Finite fields (Chap. 11)

Some of our new rings IF, [x]/(f(x)) actually turn out to be new (finite) fields IF, with 9= ptg(+).

EXAMPLES Let's write the multiplication tables for

 $R = F_2(x)/(x^2+x+1)$ versus $R = F_2(x)/(x^2+x)$

Livreducible in F. [x] (Why?)

renaming $\alpha:=\overline{x}$, so $R_1 = \text{span}_{F_2} \{1, \alpha\}$ $= \{0, 1, \alpha, \alpha+1\}$ with $\alpha^2 + \alpha + 1 = 0$ i.e. $\alpha^2 = \alpha + 1$

	×	0	1	X	X+l	
	0	0	0	0	0	
•	1	0	1	×	oct	A
•	K		×		1	field v
	X+I	0	outl	1	d	

(Why?)

Irreducibility for f(x) is the key:

PROPOSITION: If f(x) is irreducible in F(x) for Fafield, then IF(x)/(f(x)) is also a field. In partoular, if IF=IFp has p elements then IHx]/(f(x)) is a new field with pd elements, where d:= deg(f(x)).

EXAMPLES

(1) X71 in IRIX] is irreducible, IR[x]/(x+1) is a field, namely = spange (1, x) our disquised version of the field C= span 1R 11, i] who i2+1=0

(2) x2+x+1 in F2[x] is irreducible, of degree 2, 50 $\mathbb{F}_4 := \mathbb{F}_2[x]/(x^2+x+1) = \{0,1,\alpha,\alpha+1\}$ is a field with $p^d = 2^2 = 4$ elements

WARNING ?: #4 # 2/4 = {0,1,0,001} = {0,1,2,3}

(3) x4+x+1 in F_[x] is also irreducible (seen on HW) and has degree 4, so F_{16} := $F_{2}[x](x^{\gamma}+x+1)$ is a field with $2^{\gamma}=16$ elements = span [1, t, 8, 83] where 8:= x his 14/1=0 i.e. YY = Y+1 = { 0,1,8,841, 841, 848, 84841, 83, 83+1, 83+8, 83+8+1, 83+82+1, 83+828+1)

proof of PROPUSITION:

To see IF(x)/(f(x)) is a field for f(x) irreducible, consider any $\overline{g(x)} \neq \overline{0}$ in F[x]/(f(x)), and find g(x) as follows. Represent g(x) by some polynomial g(x) with deg(g) < d = deg(f), and then GCD(g(x), f(x)) = 1 since $g(x) \neq 0$ and fis irreducible. Hence 1 = a(x)f(x) + b(x)q(x) = f(x)and $\overline{1} = \overline{b(x)} \, \overline{g(x)} \, \text{in } F[x]/(f(x)),$ that is b(x) = g(x) -1.

When
$$F = F_p$$
, then we know we have a bijection

$$(F_p)^d \longrightarrow F_p(x)/(f(x))$$

$$\begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{d-1} \end{bmatrix} \longrightarrow c_0 + c_1 \overline{x} + c_1 \overline{x}^2 + ... + c_{d-1} \overline{x}^{d-1}$$
so # $F_p(x)/(f(x)) = \#(F_p)^d = p^d$

EXAMPLE (uside
$$f_{ij} = f_{ij} \times 1/(x^{4} + x + 1)$$
)

with $Y := \bar{x}$, who is $(Y^{2})^{-1}$?

 $Y^{2} = \bar{x}^{2}$, so compute Y in (extended) finction

 $CD(x^{2}, x^{4} + x + 1) = CD(x + 1, x^{2}) = 1$
 $x^{2} = x^{2} = x^{2}$

REMARK Although not obvious, any two finite fields F_g and F_g having the same size g will be isomorphic, meaning there is a bijection F_g with $f(\alpha + \beta) = f(\alpha) + f(\beta)$. $f(\alpha \beta) = f(\alpha) \cdot f(\beta)$.

EXAMPLE The two finite fields of size q=23=8

$$F_8 = F_2[x]/(x^3+x+1) | F_8' = F_2[x]/(x^3+x^2+1)$$
with $\alpha := \overline{x}$

have an isomorphism, e.g., sending $\alpha \mapsto \beta^3$.

Check β^3 is a root of x^3+x+1 in \mathbb{F}' : $(\beta^3)^3 + \beta^3 + 1 = (x^2+1)^3 + (x^2+1)+1$ $= x^4 + x^4 + x^2 + 1 + x^2 + x^4 + x^4$ $= (x^3)^2 + x \cdot x^3 + 1$ $= (x^2+1)^2 + x(x^2+1)+1$ $= x^4 + x^3 + x = x(x^3+x^2+1) = x \cdot 0 = 0$

Primitive voots & primitive polynomials (Chap. 15)

Recall that we showed long ago that if a ring R had units R = [neR: u has a mult. inverse in R] fruite of size N, then every u&Rx had uN=1.

