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Abstract. Forced excitable systems arise in a number of biological and
physiological applications and have been studied analytically and
computationally by numerous authors. Existence and stability of
harmonic and subharmonic solutions of a forced piecewise-linear
Fitzhugh-Nagumo-like system were studied in Othmer ad Watanabe
(1994) and in Xie et al. (1996). The results of those papers were for small
and moderate amplitude forcing. In this paper we study the existence of
subharmonic solutions of this system under large-amplitude forcing.
As in the case of intermediate-amplitude forcing, bistability between
1 : 1 and 2 : 1 solutions is possible for some parameters. In the case of
large-amplitude forcing, bistability between 2 : 2 and 2 : 1 solutions,
which does not occur in the case of intermediate-amplitude forcing, is
also possible for some parameters. We identify several new canonical
return maps for a singular system, and we show that chaotic dynamics
can occur in some regions of parameter space. We also prove that there
is a direct transition from 2 : 2 phase-locking to chaos after the "rst
period-doubling bifurcation, rather than via the in"nite sequence of
period doublings seen in a smooth quadratic interval map. Coexistence
of chaotic dynamics and stable phase-locking can also occur.

Key words: Phase locking } Fitzhugh-Nagumo

1. Introduction

Excitable or oscillatory dynamics occur in many models of biological
systems, including cardiac tissue (Glass et al. 1987, Chialvo 1990a,
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Glass and Zeng 1990, Lewis and Guevara 1990), neuronal systems, and
secretory systems (Wetsel et al. 1992, Sturis et al. 1991). Such systems
are often subject to a periodic stimulus and the question arises as to
when they can be entrained. The analysis of forced oscillators has
a long history and for su$ciently small amplitude forcing it generally
reduces to the study of an invertible circle map. The asymptotic
dynamics in such systems are completely characterized by the rotation
number. In recent years, forced excitable systems have been studied
by various authors. In Alexander et al. (1989a) and Alexander et al.
(1990) a theory of forced excitable systems was developed that parallels
the classical theory for forced oscillators, but in these papers either
the forcing had to appear in the equations for the slow variables or it
had to vary slowly enough so that it could be transferred to the slow
variables. Thus, the theory does not apply when the forcing varies
rapidly in time and is applied to the &fast' or &voltage-like' variable. This
type of forcing is frequently used in the experimental context (cf.
Chialvo and Jalife (1987a)), and for this reason Othmer and Watanabe
(1994) (hereafter referred to as I) began a study of such systems.

In I a piece-wise linear model system was introduced. The govern-
ing equations are given by

e
dv
dt
"f (v)!w#t(t),F(v, w, t),

(1)

dw
dt

"v!dw ,G (v, w).

Here f : RPR is the continuous, piecewise linear function de"ned by
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Without loss of generality we assume that c
1
"0. The forcing function

t : RPR is a piecewise constant periodic function of period¹ de"ned
by

t(t)"G
0
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for
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m¹6t((m#h)¹,
(m#h)¹6t((m#1)¹,

m"0,$1,$2,2 ,

where A'0 and h3[0, 1].
Four distinct regimes were found for the amplitude of the forc-

ing: a small-amplitude regime which produces only subthreshold
responses, one intermediate-amplitude regime that corresponds to
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forcing between "xed points, and two large-amplitude regimes, one of
which corresponds to forcing between a "xed point and a periodic
orbit and the other to forcing between two "xed points. In I it was
shown that there may be up to six distinct types of harmonic solutions,
depending on the amplitude, and the dependence of the existence and
stability of these solutions on the basic cycle length or period of the
forcing and on the fraction of time the forcing is on was studied.

In Xie et al. (1996) (hereafter referred to as II), we studied existence
of subharmonic solutions (see Sect. 2) of the singular system for an
intermediate amplitude of the forcing, and we showed that there are
several new phenomena that do not arise when the forcing varies
slowly. We identi"ed several canonical types of return maps and show-
ed that there are only n : 1 solutions when h is su$ciently small or su$-
ciently large by studying the canonical maps analytically. We identi"ed
regimes in which period-adding occurs and regimes in which the
rotation number is not unique. Also we showed that the phase-locked
solutions in the singular limit persist in the non-singular system.

In this paper we study subharmonic solutions for large amplitude
forcing. It turns out there are no new phenomena for the case corre-
sponding to forcing between two "xed points, so we give only a brief
discussion of this case in Sect. 3. However, when the attractor is a "xed
point when the forcing is o! and a periodic orbit when it is on, we show
that there are many phenomena similar to what was found in II, but
several new phenomena as well. In Sect. 2, we repeat some of the setup
given in II so as to make this paper self-contained. As in II, we study
a map derived from the singular system, and in Sect. 3 we analyze
subharmonic solutions for the case in which the stable attractor is
a "xed point when the stimulus is o! and a periodic orbit when it is on.
We identify three new canonical types of return maps, and in Sect. 4 we
show that chaos can occur for some parameters. In Sect. 5 we discuss
the relationship of our results to those obtained by using empirically-
derived maps, as for example in Vinet et al. (1990). This connection is
important in order to gain insight into complicated physiologically-
realistic models from simpli"ed models. We also discuss the relation-
ship between forced excitable systems and forced oscillators. In the
appendix we analyze the stability of the subharmonic solutions whose
existence is shown in Sect. 3.

2. Setup

As we remarked in the Introduction, in I and II we studied a piece-
wise linear system with step function forcing. In the context of
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Fig. 1. A schematic of the nullclines of (1). The analytic de"nition of the lines is given in
Table 1, and the coordination of the labeled points are given in Table 2. The second
column of Table 2 gives the coordinates for the standard values of the parameters,
which are a

1
"2.0, a

2
"a

3
"1.0, d"0.5, c

2
"0.6, and c

3
"1.8. For these parameters

A
1
"0.4, A

2
"0.8, A

3
"1.8, v

l
"0.2, and v

r
"1.2. For clarity of labeling the case

=
4
'=

8
is shown.

Table 1. The analytic de"nitions of the lines
shown in Fig. 1

Labels Equations
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1

w"!a
1
v, v6v
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¸`
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w"!a
3
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3
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r
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w"!a
3
v#c

3
#A,v'v

r

Fitzhugh-Nagumo-like models of excitable membranes, where v rep-
resents the voltage, this forcing corresponds to injection of a depolariz-
ing current during a fraction (1!h)¹ of each cycle. Figure 1 shows the
nullclines of (1), Table 1 gives the analytic de"nitions of the lines, and
Table 2 gives the de"nitions of the special points shown in that "gure.

