Encoding, de coding with linear codes (§12.7, 12.8) Having $Cc(F_z)^n$ a linear code simplifies many things.

PROPOSITION: For a Inversode Cc(Fg), one can compute the minimum distance d(e) (:= mm {d(x,x'): x,x'ee, x x x')] as $d(\mathcal{C}) = \min \{ d(y, 0) : x \in \mathcal{C} - \{0\} \}$ $= \#\{i: y_i \neq 0\} = : \omega t(y)$ called the Hamming weight of y $\frac{1}{2} \underbrace{x \circ o \circ f}$: Note by definition that $d(x, x') := \# \{i : x_i - x_i' = o \}$ $= d(x - x', o) = u \circ (x - x')$ Also when C is linear, since $o \in C$, d(x,x'): x,x'eC = d(y,o): yeC, y = 0 d(x,x'): x+x' d(x-x',o)Let y=x-x'

EXAMPLE The Hamming [7,4,3]-code (\$12.4) was the basis for the partor trick on the 1st day.

It has generator matrix

row rectors wt(-)

$$G = \begin{cases} 1000 & 100 \\ 0100 & 101 \\ 0010 & 111 \\ 0001 & 111 \\ 111 & 111 \end{cases}$$

$$\frac{1000 & 100}{100} = \frac{1000 & 100}{100} = \frac{1000}{100} = \frac{1000 & 100}{100} = \frac{1000}{100} = \frac{1000 & 100}{100} = \frac{1000 & 100}{100} = \frac{1000 & 1$$

and also contains non-zero redors

$$\Gamma_{1} + \Gamma_{2} = [1100]$$

$$\Gamma_{1} + \Gamma_{4} = [100]$$

$$\Gamma_{1} + \Gamma_{4} = [1100]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} = [1110]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} = [1110]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{4} = [110]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{4} = [110]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{4} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [111]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

$$\Gamma_{1} + \Gamma_{2} + \Gamma_{3} + \Gamma_{4} = [11]$$

and a few more, but d(c) = min {3,4,7}
= 3

(as claimed in [7,4,3])

How many in total, that is, what is m= 101?

PROPOSITION: A k-dimil subspace (=(Fg)
has size $m = C = g^k$.
So [n,k,d] Fg-linear vodes are (n, gk,d) g-any vodes.
has size $m = C = g^k$. So $[n,k,d]$ \mathbb{F}_{q} -linear codes are (n,g^k,d) g -any with g -any rate, $(C) = \frac{\log_2(n)}{n} = \frac{k}{n}$
proof: Pick any basis w1,, wk for C. Then we claim (checked below) that the map
Then we claim (checked below) that the map
$(\mathbb{F}_{\mathbf{i}})^{\sim} \xrightarrow{\tau} C$
(c)= c, w,+ c, w,++Gewk
is a bijection, so [= (" 8) = 8 0 0 0.
Singe drity comes from the fact that
Sinjectity comes from the fact that way-, we span C, by definition of spanning.
Injectuity comes from the lin. independence of the $\omega_1, -, \omega_k$: if $f(g) = f(g)$ for some g, d
$M_{} = C \omega_1 + \omega_2 = C \omega_1 + \cdots + C \omega_k = C \omega_1 + \cdots + C \omega_1 + \cdots$
- (C-d1)w, ++(Ck-ke)wk -
U_1, \dots, U_k $ c_1 - d_1 = \dots = C_k - d_k = 0$ $ c_1 - d_1 = \dots = C_k - d_k = 0$ $ c_1 - d_1 = \dots = C_k - d_k = 0$

It's easier to work with generator matrices in ...

DEF'N: Standard form for a generator matrix Gi of an [n,k,d] q-any code:

EXAMPLES (1) We just gave [7,4,3] Hamming rode via a standard form generator matrix

(2) The brangparity check code (={ [xi | xi ∈ H] } has a standard form generator matrix

PROPOSITION Not every linear code C has a generator matrix G in standard form, but if we apply a single permutation to its wimms, we can make a new code C'that does (and has all the same perameters [n,k,d]).

proof: 1. Start with any generator matrix for C.

2. Use Gaussian elimination

= vous operations | Suapping rows by ce l'adding rows to ther each other

to put it in vow-reduced echelon form

3. It needed, apply a permutation of columns to make the prot columns all to the left:

$$G = \begin{bmatrix} 1 & 0 & * - * \\ 0 & 1 & * - * \end{bmatrix}$$

EXAMPLE The 3-told repetition code C in (
$$\frac{1}{3}$$
)

 $C = \frac{1}{3} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$ has 2nd extension

 $C(2) = \left(\omega_1, \omega_2 \right) : \omega_1 \in C \right) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$

is a $\begin{bmatrix} 6, 2, 3 \end{bmatrix}$ ternany

linear code.