COROLLARY

In a finite field \mathbb{F}_q with q elements, every $\alpha \neq 0$ has $\alpha^{q-1} = 1$ proof: Fg is a finite ring and # Fg = # (Fg-{0}) = q-1.

DEF'N: Call the smallest power N=1,2,3,... for which $\alpha=1$ the order of α in Fig.

Call a a primitive element in II; if it has the largest possible order, namely 9-1.

PEMARK: We'll need primitive voots in Ity later to build Reed-Solomon codes with parameters [9-1, t, q-t] for t = g-1. EXAMPLES

(1) E	= 2/72			has power table				
(1)	Power	1	2	3	4	5	6	
~	1	1	1	1	1	1	1	
	2	2	4	1	2	4	1	
	3	3	2	6	4	5	1	
	4	4	2	1	4	2	1	
,	5	5	4	6	2	3	l	
	6	6	1	6	1	6	1	

(2) In
$$F_{\gamma} = F_{\Sigma}(x)/(x^{2}x+1)$$
, $\alpha = \overline{x}$ is primitive since $\alpha^{2} = \alpha + 1 + 1$, $\alpha = \overline{x}$ is primitive of $\alpha = 3 - 9 - 1$.

Also $\alpha + 1$ is primitive, since $(\alpha + 1)^{2} = \alpha + 1$.

(3) In
$$F_{16} = F_{2}[x]/(x^{q}+x+1)$$
, $Y = x$ is primitive, that is, of order $15 = q-1$ but $Y^{3} = x^{3}$ is not primitive, $Y^{3} = x^{3} = 1$ since $(Y^{3})^{5} = Y^{15} = 1$ so Y^{3} has order ≤ 5 , not $q-1 = 16-1 = 15$.

Do there exist primitive roots in every finite field Fg? (Yes.) Q: How to knd them?

To answer these, start with some simple properties of order:

- (i) If $\alpha \in \mathbb{F}^{\times}$ has order d, then $d=1 \Leftrightarrow dN$
- (ii) Any power at of a has order dividing d (= order)
- (iti) If $\alpha \in \mathbb{F}^{\times}$ has order d=ef, then α^f has order e.
- (iv) If $\alpha_1, \alpha_2 \in \mathbb{F}^{\times}$ have orders d_1, d_2 with GOD(d, d)=1 then ofoly has order d, d2.

sproof:

(i): Certainly if d) N, say N=de, then $\alpha = \alpha = (\alpha^d)^e = 1^e = 1$

On the other hand, if df N then N= de+r with 1≤r≤d-1 so $\alpha^N = \alpha^{de+r} = (\alpha^d)^e \cdot \alpha^r = 1^e \cdot \alpha^r = \alpha^r \neq 1$ since $1 \leq r \leq d-1$.

(ii): If
$$\alpha^d = 1$$
, then $(\alpha^k)^d = \alpha^{kd} = (\alpha^a)^k = 1^k = 1$.

(iii): One has
$$(\alpha^f)^e = \alpha^{ef} = \alpha^d = 1$$
, and for $e' < e$ one has $(\alpha^f)^{e'} = \alpha^{e'} \neq 1$ since $e' \neq 1 \leq e' \leq d$.

(iv):
$$(\alpha_1 \alpha_2)^{N} = 1 \Leftrightarrow \alpha_1^N \cdot \alpha_2^N = 1$$
 $\Rightarrow \alpha_1^N = \alpha_2^N$

has order masorder dividing d_2

hence it has order dividing $1 = GD(d_3d_2)$
 $\Rightarrow \text{ it is } 1$.

 $\Rightarrow \alpha_1^N = 1 = \alpha_2^N$
 $\Rightarrow \text{ N is a multiple of } d_1 \text{ and } \text{ of } d_2$
 $\Rightarrow d_1 d_2 \mid N \mid E$

THEOREM Every finite field \mathbb{F}_{g} has a primitive voot. Proof: Let l := LCM forders of all $\alpha \in \mathbb{F}_{g}^{\times}$?

(e.g. for $\mathbb{F}_{4} = \{ \}, 1, 2, 3, 9, 5, 6, 2 \}$ orders
1 3 6 3 6 2

50 l = LCM(1,3,6,3,6,2) = 6

~~

We dain that l= g-1 = # Fg): First note 1 9-1 since every of Fx has 07=1 and so its order divides q-1, and thus so does their LCM Second note 1 29-1 because every $\alpha \in \mathbb{F}_q^{\times}$ has $x^{2}=1$ making it a root of $f(x)=x^{2}-1$, which cannot have more tran I distinct wots. This proves the claim that l= 9-1. Now we show I some $\alpha \in \mathbb{F}_q^{\times}$ of order L (=q-1), which would then be a primitive element.