The system at (1) is an autonomous system in each of the time
intervals [m¹, (m#h)¹ ) and [(m#h)¹, (m#1)¹ ), and the solution
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can be constructed explicitly in each of these intervals. These solutions
must be pieced together to construct a solution that passes through
two or more of the regions, but this cannot be done explicitly, for the
times spent in the various regions satisfy transcendental equations.
Thus we "rst study the singular limit e"0, as in I and II. In the
singular limit we can explicitly construct solutions valid for arbitrary
time intervals because the system reduces to a linear scalar equation.
As we showed in I and II, in the singular limit e"0 (1) reduces to

dw
dt

"!j
i
(w!w*

i
) for (v, w)3L~

i
,

(2)

dw
dt
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i
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Since solutions are constrained to the lines L$

i
when e"0, we

assign the symbols, 0, 1, 2 and 3 to the segments Q
1
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3
, Q

4
Q

6
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7
Q

8
,

and Q
9
Q

10
, respectively, and we describe solutions as follows. To

each solution we attach a semi-in"nite symbol sequence I,
(a

0
, a

1
, a

2
,2), where a

i
3M0, 1, 2, 3N and a

0
is either 0 or 2. The

solution I
n
for n cycles of the forcing is a subsequence of I (see I and II

for details)
Given a sequence I, we de"ne the "ring number or rotation

number o for that sequence as the asymptotic ratio of the number of
3's, with certain 3's excluded, to the number of forcing cycles. More
precisely, let n

i
be the number of a

i
's in I

n
, and let n

23
be the number of

ordered pairs (2, 3) in I
n
; then n

23
represents the number of jumps from

¸~
3

to ¸`
3

in I
n
. We de"ne the "ring or rotation number as

o"lim sup
n?=

n
3
!n

23
n

(3)

whenever this limit exists. According to this de"nition, any solution
that visits the segment Q

9
Q

10
only "nitely many times has "ring

144 H. G. Othmer, M. Xie



number zero. We refer to such solutions as subthreshold solutions and
label them 1 : 0. Periodic solutions with "ring number equal to 1 are
called harmonic solution, those with a "ring number less than 1 are
called subharmonic solutions, and those with "ring number greater
than 1 are called superharmonic solutions. Subharmonics can be ruled
out if the product h¹ is large enough, i.e. if the forcing is o! su$ciently
long for "xed ¹, as the following shows.

Proposition 1 (Xie et al., 1996). If =
4
'=

8
and

h¹'maxM¹~
i

(=
3
,=

4
), ¹~

3
(0,=

8
)N (4)

or if =
4
(=

8
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1
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3
,=

4
), ¹~

3
(0,=

8
)#¹~

1
(=

8
,=

4
)N (5)

then there are no subharmonic solutions.

Superharmonic solutions are not treated here; our purpose is to
analyze the subharmonic solutions as a function of the parameters h,
¹ and A, and the proposition shows that h¹ must be small enough. To
this end we identify four distinct cases for the location of the &rest
point', and these are characterized by the forcing amplitude as follows
A'A
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,
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In cases I and II the &rest point' is on L`
1

while the forcing is on, while in
Case III it is on L`

2
. In Case IV the stable attractor is a rest point on

L`
3

when the forcing is on and a rest point on L~
1

when it is o!. In
Case III the solution jumps from L`

1
to L`

3
at Q

4
, and from L`

3
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L`
1

at Q
10

periodically as long as the forcing remains on, and the time
¹ (A) required for each circuit is
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Let ¹$

i
(w

0
, w) denote the time to reach w from w

0
while remaining on

L$

i
. Then

¹~
i

(w
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1
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#A)

w!(w*
i
#A) D . (8)

As in I and II, we shall use a return map to study the existence of
periodic solutions, and here we indicate how it is constructed for the
reader's convenience. We map the w-coordinate into the unit interval
via the transformation

x"G
w

=
8
#=

10

if (v, w)3¸~
1

and w70,

1!
w

=
8
#=

10

if (v, w)3¸~
3

and w70.

In e!ect this mapping takes the segment of ¸~
3

lying between Q
8

and
the v axis and appends it to ¸~

1
(truncated above=

10
) and rescales the

result. Thus the segment of ¸~
1

lying between the origin and the
intersection of the horizontal line with w}coordinate =

4
is mapped

into the interval [0, x
4
], and so on. By a period one or return map

F we mean a map from the unit interval to itself that maps a point into
its image after time T. Case III has to be split into two subcases corre-
sponding to =

4
(=

8
, and =

4
'=

8
, and maps for these cases are

shown in Fig. 2. Since=
4
"=

8
when A"1.0, we choose A"0.9 and

A"1.1, as representatives for these cases. These "gures will be referred
to again later, but we show them here to explain some of the character-
istics of the return maps.

To understand these maps, consider "rst the interval (0, x
4
ej1hT].

Points in this interval map to the interval (0, x
4
] while the forcing is o!,

and then jump to L`
3

when it turns on. For the standard parameters
given in the legend to Fig. 1, one "nds that the interval (0, x

4
ej1hT] is

mapped into (1!x
8
, x

8
), and in either case the orientation is preser-

ved. The second characteristic interval is (x
4
ej1hT, x

8
), and this is

mapped into either (x
4
, 1) (in Fig. 2(a)) or (1!x

8
, x

8
) (in Fig. 2(b)), and

in both cases there are intervals whose orientation is reversed and
intervals whose orientation is preserved. The "rst discontinuity in (a)
arises when the #ow fails to reach Q

14
on ¸`

3
while the forcing is on, and

therefore is mapped into (x
8
, 1). For still larger x the #ow fails to reach
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Fig. 2. The computed return map for (a) (A, ¹, h)"(0.9, 1.5, 0.6), and (b) (A,¹, h)"
(1.1, 0.8, 0.6).

Fig. 3. A diagram of the phase-locking regions for 1 : 1 solutions (a) for A"0.9 and
(b) for A"1.1 (corresponding to=

4
(=

8
and=

4
'=

8
, respectively). There are no

subharmonic solutions in the region above the dashed line labeled S
0
. The label

T 1 :1
i

denotes the region in which 1 : 1 solutions of type i exist and C
j

denotes
a boundary of the regions.

