Math 3592H Honors Math I Midterm exam 2, Thursday November 10, 2016

Instructions:

50 minutes, closed book and notes, no electronic devices. There are four problems, worth a total of 100 points.

1. (30 points; 10 points each part)

Let A be a 3×5 matrix.

(i) Prove or disprove: there are no vectors $\overline{\mathbf{b}}$ in \mathbb{R}^3 for which $A\overline{\mathbf{x}} = \overline{\mathbf{b}}$ has exactly one solution $\overline{\mathbf{x}}$ in \mathbb{R}^5 .

The Row-reducing [A|b] mms [X|b] in echelon form will either have a pivotal 1 in the (ast (b) column, so no solutions, or at least one non-pivotal column in X (there are 5 columns, and ≤ 3 pivota (columns since only 3 rows), and ∞ mony solutions.

(ii) Now assume A can be row-reduced to $\tilde{A} = \begin{bmatrix} 0 & 1 & 2 & -3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. Write down a basis for the subspace $V = \{ \overline{\mathbf{x}} \in \mathbb{R}^5 : A\overline{\mathbf{x}} = \overline{\mathbf{0}} \}$.

Ax=0
$$\Leftrightarrow$$
 Ax=0 \Leftrightarrow $\begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{cases} = \begin{cases} x_1 \\ -2x_3 + x_4 \\ x_3 \\ x_4 \\ x_5 \end{cases} = \begin{cases} x_1 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} + \begin{cases} x_3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{cases} + \begin{cases} x_4 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{cases} x_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} + \begin{cases} x_4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{cases} x_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} + \begin{cases} x_4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{cases} x_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{cases} x_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{cases} x_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{cases} x_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} = \begin{cases} x_1 \\ 0 \\ 0 \\ 0$

(iii) Write down a matrix E having the following property:

if
$$A = \begin{bmatrix} \overline{\mathbf{r}}_1^\top \\ \overline{\mathbf{r}}_2^\top \\ \overline{\mathbf{r}}_3^\top \end{bmatrix}$$
 with $\overline{\mathbf{r}}_i$ in \mathbb{R}^5 , then $EA = \begin{bmatrix} \overline{\mathbf{r}}_1^\top \\ \overline{\mathbf{r}}_2^\top \\ \overline{\mathbf{r}}_3^\top - 6\overline{\mathbf{r}}_1^\top \end{bmatrix}$

This is one of our elementary matrices:
$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -6 & 0 & 1 \end{bmatrix}$$

2. (20 points total) Prove or disprove: If $\overline{\mathbf{f}}, \overline{\mathbf{g}} : \mathbb{R}^4 \to \mathbb{R}^4$ are both differentiable everywhere, and $(\overline{\mathbf{f}} \circ \overline{\mathbf{g}}) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} x_4 \\ x_3 \\ x_2 \end{bmatrix}$ for all $\overline{\mathbf{x}}$ in \mathbb{R}^4 ,

then the Jacobian matrix $[J\overline{\mathbf{f}}(\overline{\mathbf{a}})]$ is invertible for every $\overline{\mathbf{a}}$ in img $(\overline{\mathbf{g}})$.

True: As usual, chain rule for derivatives at x= 6 gives

$$\left[\overline{Jf}(\overline{g(5)})\right]\left[\overline{Jg}(5)\right] = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\int_{\text{Description for } h\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_4 \end{bmatrix}$$

$$\left(\text{at } \overline{x} = \overline{b}\right)$$

- Jaeobian for
$$h\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_4 \end{pmatrix}$$

and assuming $\bar{a} \in img(\bar{g})$, $\exists \bar{b}_{o} \text{ with } g(\bar{t}_{o}) = \bar{a}$, so we get [Jf(a)][Jg(b)] = | 09990

and
$$[J\overline{A}][J\overline{B}][J\overline{B}][J\overline{B}][J\overline{B}] = \begin{bmatrix} 0001 \\ 0001 \\ 0000 \end{bmatrix} = \begin{bmatrix} 0001 \\ 0000 \\ 0000 \end{bmatrix} = I_4$$
This must be $[J\overline{A}]$, since $J\overline{A}$ is 4×4 square.

¹The exam had "for every \bar{a} in \mathbb{R}^4 ", which is not the assumption I intended!

- 3. (20 points total; 10 points each part) $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 3 & 4 & \alpha \end{bmatrix}$.
- (i) Assuming that $A\overline{\mathbf{x}} = \overline{\mathbf{0}}$ has infinitely many solutions, what is α ?

[011][x1] = [0] ~ [017][0] ~ [011][0] ~ [01][0]

(ii) Assuming that α is chosen as in the answer to part (i), write down at least one explicit $\overline{\mathbf{b}} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ in \mathbb{R}^3 so that $A\overline{\mathbf{x}} = \overline{\mathbf{b}}$ has no solutions.

$$\begin{bmatrix}
 011 | b_1 \\
 111 | b_2 \\
 344 | b_3
 \end{bmatrix}
 \begin{bmatrix}
 111 | b_2 \\
 011 | b_1 \\
 344 | b_3
 \end{bmatrix}
 \begin{bmatrix}
 111 | b_2 \\
 011 | b_3 \\
 \hline
 000 | b_3 - 3b_2 - b_1
 \end{bmatrix}$$

has no solutions whenever $b_3-3b_2-b_1\neq 0$ e.g. $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 4. (30 points total; 10 points each part) Prove or disprove:

(a) If $\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_2$ are nonzero, nonparallel vectors in \mathbb{R}^3 , then $\{\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_2, \overline{\mathbf{v}}_1 \times \overline{\mathbf{v}}_2\}$ are linearly independent. Note $\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_2$ nonzew, non parallel

> VIXV2 +0, Since (VIXV3) = area of parallelogram (0, VI, V3, VI+V3) If $c_1\overline{v}_1+c_2\overline{v}_2+c_3\overline{v}_1\times\overline{v}_2=\overline{0}$, then dotting with $\overline{v}_1\times\overline{v}_2$ gives $c_3|\overline{v}_1\times\overline{v}_2|^2=0 \Rightarrow \overline{c}_3=0$ and hence $c_1\overline{v}_1+c_2\overline{v}_2=\overline{0}$ parallel (hence limited p.)

(b) For any angle θ , the vectors $\overline{\mathbf{v}}_1 = \begin{bmatrix} -\cos(6\theta) \\ -\sin(6\theta) \end{bmatrix}$, $\overline{\mathbf{v}}_2 = \begin{bmatrix} \sin(6\theta) \\ -\cos(6\theta) \end{bmatrix}$ are orthonormal in \mathbb{R}^2 . (Time.) Check $|\nabla_1|^2 = |\nabla_2|^2 = \cos^2(60) + \sin^2(60) = 1$

and $\sqrt{1 \cdot \sqrt{2}} = -\cos(60) \sin(60) + \sin(60) \cos(60) = 0$.

(b) For any angle θ , the vectors $\overline{\mathbf{v}}_1 = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$, $\overline{\mathbf{v}}_2 = \begin{bmatrix} \cos(2\theta) \\ \sin(2\theta) \end{bmatrix}$ are orthonormal in \mathbb{R}^2 . (False.)

eg. for 0=0, $\overline{V_1}=\begin{bmatrix}1\\0\end{bmatrix}=\overline{V_2}$ so $\overline{V_1}\cdot\overline{V_2}\neq 0$.