 $M = 3 \cdot 3 = 9$

Ge $\begin{bmatrix} 222111 \\ 111221 \end{bmatrix}$ is not a generator matrix for it,

why?)

but $G = \begin{bmatrix} 221000 \\ 111222 \end{bmatrix}$ is, although not in standard form.

Supply the supply supply to the content of the supply supply and the standard form.

Supply the supply supply to the content of the cont

Encoding becomes particularly simple it C has generator G= [Ik A] in standard form = \[\begin{aligned} \begin{al Given a word v = (vn, ..., vk) with k letters in (Fg), apply the encoding map usnal dot product: $(\mathbb{F})_{\mathfrak{q}}^{\mathsf{k}} \longrightarrow (\mathbb{F}_{\mathfrak{q}})^{\mathsf{k}}$ =[V1,..., Vk | V.C, ..., V. Cn.k] called the check Called the information

EXAMPLES

(1) Briany pandy check code
$$C \subset (\mathbb{F}_{2})^{n}$$

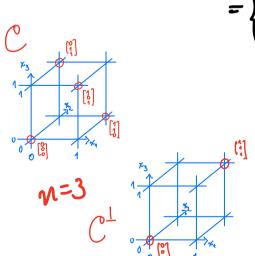
had $G: \begin{pmatrix} 1 & 0 & | 1 \\ 0 & 1 & | 1 \end{pmatrix}$ in standard form,

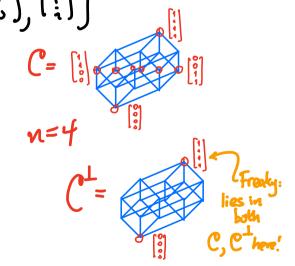
and encodes
$$V = [v_1, ..., v_{n-1}] \in (\mathbb{F}_2)^{n-1}$$

as
$$vG = [v_n, --, v_{n-1}, v_1 + v_2 + - + v_{n-1}] \in (\mathbb{F}_2)^n$$
into bits parity check bit

so it encodes
$$v = [v_1, v_2, v_3, v_4] \in (\mathbb{F}_2)^4$$

Dual codes (\$12.8)


DEFIN: Biven a linear code $C = \{f_g\}^n$,
its dual code $C^{\perp} := \{y \in F_g^n : x \cdot y = 0 \ \forall x \in C\}$ (perpendicular)


(perpendicular)

We think of the vectors y & C as being the party checks (over Fz) on the vectors $x \in \mathbb{C}$.

The binary parity check whe C= (F)

has C= the briany repetition code of length n

C) If C is a k-dimil inecur code in (Fg)"

then C' is an (n-k)-dimil linear code in (Fg).

(ü) Turhermore, it Chas generator matrix

then C has generator matrix (not motundard form)

H= [-At | In-k] (sometimes called a check matrix for C).

(iii) Lasty, (CI) = C.

EXAMPLE The 3-dimil linear code $C = (H_3)^5$ with generator matrix $G = \begin{bmatrix} 1 & 0 & 12 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 2 \end{bmatrix}$

has dual vode $C^{\perp}c$ $(\mathbb{F}_3)^5$ of dimension $\frac{5-3-2}{5-3-2}$ and generator matrix

$$H = \begin{bmatrix} -1 & -0 & -0 & | & 10 \\ -2 & -1 & -2 & | & 01 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & | & 10 \\ 1 & 2 & 1 & | & 01 \end{bmatrix}$$

(sketch) proof of PTEOP:

(Sketch) proof of PTEOP:

(Sketch) proof of PTEOP:

(Sketch) proof of PTEOP:

(Sketch) proof of PTEOP: $\Rightarrow y-x=0 \qquad \forall x \in \mathcal{C} \Rightarrow (cy).x-c(y\cdot x)=c\cdot 0=0$ $y'\cdot x=0 \qquad (y+y').x=y\cdot x+y'.x$ For the rest of the proof assume, by re-indexing wordinates in (F5) , that C has generator matrix G= [Ik | A] Ikin standard form and let H= [-A+ | Ink] as in the PROP. It's easy to check the nows of If lie in Ct, that is, drey dot to 0 with rows of G:

(row i of G). (row j of H) = $\begin{bmatrix} 0 & --1 & --0 \end{bmatrix}$ (row i of A)].