Q
4
, which accounts for the second discontinuity. As one sees in (b),

when=
4
'=

8
neither of these discontinuities arise for this choice of

(A, ¹, h). In fact, in (b) the interval (0, x
8
) is invariant and attracting,

and the return map is continuous and piecewise smooth in this interval.
As we will see later, the dynamics in these two cases can be quite di!erent.

In Fig. 3 we show the locking regions for 1 : 1 solutions for
A3 (A

2
, A

3
) (Case III), as well as the curve S

0
de"ned by the conditions

in Proposition 11. As APA
2

(the lower limit for Case III), C
6
, one of

the boundaries of the region T
2
, tends to the axis h"0 and the regions

in which type 4}6 solutions exist vanish, whereas when APA
3

=====

1See Figs. 6 and 10 in I for de"nitions of the various 1 : 1solutions.
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the curves C
2
, C

4
, C

6
, and C

7
tend to the left-upper corner, the regions

of solutions of types 2, 5, and 6 disappear, and there are only solutions
of types 1, 3 and 4 in the (h, ¹ ) space. Note that for Case II (i.e.,
A3 (A

1
, A

2
)), only A"0.6 was analyzed in I and II, but the results are

quite similar throughout a region.
The analysis of subharmonic resonance is more complicated in

Case III than that in Case II, and in this paper we restrict attention to
this case. In the following section we "rst give a brief discussion of the
case A'A

3
and then restrict attention to Case III. We analyze the

regions of existence of subharmonic solutions, and in particular, we
determine how the locking regions or resonance zones for subhar-
monic solutions are arranged in the parameter space (h, ¹). That is, we
determine what types of sequences of transitions between di!erent
rotation numbers are observed along paths in (h, ¹ )-space.

3. Existence of subharmonic solutions

3.1. Resonance in Case IV

When the amplitude of the forcing A is greater than A
3
, the stable

attractor is a "xed point on the right branch of the nullcline vR"0 when
the forcing is on. In this case solutions of the singular system can never
reach=

10
, and hence there are no solutions of type 2 or 5. There are

two subcases determined by whether the w coordinate of the "xed
point is greater or less than=

4
(i.e., the "xed point is above or below

Q
4
). In the former subcase there are solutions of types 1 and 4 for small

h; harmonic solutions if the period ¹ is large and subharmonic solu-
tions if ¹ is small. For large h (i.e., short stimuli) there are only type
3 solutions. These are harmonic solutions if =

4
'=

8
, but otherwise

there may be subharmonic solutions of type 3.
In the second subcase the w coordinate of the "xed point is less than

=
4

(i.e., the "xed point is below Q
4
), and to obtain this we must have

=
4
'=

8
. Thus, there are no solutions of types 4 and 6, and there are

only harmonic solutions of type 1 and type 3. We summarize the above
discussion in the following proposition.

Proposition 2. Suppose that A'A
3
; then the following properties hold.

(a) ¹here are no solutions of types 2 and 5.
(b) For large h (short stimuli), if the ,xed point is above Q

4
, then there

are only type 3 solutions. In particular, there are only harmonic
solutions if =

4
'=

8
.

148 H. G. Othmer, M. Xie



(c) For small h (long stimuli), if the ,xed point is above Q
4
, then there

may be both harmonic and subharmonic solutions.
(d) If the ,xed point is below Q

4
, then there are no solutions of types

4 and 6, and there are only harmonic solutions of types 1 and 3.

Remark 1. Property (b) of the Proposition, is also true for A3(A
2
, A

3
).

3.2. Numerical results on resonance in Case III

To see how the resonance zones corresponding to di!erent subhar-
monics are arranged in the (h, ¹ ) plane when the attractor alternates
between a "xed point and a periodic orbit, we have computed the
rotation number numerically for various combination of the para-
meters. The results shown in Fig. 4 are for a "xed A corresponding to
each of the two subcases in Case III, namely, A"0.9 (=

4
(=

8
) and

A"1.1 (=
4
'=

8
), and various values of h. The rotation number is

apparently non-monotonic in the period and is multiple-valued for
some values of the period. This implies that multistability may occur in

Fig. 4. The rotation number as a function of the period for several combinations
of A and h. (a) (A, h)"(0.9, 0.1), (b) (A, h)"(0.9, 0.95), (c) (A, h)"(1.1, 0.1),
(d) (A, h)"(1.1, 0.6).
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the system for Case III. There are two types of multistability: one in
which there are distinct stable solutions with the same rotation num-
ber, and one in which there are distinct stable solutions having di!erent
rotation numbers. In the following paragraphs, we examine the two
types of multistability in several examples.

In Fig. 4 one cannot distinguish between solutions for which
o"p/q, and those for which o"kp/kq for k'1 (the "rst kind of
multistability) but the latter case occurs frequently, particularly for
h close to 1. Previously we showed that this happens for A3 (A

1
, A

2
),

where there are solutions with k"1, 2, and 4. Here not only may
solutions of di!erent k coexist, but also solutions of di!erent k may
coexist with solutions of di!erent rotation numbers, as is shown in
Fig. 5. All three solutions shown there are stable. We show a 7 : 1
solution with rotation number 1/7 in (a) and (b), an 18 : 3 solution with
rotation number 1/6 in (c) and (d), and a 24 : 4 solution with rotation
number 1/6 in (e) and (f ).

When there is coexistence of solutions of di!erent rotation number
one can ask what the nature of the transitions between them is as
a parameter in the equations is varied. In II we showed that a direct
transition from a 2 : 1 to a 1 : 1 solution is possible, without passing
through solutions with irrational rotation number, as ¹ or h is varied.
In fact, one observes hysteresis between these solutions along suitable
paths in A!h space. The 2 : 1 to 1 : 1 (and reverse) transition occurs
here as well, but only for type 3 solutions. In addition there is coexis-
tence between stable 2 : 2 solutions and stable 2 : 1 solutions, an
example of which is shown in Fig. 6. This type of bistability was "rst
found in maps by Guevara et al. (1984) and later found by Lewis and
Guevara (1990). Bistability between two stable solutions with di!erent
rotation numbers occurs in many other dynamical systems as well
(Aronson et al. 1986, Boyland 1986, Rinzel and Troy 1983).

