Math 5711 Combinatorial optimization Spring 2006, Vic Reiner Midterm exam 1- Due Wednesday April 5, in class

Instructions: This is an open book, open library, open notes, open web, take-home exam, but you are *not* allowed to collaborate. The instructor is the only human source you are allowed to consult.

- 1. (20 points) Schrijver's Problem 2.25 on p. 37. He asserts the equality (formula (64)) of a max and a min, but forgot to ask you to prove it. Prove it.
- 2. (20 points) Schrijver Problem 1.3 on p. 18. Draw the associated directed graph, along with the last Bellman-Ford function on its vertices, and a tree rooted at vertex A consisting of shortest (A, v)-paths for all other vertices v.
- 3. (20 points) In Schrijver's knapsack problem example (Application 1.3), assume that object 2 is no longer available, so one has

article	volume	value
1	5	4
3	2	3
4	2	5
5	1	4

Solve this new knapsack problem by drawing an appropriate directed graph and using the Bellman-Ford algorithm.

- 4. (20 points) Give an example of a directed graph D = (V, A) and a length function on the arcs $\ell : A \to \mathbb{Z}$ with these properties:
 - |V| = 3, i.e. there are exactly 3 vertices, labelled $V = \{s, r, t\}$,
 - there are no directed cycles at all (and therefore none of negative length), and
 - Dijkstra's algorithm fails to find an s-t directed path of minimum length, but the Bellman-Ford algorithm works. (Write down the output from both algorithms)

5. Let G = (V, E) be the graph which is a four-vertex cycle on vertices V = a, b, c, d with edges and lengths as indicated below:

- (a) (5 points) List a sequence of forests found during the Dijkstra-Prim method for computing a minimum spanning tree in G.
- (b) (5 points) List a sequence of forests found during Kruskal's method for computing a minimum spanning tree in G.
- (c) (3 points) Write down all of the minimum spanning trees in G.
- (d) (7 points) Prove that for any connected graph G, if all of the edge lengths $\ell(e)$ are distinct real numbers then the minimum length spanning tree for G is unique.

(One possible hint for (d): Suppose

$$T = \{e_1, e_2, \dots, e_{n-1}\}\$$

$$T' = \{e'_1, e'_2, \dots, e'_{n-1}\}\$$

were two minimum length spanning trees in G, with their edges indexed in increasing order of length, i.e.

$$\ell(e_1) < \ell(e_2) < \dots < \ell(e_{n-1})$$

 $\ell(e'_1) < \ell(e'_2) < \dots < \ell(e'_{n-1}),$

and suppose that $e_1 = e'_1, e_2 = e'_2, \dots, e_k = e'_k$, but $\ell(e_{k+1}) < \ell(e'_{k+1})$. Can you reach a contradiction from this?)