Math 3593H Honors Math II Quiz 3, Thursday March 23, 2017

Instructions:

20 minutes, closed book, no electronic devices, but an 8.5×11 page of notes is OK. There are three problems, worth a total of 20 points.

1. (9 points)

Let $A \subset \mathbb{R}^2$ be the region bounded

- above by the parabola $y = x^2$,
- \bullet below by the *x*-axis,
- on the right by the vertical line x = 1.

Compute

$$\int_{A} xy |dxdy| \left(= \int_{\mathbb{P}^{2}} xy \cdot 1_{A}(x,y) |dxdy| \right).$$

(Hint: it's always a good idea to sketch A first.)

$$\int_{X=1}^{y=x^{2}} \int_{X=1}^{x=1} \int_{X=0}^{x=1} \int_{X=0}^{x$$

2. (6 points)

What is the volume of the image of the unit cube $Q = [0,1]^3 \subset \mathbb{R}^3$ under the linear transformation $\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^3$ defined by

$$T(\mathbf{e}_1) = \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}, \quad T(\mathbf{e}_2) = \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix}, \quad T(\mathbf{e}_3) = \begin{bmatrix} 16 \\ -73 \\ 3 \end{bmatrix}$$
?

$$T(\overline{x}) = A\overline{x}$$
 where $A = \begin{bmatrix} 2 & 5 & 16 \\ 5 & 2 & -73 \\ 0 & 0 & 3 \end{bmatrix}$

So
$$vol_3 T(Q) = \det A = \det \begin{bmatrix} 25 & 16 \\ 52 & -43 \\ 00 & 3 \end{bmatrix} = (2.2 - 5.5).3 = -21.3 = -63$$

3. (5 points)

Prove or disprove: the subset $\mathbb{Q}^2 \subset \mathbb{R}^2$ consisting of all points with rational coordinates has measure zero.

> proof: Q is countable, as discussed in book and lecture,

hence
$$\mathbb{Q}^2 = \bigcup_{g \in \mathbb{Q}} \underbrace{\{(g) \in \mathbb{Q}^2 : g \in \mathbb{Q}\}}_{\text{this is in bijection with } \mathbb{Q} \text{ itself}}_{\text{via}}$$

50 countable

Thus Q2 is a countable union of countable sets, so also countable (as discussed in lecture).

Hence Q² is a countable union of points, which each have measure zero, and hence a sountable union of sets of measure zero.

Therefore Q² itself has measure zero (as discussed in lecture)