Tactor $l = p_1^p p_2^p - p_1^p$ into prime powers p_i^p (for distinct primes). Since l=LCM (orders of XEFx), for each i=1,2=5 there must be some $xi \in \mathbb{F}_q^{\times}$ with order divisible by p_i . Then some power of has order exactly Pi.
And then $a := \alpha_1^{d_1} \alpha_2^{d_2} - \alpha_r^{d_r}$ will have order exactly pipe-pr=l using GOD(pi, pi)=1 repeatedly. 121

So primitive voots exist in Eq,
but how to actually find one?

His slightly tricky—

many elements of Fg are primitive

(in fact, exactly 4(q-1) of them; see §15.8).

So a strategy is to look for them via random search, once we have a quick test for primitivity:

PROPOSITION: $\alpha \in \mathbb{F}_{x}^{\times}$ is primitive $(\S16.3)$ $\iff \alpha \neq 1$ \forall primes $p \mid q-1$ (i.e. if $q-1=p_{1}^{*} \cdots p_{r}^{*}$ then check $\alpha \neq 1$ \forall primes $p \mid q-1$)

proof: $\alpha \in \mathbb{F}_{x}^{\times}$ has $\alpha^{q-1} = 1$, so its order $\alpha \mid q-1$, and $\alpha \in \mathbb{F}_{x}^{\times}$ has $\alpha^{q-1} = 1$, so its order $\alpha \mid q-1$, $\alpha \in \mathbb{F}_{x}^{\times}$ has $\alpha \mid q-1$ $\Rightarrow \alpha \mid q$

EXAMPLES

- (1) To check which elements in \mathbb{F}_g^{\times} are primitive, factor $q^{-1} = 8^{-1} = 7$ into primes (only one!) and then $X \in \mathbb{F}_g^{\times}$ is primitive $\Leftrightarrow \chi = \chi = \chi = \chi = 1$ i.e. the other 6 elements in \mathbb{F}_g^{\times} -11) are all primitive.
- (2) In \mathbb{H}_{16}^{\times} , factor $q = 16 1 = 15 = 3.5^{1}$ and then $\alpha \in \mathbb{H}_{16}^{\times}$ is primitive $\Leftrightarrow 1 \neq \alpha = 16 - 1 = 15 = 3.5^{1}$ and then $\alpha \in \mathbb{H}_{16}^{\times}$ is primitive $\Leftrightarrow 1 \neq \alpha = 16 - 1 = 15 = 3.5^{1}$ and $1 \neq \alpha = 3 = 3$

So when we built $H_{16} = H_2[x]/(x^4+x+1)$, this is how we would check Y:=x was printitle: $Y^3 \neq 1$ (since H_{16} has H_2 -basis $\{1, Y, \chi^2, \chi^3\}$) $Y^5 = Y \cdot \chi^4 = \chi(\chi_{+1}) = \chi^2 + \chi + 1$

REMARK: Once we know γ is primitive, the other primitive voots are easier to spot, because they're of the form γ^i for $i \in 1, 2, ..., q-1$ with GCD(i, q-i)=1:

REMARK: Primitive voots also help us find CRC generator polyomials g(x) in Fp/x] that outch 2-digit errors that are tar apart.

Recall g(x) as a CRC catches such errors up to N digits apart where N is smallest such that $g(x) \mid x^N - 1$ in Fp[x].

PROPOSITION: Let $(x) \in \mathbb{F}_0[x]$ be irreducible, so that $\mathbb{F}_q = \mathbb{F}_0[x]/(g(x))$ is a field of size $q = p^d$ where d = deg(g(x)).

Then the smallest N for which $g(x)|x^{-1}$ is the order of $\alpha := x$ in this field f(x).

In particular, N divides q-1=pd-1, with equality N=pd-1 ⇒ x is a primitive root.

In this case, one calls g(x) a primitive (wedneible) polynomial in Fp(x).

proof:
$$g(x) \mid X^N - 1$$
 in $\mathbb{F}_p[x]$
 $\Rightarrow \widehat{\chi}^N - \overline{1} = \overline{0}$ in $\mathbb{F}_p[x]/(g(x))(=:\mathbb{F}_g)$
 $\Rightarrow \overline{1} = \overline{\chi}^N = \alpha^N$

Hence the smallest such N is the order of α

upstot: Primitive polynomials g(x) in Fp(x) make very good choices for CRC's catching 2-digit errors.

EXAMPLES

- (1) In $F_{16} = \frac{F_2[x]}{(x^4x+1)}$, we checked g(x) $x = \overline{x}$ was a primitive root, so $g(x) = x^4 + x + 1$ in $F_2[x]$ is a primitive polynomial, and used as a CRC will catch 2-bit errors up to N = 16 1 = 15 bits apart.
- (2) Garrett mentions $g(x)=x^{15}+x+1 \in \mathbb{F}_2[x]$ as being a primitive polynomial, so as a CRC it will catch 2-bit errors up to $N=2^{15}-1=32767$ bits apart!