Math 3592H Honors Math I
Midterm exam 2, Thursday November 10, 2016

Instructions:
50 minutes, closed book and notes, no electronic devices.
There are four problems, worth a total of 100 points.

1. (30 points; 10 points each part)

Let A be a 3 X 5 matrix.

(i) Prove or disprove: there are no vectors b in R?® for which AX = b
has exactly one solution X in R®.
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(ii) Now assume A can be row-reduced to A = |0 0 0 0 1].
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Write down a basis for the subspace V = {X € R® : AX = 0}.
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(iil) Write down a matrix E having the following property:
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if A= [ }} with ¥; in R5, then A = [ T, }

=T = =T

s is m&we(@mmces: E= X‘D 1o

-t 1

2. (20 points total) Prove or disprove: If £, g : R* — R* are both
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differentiable everywhere, and (f o g) iQ = i3 for all X in R*,
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then the Jacobian matrix [Jf(a)] is invertible for every' @ in img(g).
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1The exam had “for every @ in R*”, which is not the assumption I intended!
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3. (20 points total; 10 points each part) A = [ } )

(i) Assuming that AX = 0 has infinitely many solutions, what is o?
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(i) Assuming that « is chosen as in the answer to part (i), write down

by
at least one explicit b= b2:| in R? so that AX = b has no solutions.
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4. (30 points total; 10 points each part) Prove or disprove:

(a) If ¥;, V3 are nonzero, nonparallel Vectors in R3, then {¥v{,¥,,V; xvg}( ng
are linearly mdependent Note \/, WV, Vienzers W(}C%J‘Ql
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(b) For any angle 6, the vectors ¥, = {—sin(G@)] Vo = [_ cos(66)

are orthonormal in R?.
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(b) For any angle 6, the vectors Vi = {098(0)} Ty = [095(29)} are

orthonormal in R?. —=
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