In Fig. 6(a) we show the second iterate of the return map for
(A, ¹, h)"(0.9, 0.3, 0.9) where one sees that there are three "xed points.
The central one corresponds to a one-point stable orbit and the
corresponding 1 : 1 solution is shown in Fig. 6(b). The other two
correspond to a two-point stable orbit, and the corresponding 2 : 1
solution is shown in Fig. 6(c). From the return map in (a), one can see
that the domain of attraction of the 1 : 1 solution is near the central
"xed point and the domain of attraction of the 2 : 1 solution is near
1 and 0. Comparing the 1 : 1 solution in (b) with the 2 : 1 solution in (c),
one can see that the recovery time of the 1 : 1 solution is longer than
that of the 2 : 1 solution. Thus, when the "rst stimulus turns on the
phase point is at a point below Q

4
and a spike occurs, and when the

second stimulus turns on, the system "res again when it is on the orbit
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Fig. 5. The phase plane and v-component of a stable periodic solution of rotation
number o"1/7 and two stable periodic solutions of rotation number o"1/6 that
coexist at (A,¹, h)"(0.9, 0.05, 0.95). In (a) we show the phase plane and in (b) the time
trace of v for the 7 : 1 solution, in (c) and (d) we show the corresponding plots for the
18 : 3 solution, and in (e) and (f ) we show the corresponding plots for the 24 : 4 solution.
In each of these the transitions from ¸~

3
to ¸`

3
are not counted as "rings.

corresponding to the 1 : 1 solution, but it does not "re in response to
the second stimulus on the orbit for the 2 : 1 solution.

In Fig. 6(d) we shown the second iterate of the return map for
(A, ¹, h)"(0.9, 2.0, 0.3). Here there are "ve "xed points which belong
to two distinct two-point orbits and one one-point orbit. If we order
the "ve points by their x-coordinates from smallest to largest, the
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Fig. 6. The return maps and phase planes for two examples of parameter values that
lead to bistability of type 3 periodic solutions. In (a)}(c) (A,¹, h)"(0.9, 0.3, 0.9), and in
(d)}(f) (A,¹, h)"(0.9, 2.0, 0.3). (a) The second iterate of the return map, (b) the phase
plane for the 1 : 1 solution in (a), (c) the phase plane for the 2 : 1 solution in (a); (d) the
second iterate of the return map at (A,¹, h)"(0.9, 2.0, 0.3), (e) the phase plane for the
2 : 2 solution, (f) the phase plane for the 2 : 1 solution.

second point corresponds to a Type 4 1 : 1 unstable solution, the "rst
and fourth points correspond to the 2 : 1 solution shown in (f ), and the
third and "fth points correspond to the 2 : 2 solution shown in (e). The
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#ow corresponding to the return map in (d) has a large fraction of
period stimulated. From Fig. 6(e) and (f ), one can see that the "rst
stimulus is turned on at a lower point for the 2 : 1 solution than for the
2 : 2 solution. The time spent on ¸`

3
for the 2 : 1 solution is longer than

for the 2 : 2 solution. When the second stimulus is on, the time spent on
¸`
1

for the 2 : 1 solution is longer than for the 2 : 2 solution and hence
there is no "ring corresponding to the second stimulus for the 2 : 1
solution and there is a "ring with short time spent on ¸`

3
for the 2 : 1

solution.
The above discussion indicates that multistability can occur in

certain parameter regimes. Moreover, there is further "ne structure in
the locking regions. We have computed the locking regions for 2 : 1
solutions in the h!¹ plane by the method used in Othmer and
Watanabe (1994) (i.e., we derive equations for the "xed points and
numerically compute the boundaries of the regions for each type of 2 : 1
solution). Just as there are six harmonic solutions in Case III (cf.
Othmer and Watanabe (1994)), so also there are up to six types of 2 : 1
solutions, which are shown in Fig. 7. A type 1 solution (cf. (a)) spends
time on ¸`

3
while the "rst stimulus is on at a point below Q

4
and on ¸~

1
while it is o!. In contrast, a type 4 solution (cf. (d)) spends time, "rst on
¸`
1

and then on ¸`
3

while the "rst stimulus is on at a point below Q
4
,

and on ¸~
1

while it s o!. A type 2 or type 5 solution has a large fraction
of period stimulated. A type 2 solution (cf. (b)) "rst spends time, on ¸`

3
and then on ¸`

1
while the "rst stimulus is on at a point below Q

4
, and

on ¸~
1

while it is o!. A type 5 solution "rst spends time, on ¸`
1

, and
then on ¸`

3
, and then on ¸`

1
again while the "rst stimulus is on at a

point below Q
4
, and on ¸~

1
while it is o!. However, a type 3 or a type 6

solution has a short fraction of period stimulated. A type 3 solution
spends time on ¸`

3
while the "rst stimulus is on at a point below Q

4
,

and "rst on ¸~
3

and then on ¸~
1

while it is o!. In contrast, a type 6
solution spends time, "rst on ¸`

1
and then on ¸`

3
while the "rst

stimulus is on, and "rst on ¸~
3

and then on ¸~
1

while it is o!. All types
of solutions remains on ¸`

1
while the second stimulus is on, and on ¸~

1
while it is o!.

The locking regions for 1 : 1 and 2 : 1 solutions for A"0.9
(=

4
(=

8
) and A"1.1 (=

4
'=

8
) in the h!¹ plane are shown in

Fig. 8. If =
4
(=

8
there are large locking regions for 1 : 1 and 2 : 1

solutions of all types as in Case II, and small 1 : 1 and 2 : 1 overlap
regions for type 3, but unlike Case II, there is no 1 : 1 and 2 : 1 overlap
region for type 2. Moreover, if =

4
'=

8
, there are not type 3 and

type 6 2 : 1 solutions, hence no bistability of 1 : 1 and 2 : 1 solutions
for type 3 solutions. Similarly, there is no 1 : 1 and 2 : 1 overlap region
for type 2 solutions. To understand why there is no overlap, note that
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Fig. 7. The six distinct types of 2 : 1 solutions. (a) a type 1 2 : 1 solution at
(A,¹, h)"(0.9, 1.0, 0.5), (b) a type 2 2 : 1 solution at (A,¹, h)"(0.9, 1.6, 0.2), (c) a
type 3 2 : 1 solution at (A,¹, h)"(0.9, 0.2, 0.9), (d) a type 4 2 : 1 solution at
(A,¹, h)"(0.9, 1.8, 0.02), (e) a type 5 2 : 1 solution at (A,¹, h)"(0.9, 1.6, 0.1), (f ) a type
3 2 : 1 solution at (A,¹, h)"(0.9, 0.3, 0.3).