(i = 1, -, k i = 1, -, k

= -aij + aij = 0

The rows of ri,-, rnk of H are In. indep. inside C because of the Ink in the right most columns of H.

Thus it only remains to show re, rule span of and then they would be a basis for Ct, showing all of the rest of (i) & (ii) (and then (iii) thlows by sucpping roles of C, Ct).

To see the spanning, given $y = [d_1 - d_k \ c_1 - c_{n-k}] \in C$, we claim $y = c_1 r_1 + \cdots + c_{n-k} r_n k$:

Note $y' = y - (c_1 r_1 + \cdots + c_{n-k} r_n k)$ also lies in Ct and has the form $y' = [d_1 - d_k \ o \cdots o]$, but then $o = (row i of G) \cdot y' = d_i'$ forces y' = 0.

This has a useful consequence (discussed in §14.1).

COROLLARY: Given dual linear codes C and C.,

the min. distance d(C) has this reformulation:

d(C) = smallest number d of columns

in the generator matrix H by C involved in a nontrivial lin. dependence

H = [1 1 2 --- vn]

oslumns of H

poof: Since $C = (C^{\perp})^{\perp} = (\text{now space of } H)^{\perp}$,

the (nonzero) vectors $x = \begin{bmatrix} x_1 \\ x_n \end{bmatrix} \in C$ ove the same as (nonzero) vectors in the nullspace of Hi.e. $Q = Hx = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \begin{bmatrix} x_n \\ \vdots \\ x_n \end{bmatrix} = x_1v_1 + \dots + x_nv_n$ i.e. (non-tivial) Innear dependences among v_1, \dots, v_n and the Hamming weight at (x) = d tells us how many v_1 's are actually used in the dependence.

So minimizing the d gives $d(C) = \min\{\omega t(x) : x \in (-\frac{1}{2})\}$.

Note this says H the m-k) ×n gen. matrix for C having

- no zero columns $\Rightarrow d(C) \neq 1, \text{ so } d(C) \geq 2$
- no pair of dependent volumns ⇒ d(e) ≠2, (parallel) /2 50 d(e) ≥3.

IDEA: Try to find such H with n-k small, so k is large and rate (C) = k is large.

EXAMPLE: This is exactly how Hamming wooked up his [7,4,3] binary wide, and more generally, the Hamming [2-1, 2-1-r,3] andes C:

pick Cr to have rx (2-1) generator matrix Hr whose columns are all nonzero vectors in (F.):

$$H_{2} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = 2 \Rightarrow G_{2} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{2} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{3} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{4} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$G_{5$$

$$H_{3} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} = 3 \Rightarrow G_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$G_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$G_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$G_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$G_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$G_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$G_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$G_{3} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$G_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$G_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$G_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1$$

$$H_{r} = \begin{bmatrix} -A^{t} & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} r = 3 \Rightarrow G_{r} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
other nonzero vectors in (IF₃) r
binomy Hamming [2ⁿ-1, 2ⁿ-1-r, 3]-code

Their rates quickly improve as r grows:

rate (Cr) =
$$\frac{k}{n} = \frac{2^{r}-1-r}{2^{r}-1} = 1 - \frac{r}{2^{r}-1} \longrightarrow 1$$

But their min. dist. $d(C_r)=3$ Vr, which doesn't lead to any better emor-correction than $1=\left\lfloor \frac{3-1}{2}\right\rfloor$.

PEMARK Hamming more generally defined
his Ff-linear [n, k, d]-codes the same way:

gil gil 3 chas generator matrix
H whose columns pick one
vector from each line through
e in (Ff.).

EXERCISE: Why are there 3-1 such lines?

Syndrome devoding (§12.8)

Given our [n,k,d] linear code (CC[Fq), after the transmitter encodes their message as some x ∈ C, suppose some noise in transmission lets us receive y ∈ (Fq)?

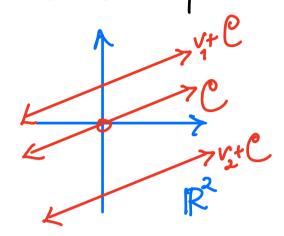
Q: How do we do min. diotance decoding of y e (Fq) efficiently, that is, how to find some x'e e minimizing d(x'y)?

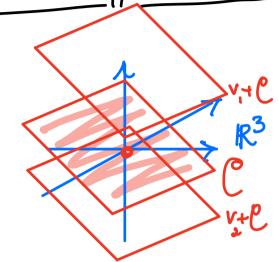
The method called syndrome decoding works pretty well, and starts by having us pre-compute

H=nd[-At | In-k] generating C1

from G= k{[Ik | A] generating C.

