Math 8202 Graduate abstract algebra- Spring 2014, Vic Reiner Midterm exam 1- Due Wednesday February 26, in class

Instructions: This is an open book, library, notes, web, take-home exam, but you are *not* to collaborate. The instructor is the only human source you are allowed to consult. Indicate outside sources used.

- 1. (15 points total; 5 points each)
- (a) For each n = 1, 2, 3, ..., show how to express $2^n = x^2 + y^2$ with integers x, y, that is, find explicit formulas for x, y as functions of n that work.
- (b) Prove or disprove: For each $n \ge 1$ one can express $10^n = x^2 + y^2$ with integers x, y.
- (c) Prove that if an integer n can be expressed as $n = x^2 + y^2$ with x, y in \mathbb{Q} , then it can also be expressed as $n = x^2 + y^2$ with x, y in \mathbb{Z} .
- 2. (25 points total; 5 points each)

Prove or disprove the following statements about a commutative ring R with 1, always interpreting "subring" to mean "subring with 1":

- (a) If R is a UFD, then any subring of R is a UFD.
- (b) If R is a Euclidean domain, then any subring of R is a Euclidean domain.
- (c) If I is an ideal in R and R/I is a domain, then R is also a domain.
- (d) If R is a UFD and I is a prime ideal of R, then R/I is a UFD.
- (e) If R is a Noetherian ring, then any subring of R is a Noetherian ring.
- 3. (15 points) Let φ be the ring homomorphism $\mathbb{Z}[x,y] \xrightarrow{\varphi} \mathbb{Z}[t]$ that sends $f(x,y) \longmapsto f(t^4,t^6)$. Find, with proof, a generating set of minimum cardinality for the ideal $I = \ker \varphi$ in $\mathbb{Z}[x,y]$.
- 4. (10 points; 5 points each part) Let $R = \mathbb{Z}[x]/(x^3 + x + 1, 5)$.
- (a) What is the cardinality of R?
- (b) Is R a domain? Is R a field?

- 5. (15 points total; 5 points each)
- (a) Prove $x^2 + y^2 1$ is irreducible in $\mathbb{Q}[x, y]$.
- (b) Prove $x^n p$ is irreducible in $\mathbb{Z}[i][x]$ for all positive integers n and all odd primes p in \mathbb{Z} .
- (c) Prove $x^8 + y^4 + z^6$ is reducible in $\mathbb{F}_p[x, y, z]$ when p = 2, but irreducible in $\mathbb{F}_p[x, y, z]$ for all odd primes p.
- 6. (20 points total; 5 points each)

Let \mathbb{F} be a field. Then a polynomial $f(\mathbf{x}) \in \mathbb{F}[x_1, \dots, x_n]$ is homogeneous of degree d if every monomial $x_1^{a_1} \cdots x_n^{a_n}$ occurring in f with nonzero coefficient has the same degree $d = \sum_i a_i$. By segregating monomials according to their degree, one can express any polynomial f uniquely as $f = f_0 + f_1 + \cdots + f_d$ with f_i homogeneous of degree i. The f_i are called the homogeneous components of f.

- (a) Prove that for $f(\mathbf{x})$ homogeneous of degree d, and λ in \mathbb{F} , one has $f(\lambda \mathbf{x}) = \lambda^d f(\mathbf{x})$.
- (b) Prove that for $f(\mathbf{x})$ homogeneous of degree d, one has $\sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} = d \cdot f$.
- (c) An ideal I in $\mathbb{F}[x_1,\ldots,x_n]$ is said to be *homogeneous* if every homogeneous component f_i of any f in I also lies in I. Show that I is a homogeneous ideal if and only if it can be generated by a collection of homogeneous polynomials.
- (d) If n=2 and \mathbb{F} is algebraically closed (e.g. $\mathbb{F}=\mathbb{C}$), show that every homogeneous polynomial f in $\mathbb{F}[x,y]$ in two variables can be factored as a product of linear (degree 1) polynomials, that is, $f(x,y)=\prod_{i=1}^d(\alpha_ix+\beta_iy)$ for some α_i,β_i in \mathbb{F} .