in Case II the attractor is a "xed point on ¸`
1

when the forcing is on.
Thus, near the boundary of the type 2 harmonic locking region, the
#ow from an initial point on ¸~

1
below and close to Q

4
in w-compon-

ent, jumps to ¸`
3

when the forcing turns on, and this produces the 1 : 1
solution. On the other hand, if the w-component of the initial point on
¸~
1

is large enough, the #ow will jump to ¸`
1

when the forcing turns on,
and move upward along ¸`

1
towards the attractor. Then, when the
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Fig. 8. Locking regions for 1 : 1 and 2 : 1 solutions for (a) A"0.9 and (b) A"1.1. The
label T q :p

i
denotes the region in which q : p solutions of type i exist. For 1 : 1 solutions

the regions are as shown in Fig. 3.

second stimulus is given, the #ow from a point on ¸~
1

below and close
to Q

4
in w-component jumps to ¸`

3
, and this produces the 2 : 1

solution. As a result, bistability between 1 : 1 and 2 : 1 solutions is
possible in the small region close to the boundary of the locking region
for type 2 harmonics. However this is not possible in Case III, for now
the attractor is a periodic orbit when the forcing is on. Thus, near the
boundary of the type 2 harmonic locking region, the #ow from a point
on ¸~

1
below and close to Q

4
in w-component jumps directly to ¸`

3
.

However, when the initial point has a large enough w-component on
¸~
1

, the solution will jump to ¸`
1

, #ow down towards Q
4
, and then

jump to ¸`
3

or return to ¸~
1

. In other words, either the solution jumps
directly to ¸`

3
or reaches it via ¸`

1
, in which case it is a 1 : 1 solution, or

it fails to reach Q
4

the "rst cycle but does so in the second cycle, in
which case it is a 2 : 1 solution, but the two cases can not occur for the
same parameters. It is also possible for the system to have a type 4 1 : 1
solution in this region, and thus for some ¹ there bistability between
two di!erent types of harmonic solutions. However, the type 4 solutions
are unstable where they coexist with 2 : 1 solutions, and therefore there
is no bistability between 1 : 1 and 2 : 1 solutions.

3.3. Canonical maps in Case III

Given that the 1 : 1 and 2 : 1 resonance zones do not overlap for
type 1 and 2 solutions, we can ask what the dynamics are in the region
between these zones. We have not computed the locking regions for
other than the 2 : 1 subharmonic solutions, but we can gain some
qualitative insights into the di!erent subharmonic phase-locking pat-
terns by studying representatives return maps that arise for parameter
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Fig. 9. The canonical maps de"ned in Case II
when the return map is restricted to its maximal
invariant region. (a) Type A, (b) Type B, and
(c) Type C.

values in the 2 : 1 locking regions and in the region between 1 : 1 locking
and 2 : 1 locking.

In Case II we identi"ed three canonical forms of the return maps
restricted to their minimal invariant regions and for later reference they
are shown in Fig. 9. To determine what new types of maps may arise in
Case III, we compute the return maps for representative parameter
values. The numerically-computed graphs of the return maps for
A3 (A

2
, A

3
) and various values of (h, ¹ ) are shown in Figs. 2 and 10.

These return maps can be more complicated than those in Case II, but
there are some similarities between the cases. For instance, we "nd that
the regions in parameter space in which the return map restricted to its
minimal invariant set is one of type A, B, or C cover most of the regions
in which 2 : 1 solutions of types 1, 2, and 3 exist. In particular, most 2 : 1
solutions of types 2 and 1 have type A and B maps, respectively, and
most type 31 : 1 and 2 : 1 solutions have type C maps if =

4
(=

8
. (If

=
4
'=

8
, there are no subharmonic solutions of type 3.) A complete

analytical characterization of the dynamics for Types A and C maps is
given in II, and it is shown that the rotation number for Type B maps is
a Cantor function along certain curves in H!¹ space. Thus much of
the dynamical behavior in the 2 : 1 locking regions can be understood
on the basis of the results given in II for these three types of canonical
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Fig. 10. The computed return map for
(a) (A,¹, h)"(0.9, 2.4, 0.1), (b) (A,¹, h)"(1.1,
1.8, 0.1), and (c) (A,¹, h)"(1.1, 2.1, 0.1).

maps. When the period ¹ is small the return map is generally more
complicated, as in Case II (cf. Xie et al. 1996)).

However, di!erent types of maps can arise when the parameters lie
in the region between the 2 : 1 locking regions and the harmonic
locking regions, as is shown in Figs. 2 and 10. There Figs. 2(a) and 10(a)
correspond to=

4
(=

8
, and Figs. 2(b) and 10(b) and 10(c) correspond

to =
4
'=

8
. In this region there is a Type 4 periodic solution, and

since there are unstable except at the upper extreme of their region of
existence (cf I), one expects that the return map will be expanding on at
least one interval. This in turn may lead to sensitive dependence on
initial conditions in this interval. If we consider the invariant regions of
the return maps for parameters in this region we "nd that we can have
one of the three canonical maps shown in Fig. 11. The type D shown in
Fig. 11(a) is a type B-like map in the limit as c

1
Pc

2
, but the dynamics

are quite di!erent when c
1
9c

2
because the map is expanding between

c
1

and c
2
. The type E map shown in Fig. 11(b) has four pieces. If we

order the four pieces by the order of their respective domains, then all
pieces are linear except the third one. The absolute values of the slopes
of the "rst and the last pieces are less than one. If c

1
"c

3
type E maps

Subharmonic resonance and chaos in forced excitable systems 157



Fig. 11. The new types of canonical maps in Case III. All are continuous and piecewise
smooth. (a) A Type D map, which arises at intermediate values of h. This is the
canonical map which derives from the maps in Fig. 2 by restricting them to their
minimal invariant set. The graph of the map has three pieces, two of which have
positive slope less then 1, and the other has negative slope with modulus greater
than 1. This type of map reduces to a Type B map when c

1
"c

2
, but otherwise it has

two contracting parts and one expanding part. (b) A type E map, which arises from the
restriction of the maps in Fig. 10 to their minimal invariant sets. The graph has four
pieces. It is a type A map when c

1
"c

3
, and a type F map when c

1
"0 and c

3
"1.

(c) A Type F map, which has two branches, one with positive slope (always greater
than 1) and the other with negative slope.

reduce to type A maps, while if c
1
"0 and c

3
"1 a type E map reduces

to a type F map, which shown in Fig. 11(c). We have not studied the
type D and type E maps analytically, but we give some numerical
results for them in the next section.

