Q(co) is not compact and the standard fixed point argument used to prove
existence in the compact case fails. It is harder to establish existence
in such cases, and in fact, it is easier to give sufficient conditions for
the absence of any steady state. There are three distinct classes of steady
states defined by the sets

S

1l
—~
(@]
m

el

v
—

@]

0

S

it

(c® € RIJEP(c®) = 0, P(c®) 2 0}

, = {c® € RI|VEP(c®) = 0, EP(c®) * 0}

W
1t

The first set is empty when there are nonvanishing constant inputs to the
network. Moreover, every rate must vanish at a ¢ € SO’ including the for-
ward and reverse rate of a reversible pair. Usually this can happen only if
the steady state Ties on the boundary of Q(co) or if some of the reactions
model threshold phenomena.

Steady states in 82 are balanced nonnegative flows,and one can prove the
following theorem concerning their existence and representation [1.7].

Theorem. Let G be the graph of a reaction network with p complexes, r reac-
tions, and g components. Then,

a) if G is acyclic there exists no strictly nonnegative balanced flow,

b) there exists a positive balanced flow if and only if every component
G of G is strongly connected,

c) any nonnegative balanced flow has the representation

P(cS) = Blw

where the columns of B are the directed cycles in G.

The flows corresponding to steady states 1in 82 contain cutsets and per-
haps also cycles, and therefore, P(cs) has the representation given at (1.24).
Certainly S, =9 if N(v) n R(E) = {0}, i.e., when § = 0, but one can sharpen
this considerably. A sharper necessary condition for the existence of a

¢ ¢ S, is that

15



N(v) n {{y € C0|Y =€z, z € Cl, z 20} -{0}}#+9¢

It is easy to construct examples in which § > 0 but 82 = ¢ because this con-
dition is violated [1.7].

The foregoing leads to a general algorithm that can be used to test
whether or not a system has any steady states [1.7]. In that algorithm there
are tests in addition to those given here that deal with each of the compo-
nents Ga separately. The algorithm is being implemented at present and tests
of it will show whether there are advantages to using it over proceeding
directly to an algorithm for finding steady states.

The existence problem is much harder and complete results are known in
only a few cases. For instance, when the kinetics are of ideal mass-action
type, every Ga is strongly connected, and the deficiency is zero, then, the
steady state 1is unique [1.9]. Another result, which is not restricted to
mass-action kinetics, is the following [1.10].

Theorem. Let G have q strong components, each of which has one explicit in-
put, the rate of which is constant. Suppose that every nonnull complex con-
tains only one species and that the rates satisfy

[0,0) > R
is strictly monotone increasing.

a) P.:

b) Pi
Then, if 6 = 0 and the inputs are sufficientiy small, there is a unique

steady state and the flow is balanced.

1.4 Diffusive Instability of a Uniform State

When reaction and diffusion occur on comparable time scales, the governing
equation for a continuous system is

aC 3

%~ pvlc + vEP(c) in VeR

nevc =90 on 3V - (1.26)

when there are no explicit inputs at the boundary. Explicit inputs-are mani-
fested either as nonhomogeneous boundary conditions or as time~independent
internal distributions of certain species. Implicit inputs can be manifested
in the same way, and if the internal distribution in either case is non-
uniform in space, the reaction term in (1.26) becomes explicitly dependent

16



on the space variable r. Hereafter we assume that this is not the case if
either type of input is present. Furthermore, we assume that D is a diagonal
matrix with nonnegative entries.

Suppose that there is a uniform steady state ¢ of (1.26). One can prove
that the principle of linearized stability, according to which the asympto-
tic stability of ¢® s governed by the Tinearized version of (1.26), is

valid here. The linear equation is

U _ 2 1.27
o5 = Dvu+ Ku (1.27)

nevu=0 ,

S

where K = vEdP(CS) is the Jacobian of the kinetic terms at ¢ = ¢”. Thus sta-

bility is governed by the eigenvalues of the family {K - “kp}t;o of matrices,
wherein M is the kth eigenvalue of the Laplacian on V. We say that a dif-
fusive instability of the uniform state c® exists whenever c° is asymptoti-
cally stable as a solution of the kinetic equations (1.23), but for some
k > 0 there is an eigenvalue of K - ukD with a positive real part.

When there are reaction invariants, K is singular and u must satisfy the

integral conditions

[ <q.,u>dv = 0
v o

IfT we write

u = g_ yk(t)(i’k(f) s

0
where the ¢k are the eigenfunctions of v2 and ¢O = 1, then it is necessary

that

<QJ. ,yo(t)> =0

This means that yo(t) Ties in R(vE) and the yk(t), k > 1, are unaffected.
Thus the invariants do not affect the spectrum of K - 1,0 for k > 1. However,
to simplify the statement of some of the following results we assume that
there are no invariants and that the spectrum of K, o(K), Ties strictly
within the Teft-half plane (LHP hereafter).

Some general conditions on K and D under which a diffusive stability is
precluded are as follows [1.10].

a) K and D are simultaneously triangularizable.
b) 3 a diagonal matrix W with w, > 0 3 o (UK)® < LHP.



c) K is diagonally dominant.
d) m}n Di/m?x D.>1 - 1/m, where m is 3] exp(Kt)|| < m exp(-vyt) and
m>1, y>0.
e) The graph G(K) associated with K has no cycles of length 2, 3, ..., n - 1.

There are numerous examples that satisfyvone or more of these conditions.
For example, if K is symmetric b) is satisfied. If K is the linearization
for a single-loop feedback control scheme than e) is satisfied. Finally,
one can show that if the kinetics are of the ideal mass-action type studied
in [1.8] or [1.9], then there exists a W such that b} is satisfied whenever
the steady state flow is balanced [1.10].

The foregoing provide sufficient conditions that preclude instabilities,
but one is often interested in determining when they can occur, and so neces-
sary conditions for their absence are of greater interest. The following
theorem gives a set of these [1.11].

Theorem. Let D be diagonal with v, > 0. In order that o(K - ul) < LHP for
all such D and all u € [0,»), it is necessary that

a) o(K) < LHP,
b) o(Klig, ... ipl) = LHP for all pth—order principal submatrices
HH,“.%]MK,WweI;p;n-L

Here we have assumed that p € [0,»), which makes the foregoing necessary
conditions for the absence of instability on aZl smooth, simply-connected
domains. Of course they may be too strong for a given, fixed domain.

To determine whether a diffusive instability is possible, one has to de-
termine whether or not there is a subsystem that would be unstable if it
were isolated from the remainder of the network. If there is one, the dif-
fusion coefficients can be selected so that some wavelengths are unstable.
The conditions in the theorem are also sufficient for n = 2, 3, but it is
not known if they are sufficient in general.

A similar analysis can be done when the basic solution is a spatially
uniform periodic solution that is orbitally asymptotically stable as a so-
Tution of (1.23), and a parallel theorem is given in [1.11]. In this case
one has to check the characteristic exponents for all subsystems of the
time-dependent matrix K(t) that arises from linearizing around the periodic
orbit.
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1.5 Conclusion

The problem of determining how network structure influences the dynamics is
far from solved, but the graph-theoretic formalism outlined here provides

a framework within which it can be attacked systematically. Results such as
 the existence of a Lyapunov function for certain mass-action systems [1.8],
the zero-deficiency theorem [1.9]1, and the stability of certain cellular
systems [1.12] are very easy to prove in this framework, and numerous other
results can be obtained [1.7,10]. Furthermore, our approach may lead to more
efficient computational schemes for the steady state and transient analysis
of. reacting systems, but this remains to be seen.
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