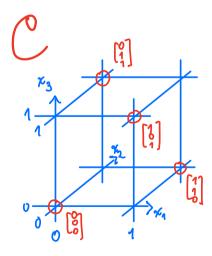
DEF'N: The syndrome for $y \in (\mathbb{F}_g)^n$ is the vector $Hy \in (\mathbb{F}_g)^{n-k}$ $n + k = (-A^t | I_{n-k}) = (y \cdot (n + 1) + y \cdot (n + 1) = (y \cdot (n + 1) + y \cdot (n + 1) = (y \cdot (n + 1) + y \cdot$

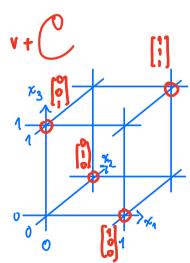

NOTE: Garrett calls ytt the syndrome of y. This is just the same you vector instead of a column vector.


How does the syndrome Hy help devode y?

It turns out that (ffg) decomposes disjointly not sets (affine subspaces parallel to C) called the cosets v+ C:= {v+x: x ∈ C} of the subspace C, and we can read off which coset y lies in from its syndrome Hy.

EXAMPLES:





(2) Similaridea over frite felds #4,

e.g. binary parity check code (= { [xi | xi ∈ fize = 0] | x+...+x=0

has one other coset $v_+ C = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, x_i \in \mathbb{T}_2 \right\}$

PROPOSITION:

(i) Two cosets v+C, v'&C intersect at all

the cosets are the same: v+C = v+C

v-v' & C

n-k

Hv = Hv' in (F_b), i.e. v,v' have same

syndrome

(ii) All wsets v+ C have same size as C (= 0+ C), rannely |v+C|= |C|= gk :fk=dim_F(C)

So the cosets ve disjointly decompose

Hy noto go sets, each of size gh

proof: For (i), certainly if $v \in v \in v' + v'$ then they intersect, but conversely if $w \in (v + v') \cap (v' + v')$ then w = v + x = v' + x'for some $x, x' \in v'$

so $v-v'=x'-x\in \mathbb{C}$ and then $v+\mathbb{C}=v'+\underbrace{(v-v')+\mathbb{C}}=v'+\mathbb{C}$. This shows (a), (b).

SYNDROME DECODING FOR C:

Given It a (k-n) × n matrix generating C, do a precomputation to find in each of the que cosets v+C a voset leader emin such that wt(emin) = min [wt(v): ve emin+c).

Tabulate these coset leaders Vinin and their syndromes Hemin in a syndrome table.

Then when you receive the transmitted word $y \in (F_g)^n$, compute its syndrome Hy, find the unique coset leader emin having Hy = Hemin, and decode y as $x' = y - e_{min}$.

PROPOSITION: Syndrowe decoding is min. distance decoding, that is, $d(x,y) \le d(x,y) \forall x \in C$ if $x'=y-e_{min}$ where $Hy = He_{min}$ and e_{min} has smallest where $Hy = He_{min}$ and e_{min} weight in $e_{min} \ne C$.

some $x \in C$ with d(y,x) < d(y,x'), $d(y,y-e_{min})$

d(0, y-x) d(0, y-x) $d(0, e_{min})$ wt(y-x) $wt(e_{min})$

v:=y-x lies in y+C=emin+C wt(emin)
since Hy=Hemin. Contradiction

EXAMPLE of syndnome decoding.

Suppose C is the [5,3,2] code in (#2) sith generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 \\ 0 & 1 & 0 & | & 0 & | \\ 0 & 0 & 1 & | & | & | & | \end{bmatrix} = [J_3 | A]$ so C^{\perp} has gen. matrix $H = \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 \\ 0 & 1 & 1 & | & 0 & | & | & | & | \end{bmatrix} = [-A^{\dagger} | J_2]$ We pre-compute a syndrome table by brute force:

a west leader emin	syndrome Hemin
1000	

On transmitter's end, say they encode into v=[111] as $x=vG=[111]\begin{bmatrix}1&0&0&|&1&0\\0&1&0&|&0&1\\0&0&1&0&1\end{bmatrix}=[111]$

and in transmission it is compted and received as one of these:

matching same emin

$$\chi' = y - e_{min} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$

$$= \chi$$

= X Success

inevitable since 1 error cocurred and d(C)=2