4. Chaotic dynamics

4.1. =
4
'=

8

We "rst consider the dynamics for small "xed h, and variable ¹ in the
transition region between 1 : 1 solution and 2 : 1 solutions. We showed
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in II that for intermediate forcing amplitudes type A maps apply in this
region, and we proved that there are only n : 1 solutions, and that n : 1
solutions and n#1 : 1 solutions can coexist. That is, there may be
bistability and a direct transition between 1 : 1 and 2 : 1 solutions for
small h for Case II. However, in Case III the attractor is a periodic
orbit when the forcing is on, and there are no type A maps between the
boundaries of the 1 : 1 and 2 : 1 regions for small h. Instead one "nds
that as ¹ is decreased from the 1 : 1 region the return maps appear in
the sequence type F, type E and type D, and we now investigate what
the dynamics are in this region. For this purpose we "x h at 0.1 and,
using the period as the bifurcation parameter, we iterate the return
map from a single point 2000 times and plot the last 100 iterates. We
show iterates of the point as a function of the period for A"1.1 in
Fig. 12. Type D maps apply for ¹ in the interval (&0.2, &1.25), type E
maps apply in the interval&1,25, &2.0), and type F maps apply in the
remainder of the locking region T 1 :1

4
. Figure 12 suggests that when

=
4
'=

8
, the character of the attractor goes through the sequence

1 : 1P2 : 2P i rregularPperiod-5P2Pperiod-7P2P

2 : 1P2as ¹ decreases from the 1 : 1 region. In particular, one see-
sthat there may be a direct transition from 2 : 2 to chaos around
¹"2.2, and since the canonical map is of type F in this region we can
prove this analytically.

The type F map is quadratic-like, and one expects similarities with
the dynamics and bifurcation sequence for the standard family of
quadratic maps xPax(1!x). However the latter are smooth in the
parameter a, and as a result, the map undergoes a succession of
period-doubling bifurcations which lead to chaos (cf. Devaney (1992)).

Fig. 12. Images under the return map of the initial point x
0
"0.5 versus the period

T for h"0.1 and A"1.1. The initial point is iterated 2000 times and the last 100
iterates are plotted for each period in this "gure.
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In contrast, the map shown in Fig. 11(c) is not di!erentiable at the
intersection of the two branches and the slope of the left branch is
always greater than 1. The absolute value of the slope of the right
branch of the map increases as the period decreases, and at the
intersection of the branches the slope has minimum absolute value
m(A)'0, and it has maximum absolute value at 1. The slope of that
part of the right branch which is below the "xed point of the "rst iterate
is less than !1, and there are two "xed point of the second iterate of
the return map when ¹ is slightly to the left of the period-doubling
bifurcation. At the lower one, the slope of the map is less than !1 and
at the upper one (above the "xed point of the "rst iterate of the map),
the slope is greater than !1. As the period decreases, the upper "xed
point reaches the intersection of the two branches and then moves onto
the left branch at a critical value ¹*. One can show that below this
value of ¹ the absolute values of the slopes of the two branches are
greater than 1. The implication of this fact for the asymptotic dynamics
can be understood in terms of the Liapunov exponent, which for a C1
map f of an interval is de"ned by (Collett and Eckmann 1980)

j(x)" lim
n?=

1
n

log D ( f n(x))@ D.

If we restrict attention to orbits that do not pass through the intersec-
tion of the branches, the exponent is well de"ned. It follows that when
¹!¹* is negative and su$ciently small in modulus the Liapunov
exponent of the map is positive, and hence the dynamical system has
chaotic orbits. We summarize the above discussion in the following
proposition.

Proposition 3. Any system whose return map restricted to the invariant
interval is a type F map has a direct transition from 2 : 2 phase-locking to
chaos after the ,rst period-doubling bifurcation.

At smaller values of ¹ the canonical map is of type D, as noted
earlier. The limiting form of these as c

2
Pc

1
is a type B map, and from

II we know that the dynamics are nonchaotic for these maps. However
for type D maps the central branch has negative slope with absolute
value greater than 1, and hence is expanding and may show chaotic
behavior. When the parameter h and A are "xed and the period ¹ is
increased, the slope of the middle branch becomes steeper while the
other two pieces become #atter. The bifurcation diagram with ¹ as the
bifurcation parameter is embedded in Fig. 12. When ¹ decreases from
1.25 to &0.2, the map undergoes a 2 : 1P4 : 2 transition, a transition
to irregular dynamics, and then a 3 : 2P3 : 1P6 : 2 transition,
a transition to irregular dynamics, and so on. The rotation number is
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not a monotonic function of the parameter ¹, while the rotation
number of a type B map, the limiting case of a type D map, is
a monotonic function of the parameter. From this bifurcation diagram
it appears that the phase-locking regions are separated by intervals of
irregular dynamics. Such a sequence has also observed in numerical
simulations of the Beeler-Reuter model (Lewis and Guevara 1990).

4.2. =
4
(=

8

When=
4
(=

8
, the bifurcation diagram in Fig. 13(a) shows that as the

period is decreased the asymptotic dynamics evolve from a pair of 1 : 1
orbits to coexistence of a single 1 : 1 orbit and chaosPa single 1 : 1
orbit2Pperiod-42P2Pperiod-3P2P2 : 12P. For much
of the domain of ¹, the asymptotic behavior depends on the initial
point. For instance, when ¹"3.5 there are two stable 1 : 1 solutions,
one near 0.25 and the other near 0.7. The former is a type 2 1 : 1
solution and the latter a type 4 1 : 1 solution. As ¹ decreases the type
4 solution loses stability and "rst undergoes a period-doubling bifurca-
tion, followed by a direct transition to a chaotic attractor. However the
"xed point near 0.25, which corresponds to a type 2 1 : 1 solution,
persists throughout the "rst chaotic window. The corresponding re-
turn map is as shown in Fig. 13(b). In the chaotic region between ¹&3
and ¹&3.2 there are two invariant regions for this return map: on one
there is a stable "xed point which is near 0.25 and on the other the map

Fig. 13. (a) The bifurcation diagram for A"0.9, h"0.1 and ¹ the bifurcation
parameter. When T varies from 3.5 to "3.0, the return map has the same structure as
the one shown in (b). (b) The return map for A"0.9, h"0.1, and ¹"3.1. The domain
can be divided into two invariant regions: in one there is a stable "xed point which is
near x"0.25 and the map restricted to the other is a type F map.
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is a type F map. By proposition 3, the dynamical system restricted to
the latter invariant set is chaotic.

