Math 8201 Graduate abstract algebra- Fall 2010, Vic Reiner Group theory and linear algebra practice problems from old prelim exams

Diagonalizability and triangularizability

1. Let S, T be linear transformations $V \rightarrow V$ for a finite-dimensional vector space V over an algebraically closed field k.

Assuming $S T=T S$, show that S, T have a simultaneous eigenvector, that is, a nonzero vector v such that $S v=\lambda v$ and $T v=\mu v$ for some λ, μ in k.

Some variations on this problem:
(a) Replace S, T by a commutative ring whose elements are linear endomorphisms of V (and still show that there is a simultaneous eigenvector for every element of the ring).
(b) Assume further that S, T are both diagonalizable, and show that they are simultaneously diagonalizable.
(c) Replace S, T by a finite abelian group of linear automorphisms of a complex vector space V and show that the group is simultaneously diagonalizable.
2. Suppose that a finite-dimensional vector space V over a field k has a basis of eigenvectors for a linear map $T: V \rightarrow V$. Let W be a T stable subspace of V (that is, $T W \subset W$). Show that W has a basis of eigenvectors for T.
3. Let T be a complex $n \times n$ matrix with $T^{*}=T$ where $*$ denotes conjugate-transpose. Show that there is an n-by- n matrix U with $U^{*} U=1$ such that $U^{*} T U$ is diagonal.

Sylow-type questions from group theory

4. Classify up to isomorphism all groups of order $p q$ where p, q are primes and $q \equiv 1 \bmod p$.
5. Classify up to isomorphism the groups of order $2 p$ where p is an odd prime.
6. Show that a group of order 15 is necessarily cyclic.
7. Exhibit a nonabelian group of order 21.
8. Let $p \neq q$ be odd primes. Show that any group of order $2 p q$ is solvable.
9. Show that if G is any group of order $385=5 \cdot 7 \cdot 11$ then the center has order divisible by 7 .
10. Let G be a group of order 72 for which the center $Z(G)$ has order divisible by 8 . Show that G is abelian.
11. Show that a group of order $3 \cdot 5 \cdot 17$ has a normal subgrop of order 17.

Other group theory questions

12. Let G be a group of order 105. Suppose that G acts transitively on a set X. What are the possible cardinalities of X ?
13. Let G be a cyclic group of order 12 . Show that the equation $x^{5}=g$ is solvable for every g in G, and that the solution x is unique (for a given g)
14. Let p be the smallest prime dividing the order of a finite group G. Show that a subgroup H of index p is necessarily normal.
15. Exhibit four mutually non-isomorphic groups of order 8, and prove they are not isomorphic.
16. Let G be the group of matrices

$$
G=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right): a, b, c \in \mathbb{Z} / 3 \mathbb{Z}, a \neq 0 \neq c\right\}
$$

Determine whether G is isomorphic to any of the groups A_{4} (alternating group), D_{12} (dihedral group), $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$ (product of cyclic groups).
17. Let a finite group G act on a finite set S, with $|S| \geq 2$. Suppose that G acts transitively. Show that there is an element of g in G which does not have a fixed point on S.
18. Classify abelian groups of order 48.

