Math 5251 Error-correcting codes and finite fields Spring 2007, Vic Reiner

Final exam - Due Wednesday May 2, in my Vincent Hall 105 mailbox by 4pm

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are *not* allowed to collaborate. The instructor is the only human source you are allowed to consult.

- 1. (20 points total) Let C be an \mathbb{F}_2 -linear [n, k, d]-code with blocklength n = 9 and minimum distance d = 5 that achieves the *highest possible* dimension k among all such \mathbb{F}_2 -linear [9, k, 5] codes. For these specific values of n and d, what ...
- (a) (4 points) does Hamming's sphere-packing bound say about k?
- (b) (4 points) does the Singleton bound say about k?
- (c) (4 points) does the Gilbert-Varshamov bound say about k?
- (d) (4 points) does the Plotkin bound say about k?
- (e) (4 points) are the only two possibilities for the *exact* number m of codewords in C?

(Your answer to (e) should be two specific integers, say in the range 1 to 1,000,000)

2. (20 points total) Let G be the following matrix with entries in \mathbb{F}_2 :

$$G = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Let \mathcal{C} be the binary code equal to the row space of G, with parameters (n, m, d) when thought of as a binary code, and with parameters [n, k, d] when thought of as an \mathbb{F}_2 -linear code.

- (a) (6 points) Write down any parity check matrix H, that is, one whose row space is \mathcal{C}^{\perp} .
- (b) (6 points) Write down the parameters n, m, k, d.
- (c) (5 points) Write down a collection of coset leaders for \mathcal{C} .
- (d) (3 points) Use syndrome decoding to decode the received word y = [11111], that is, to find a code word in \mathcal{C} nearest to y in the Hamming distance.

3. (20 points total)

(a) (10 points) Let $f(x) = x^5 + x^3 + x^2 + x + 1$ in $\mathbb{F}_2[x]$. Is the quotient ring $\mathbb{F}_2[x]/(f(x))$ a field or not? Justify your answer.

(b) (10 points) Let $f(x) = x^3 + x^2 + x + 2$ in $\mathbb{F}_3[x]$. Is the quotient ring $\mathbb{F}_3[x]/(f(x))$ a field or not? Justify your answer.

4. (20 points total) Let W be a memoryless source having m source words $\{w_1, \ldots, w_m\}$ which appear with probabilities p_1, \ldots, p_m . Let \mathcal{C} be a binary Huffman encoding of W.

(a) (10 points) Show that if all codewords in \mathcal{C} have the same length ℓ then $m=2^{\ell}$.

(b) (10 points) Show that $\mathcal C$ has no codewords longer than m-1 letters (bits).

5. (20 points total) Let C_1, C_2 be \mathbb{F}_2 -linear codes with the same blocklength n. Construct a new code $C_1 \oplus C_2$ with blocklength 2n having these codewords:

$$C_1 \oplus C_2 = \{(v_1, v_1 + v_2)\}_{\substack{v_1 \in C_1 \\ v_2 \in C_2}}.$$

Here $(v_1, v_1 + v_2)$ denotes the vector of length 2n which is the juxtaposition (or concatenation) of the two length n vectors v_1 and $v_1 + v_2$.

(a) (10 points) Prove that $C_1 \oplus C_2$ is \mathbb{F}_2 -linear.

(b) (10 points) Prove this formula for the minimum distance

$$d(\mathcal{C}_1 \oplus \mathcal{C}_2) = \min\{2d(\mathcal{C}_1), d(\mathcal{C}_2)\}.$$

Remark: This \oplus construction gives one way of recursively defining the higher-order Reed-Muller codes R(r,m), and calculating their parameters, as we now explain. One first defines R(0,m) to be the 2^m -fold binary repetition code with parameters $[2^m, 1, 2^m]$, and defines R(r, r) to be $(\mathbb{F}_2)^{2^r}$ (that is, all possible binary codewords of length 2^r). One then recursively defines

$$R(r,m):=R(r,m-1)\oplus R(r-1,m-1).$$

Can you (just for fun, not for points on this exam) use (a), (b) to show that R(r,m) is an $[2^m, 1 + {m \choose 1} + \cdots + {m \choose r}, 2^{m-r}]$ \mathbb{F}_2 -linear code?