Thus there is coexistence of a stable 1 : 1 response and a chaotic
attractor for a certain range of the forcing period ¹. This coexistence
occurs in the small region in (h, ¹ ) space near the boundary of the
type 2 harmonic locking region, where type 2 and type 4 solutions
coexist but the latter have lost stability. In contrast, when =

4
'=

8
and the period is decreased, the type 4 solutions are stable even when
the parameters are outside the type 2 harmonic locking region. In this
case the canonical return map does not exhibit bistability of the two
di!erent harmonic solutions, and has only type 4 stable harmonic
solutions until the "rst period-doubling bifurcation is reached, after
which it goes to chaotic dynamics directly from the 2 : 2 locked solu-
tion, as shown in Fig. 12.

5. Discussion

Periodically-forced dynamical systems, whether oscillatory or merely
excitable in the absence of forcing, arise in a variety of physiological
contexts, including cardiac dynamics, neural networks, secretory sys-
tems and ciracdian rhythms. There is an enormous literature on forced
oscillatory systems, and a well-developed theory of how such systems
respond to periodic stimuli exists (Levi 1981, Guckenheimer and
Holmes 1983, Glass 1997). The picture is much less complete for forced
excitable systems, but understanding such systems is important for
understanding a variety of phenomena, most notably in the cardiac
context. One of the earliest examples of nontrivial dynamics in a forced
excitable system, namely hysteresis, was found by Mines (1913) in
periodically-stimulated ventricular tissue. In modern terminology,
Mines showed the coexistence of periodic solutions of di!erent rota-
tion number connected via a hysteresis curve (cf. also (Lorente and
Davidenko 1990)). More recently experimental studies of periodic
forcing of ventricular tissue, Purkinje "bers, or AV node tissue have
shown a variety of phase-locking patterns, as well as chaos, and the
transitions between di!erent dynamic regimes when the frequency of
the forcing is varied have been mapped out in some systems (Chialvo
and Jalife 1987b, Jalife 1990, Guevara 1991).

Most theoretical studies of phase-locking patterns in cardiac or
neural tissue have relied either on numerical simulation of models of
Hodgkin-Huxley type, modi"ed by the addition of other currents
(Holden 1976, Guttman et al. 1980, Aihara et al. 1984, Markevich and
Sel'kov 1989, Anumonwo et al. 1991), or an experimentally-derived
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interval or circle maps (Vinet et al. 1990, Cheng and Levy 1990,
Chialvo 1990b, Lewis and Guevara 1990). In this paper and several
preceding papers (Othmer and Watanabe 1994, Xie et al. 1996) we have
studied the singular system associated with a piecewise linear (PL)
model of an excitable system under periodic step-function forcing. Our
results on the coexistence of stable periodic solutions in Type A and
C maps (Xie et al. 1996) provide a possible explanation of the hysteresis
phenomena observed by Mines (1913) in periodically-stimulated ven-
tricular tissue. The persistence result proved there implies that &stable'
results for the singular system, in a sense made precise there, persist for
e'0 and su$ciently small. Although the piecewise-linear system is
not directly related to ionic models of tissue, similar results will obtain
for smooth vector"elds of the Fitzhugh-Nagumo type, and it is known
that the Hodgkin-Huxley equations can be reduced to the Fitzhugh-
Nagumo form.

In this paper we restricted attention to su$ciently large amplitude
forcing such that the attractor of the #ow is a "xed point when the
forcing is o! and is a periodic orbit when it is on. Many physiological
models of excitable systems exhibit periodic oscillations when forced
by a steady current, and when forced by a periodically-varying current
they show phase-locking. Thus the results given here for the PL model
are applicable in that context. One can see from Fig. 8(b) that for
a short stimulus (i.e., h large), there are only harmonic solutions if Q

4
is

above Q
8

(cf. Fig. 1). However, under a long stimulus (i.e., h small),
there are di!erent phenomena in some regions of the parameter space
(h, ¹ ). For instance, there is no direct transition between 1 : 1 and 2 : 1
solutions, but instead stable 2 : 2 and 2 : 1 solutions coexist. Also we
have shown that there is a region of the (h, ¹ ) parameter space between
the 1 : 1 and 2 : 1 solutions regions in which the system is chaotic and
the transition from 1 : 1 to chaos is a direct transition from the "rst
period-doubling 2 : 2 to chaos. This is in contrast to the usual period-
doubling route to chaos for a smooth quadratic interval map. Lewis
and Guevara (1990) found this the same phenomenon, i.e. direct
transitions from the "rst period-doubling to chaos, in the Beeler-
Reuter model (Beeler and Reuter 1977).

We have identi"ed three new canonical return maps that arise
under di!erent parameter combinations and have analyzed the behav-
ior of one of them analytically. The type F map is a quadratic-like map
that is piecewise smooth and has two branches. One piece has slope
greater than one and the other has monotonically increasing absolute
value of the slope as the forcing frequency increases, which leads to an
unusual bifurcation sequence in which there is a direct transition from
the "rst period-doubling (2 : 2) to chaos. This map arises from the

Subharmonic resonance and chaos in forced excitable systems 163



singular limit of the #ow (i.e., for e"0), but for small e'0, the return
map is a smooth, almost 1D map and one expects that the usual
period-doubling cascade to chaos will arise. We have also found
a signi"cant dependence on the amplitude of the forcing, as shown by
the results for Q

4
(Q

8
compared with those for Q

4
'Q

8
(see Figs. 12

and 13). When Q
4

is below Q
8

in Case III, there may be coexistence of
chaotic dynamics and stable harmonic phase-locking, depending on
the initial conditions, as has been found in circle maps (Glass 1991).

