Math 4707 Intro to combinatorics and graph theory Fall 2011, Vic Reiner

Midterm exam 1- Due Wednesday Dec. 14, in class

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are *not* allowed to collaborate. The instructor is the only human source you are allowed to consult.

- 1. (20 points total; 10 points each part)
- (a) How many rearrangements are there of the letters in the word STRENGTHENS? For example, EEGHNNRSSTT is one of them.
- (b) How many such rearrangements have all the properties listed here?:
 - the two E's appear adjacent to each other, **but**
 - the two N's do not appear adjacent to each other, and
 - the two S's do not appear adjacent to each other, and
 - the two T's do not appear adjacent to each other.
- 2. (20 points total; 10 points each part) Recall that we defined the Fibonacci numbers $\{F_n\}_{n=0}^{\infty}$ by $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0, F_1 = 1$.
- (a) Find the smallest positive integer m such that one can predict $F_n \mod 4$ (that is, the remainder of F_n upon division by 4) if one knows $n \mod m$ (that is, the remainder of n upon division by m).

More precisely, formulate a conjecture which predicts, given the remainder $n \mod m$, what the remainder $F_n \mod 4$ will be, similar to the format of the theorem in Problem 4 on our first midterm exam.

(b) Prove the conjecture that you just stated in (a).

- 3. (20 points total; 5 points each part) For each of the following families of graphs, write down a formula for the number of perfect matchings in the graph, that is, the number of choices of a subset of edges M for which each vertex is incident to exactly one edge of M. Note that your answer will be a function of the parameters n or m, n in each case.
- (a) The complete bipartite graph $K_{m,n}$ on $X \sqcup Y$ with |X| = m, |Y| = n.
- (b) The complete graph K_n on n nodes (without multiple edges or loops).
- (c) The cycle C_n with n edges and n vertices.
- (d) The graph $G_{m,n}$ for $n \geq 3$ and $m \geq 1$ which has m + n vertices, m + n edges, and consists of a path with m edges attached at one of its endoints to a cycle with n edges. Formally, define $G_n = (V, E)$ where $V = \{1, 2, ..., m + n\}$ and

$$E = \{\{1, 2\}, \{2, 3\}, \dots, \{m, m + 1\},$$

$$\{m + 1, m + 2\}, \{m + 2, m + 3\}, \dots, \{m + n - 1, m + n\},$$

$$\{m + n, m + 1\}\}.$$

(Hint: Don't even think about doing part (d) until you've drawn the picture of $G_{m,n}$ for a few values of m and n.)

- 4. (20 points total; 10 points each part) Let G = (V, E) be a bipartite graph with vertices partitioned $V = X \sqcup Y$, and assume
 - every x in X has the same degree $d_X \ge 1$, and
 - every y in Y has the same degree $d_Y \ge 1$.
- (a) Prove that $\frac{d_X}{d_Y} = \frac{|Y|}{|X|}$.
- (b) Assuming without loss of generality that $d_X \geq d_Y$, show that there exists at least one matching $M \subset E$ with number of edges |M| = |X|.
- 5. (20 points; 10 points each part) Let G be a connected, planar, bipartite graph, with at least 3 edges, having no self-loops, no multiple/parallel edges, and no cycles of length 4.

Denote by v, e, f the number of vertices, edges, and faces/regions into which G dissects the plane (including the unbounded region).

- (a) Prove that $f \leq \frac{e}{3}$.
- (b) Prove that $e \leq \frac{3}{2}v 3$.