As noted earlier, the problems we address here have been studied
by others using ad hoc or experimentally-derived maps ((Chialvo and
Jalife 1990, Chialvo et al. 1990, Vinet et al. 1990, Lewis and Geuvara
1990) and references given earlier) in the context of cardiac tissue.
These analyses typically use one or more phenomenological character-
istics of an action potential, such as the action potential duration, the
diastolic interval, and the latency, and maps which relate these quantit-
ies in successive periods are determined from "ts of experimental data.
Since they cannot be derived directly from membrane models, they
must rely on experimental "ts, but we can determine these quantities
from the singular #ow as follows. Suppose we consider type 3 solutions
and restrict attention to those with a single action potential in each
cycle; other cases can be treated in a similar manner. One can deter-
mine the stimulation time (¹

stim
) directly, and one can compute the

action potential duration (APD), the diastolic interval (i.e., the recovery
time) DI, and the threshold current for excitation (¹h). The relation-
ships among them as follows (Xie et al. 1996).
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In this case there is a single branch of the APD curve, but in other cases
there may be more. In any case, the resulting discrete dynamical system
can be used to connect our results for the #ow with the results that
others derived from the phenomenological maps.

Several open problems remain. A very important one is to tie the
results of either experimentally-determined maps or those from simple
low-dimensional #ows more closely to the behavior of realistic mem-
brane models for cardiac tissue, such as the Luo-Rudy models. From
our results and those of others we have a qualitative understanding of
the e!ects of changes in the frequency and amplitude on the phase-
locking patterns, but this still leaves a large gap in that we cannot
predict how changes in particular currents will in#uence the dynamics
in more than a very qualitative way. A second problem is to establish
a deeper connection between the behavior of forced oscillators and
forced excitable systems. Once the stimulus amplitude exceeds the
threshold, their behaviors are qualitatively similar. In Alexander et al.
(1989b) and Alexander et al. (1990) a theory of forced excitable systems
was developed that parallels the classical theory for forced oscillators
to a large extent. As was shown there, it is possible to de"ne a rotation
number for a certain #ow on a two-torus which results from a singular
limit of a Fitzhugh-Nagumo type system, despite the fact that the
vector "eld in the singular system is not continuous and orbits are not
unique. In fact the associated circle map is set-valued. In the theory
developed in Alexander et al. (1990), either the forcing had to appear in
the equations for the slow variables or it had to vary slowly enough so
that it could be transferred to the slow variables, in a sense made
precise there. However, the theory does not apply when the forcing is
a step function in time applied to the &fast' or &voltage-like' variable,
which is the case studied here, and it remains to establish a closer
connection in that case.

Appendix: Stability of subharmonic solutions

In I we have studied the stability of harmonic solutions. Type 1 1 : 1
solutions are stable whenever they exist and type 5 and type 6 1 : 1
solutions are unstable whenever they exist. However, type 2 and
type 3 solutions are stable for the parameters in the most of the
regions where they exist and unstable in the small part of the
regions. In contrast type 4 solutions are unstable in most of
the region where they exist and stable in the small part of the region.
As we stated in I subthreshold solutions are always asymptotically
stable.
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In II we have studied subharmonic solutions under medium ampli-
tude stimulus (i.e., A3 (A

1
, A

2
)), where we showed that there exist three

types of 2 : 1 solutions (type 1, type 2, and type 3), and in sect. 3 we
found six di!erent types of 2 : 1 solutions under large amplitude stimu-
lus. In this section we study the stability of the subharmonic solutions.
The stability of subharmonic solutions with period n is determined by
the derivative of the nth iterate return map at the "x points. For
instance a 2 : 1 subharmonic solution is stable if the absolute value of
the derivative of the second iterate return map is less than one and
unstable if it is great than one. In the following we construct the second
iterate of the return map for each type of 2 : 1 solutions and study it
analytically. We show the regions in which the stable 2 : 1 solutions
exist in the parameter space.

1. Type 1 solutions. For a type 1 solution, the second iterate of the
return map is
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for all w. Therefore, type 1 solutions are asympotically stable whenever
they exist.

2. Type 2 solutions. For a type 2 solution, the second iterate of the
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and then,
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3. Type 3 solutions. For a type 3 solution, the second iterate of the
return map is

/
3
(w)"=

11
#(w

02
e~j1hT!=

11
)e~j3(1~h)T,

where w
02
"=

5
#(w

01
!=

5
)e~j1(1~h)T and w

01

"=
8
e~j1hT A

=
12
!w

=
12
!=

8
B
j1@j3

Hence, at the "xed point (w),

/@
3
(w)"!A

j
1

j
3
B A

w
01

=
12

!wB e~j3(1~h)T~j1T(0.

since w
01
'0 and=

12
'w for a type 3 solution. Thus, if /@

3
(w)(!1,

the solution is unstable and if /@
3
(w)'!1, the solution is stable.

If /@
3
(w)(!1, then

j
3
(=

12
!w)(j

1
M=

5
e~j3 (1~h)T(e~j1T!e~j1hT )

#=
11

(e~j3 (1~h)T!1)#wN,
and then,

(j
1
#j

3
)w'j

3
=

12
#j

1
=

11
(1!e~j3 (1~h)T )

#j
1
=

5
e~j3 (1~h)T (e~j1hT!e~j1T )

Let
B
3
"(1/(j

1
#j

3
)) (j

3
=

12
#j

1
=

11
(1!ej3 (1~h)T)

#j
1
=

5
e~j3 (1~h)T (e~j1hT!e~j1T)).

Hence, if w'B
3
, then /@

3
(w)(!1, i.e., the solution is unstable. And if

w(B
3
, then /@

3
(w)'!1, i.e., the solution is stable.

4. Type 4 solutions. For a type 4 solution, the second iterate of the
return map is

/
4
(w)"=

11
#(=

4
!=

11
)e~j3 (1~h)T A

w
02

e~j1hT!=
5

=
4
!=

5
B
j@j1

,

where w
02
"=

5
#(we~j1hT!=

5
)e~j1(1~h)T

Subharmonic resonance and chaos in forced excitable systems 167



Hence, at the "xed point (w),
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5. Type 5 solutions. For a type 5 solution, the second iterate of the
return map is
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unstable whenever they exist.

6. Type 6 solutions. For a type 6 solution, the second iterate of the
return map is
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Therefore, type 6 solutions are unstable whenever they exist.
We summarize the above results in the following Proposition.

Proposition 4. In the parameter space (h, ¹ ), the following holds for 2 : 1
solutions.

(a) ¹ype 1 solutions are asymptotically stable whenever they exist.
(b) A type i (i"2 or 3) is asymptotically stable if the ,xed point w

i
(B

i
and unstable if w

i
'B

i
.

(c) A type 4 solution is asymptotically stable if the ,xed point w
4
'B

4
and unstable if w

4
(B

4
.

(d) Solutions of types 5 and 6 are unstable whenever they exist.

For our standard parameters, solutions of types 2 and 3 are stable
whenever they exist.
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