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1 Introduction

In this chapter, we give an introduction to the theory of dessins d’enfants. They
provide a charming concrete access to a special topic of arithmetic geometry:
Curves defined over number fields can be described by such simple combina-
torial objects as graphs embedded into topological surfaces. Dessins d’enfants
are in some sense an answer of Grothendieck to the beautiful Theorem of Belyi,
which characterises curves defined over number fields by the existence of cer-
tain coverings of the projective line. Grothendieck was fascinated by the fact
that such a covering is completely determined by the preimage of the real inter-
val [0, 1] and called this a dessin d’enfants. As one consequence that especially
attracted people one has an action of the absolute Galois group Gal(Q/Q) on
the set of dessins which is faithful. Therefore in principle all the information
on Gal(Q/Q) is hidden in some mysterious way in these combinatorial objects.
The study of dessins d’enfants leads to the Grothendieck-Teichmüller group in
which Gal(Q/Q) injects. It is still an open question whether these two groups
are equal or not.

In the next three sections we introduce dessins d’enfants and the Galois
action on them. We begin in Section 2 with a review of the correspondence
between closed Riemann surfaces and regular complex projective curves. Since
the link between these two fields is an essential tool which is used through-
out the whole chapter, we provide a sketch of the proof. In Section 3 we give
characterisations of dessins d’enfants in terms of Belyi pairs, graphs embedded
into surfaces, ribbon graphs, monodromy homomorphisms and subgroups of
the free group on two generators and explain how to get from one of these
descriptions to the other. Section 4 is devoted to the action of Gal(Q/Q) on
dessins d’enfants. We review some of the known results on faithfulness and
Galois invariants and explain how it gives rise to an action on the algebraic
fundamental group F̂2 of the three-punctured sphere. The explicit description
of how Gal (Q/Q) acts on the topological generators leads us to the definition
of the Grothendieck-Teichmüller group. We finish the section by indicating
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how Gal (Q/Q) embeds into this group.

In the second part of the chapter we turn to connections between origamis
and dessins d’enfants. Similar to the latter, origamis are given by combinato-
rial data and define arithmetic objects, more precisely curves in moduli space
which are defined over Q. Following the same approach as for dessins, one can
study the action of the absolute Galois group on them. Besides these analo-
gies, origamis and dessins are linked by several explicit constructions.

Section 5 gives an introduction to origamis and explains how they define
curves in the moduli space Mg of smooth algebraic curves of genus g. We
call them origami curves; they are in fact special examples of Teichmüller
curves. In Section 6 we describe the action of Gal(Q/Q) on them and state
some known results. The last two sections present two explicit constructions
of dessins d’enfants to a given origami. Section 7 interprets the origami curve
itself as a dessin. In Section 8 we associate a dessin to every cusp of an origami
curve. We illustrate these constructions by several nice examples.

The subject of dessins d’enfants has been treated from different points of
view in several survey articles, as e.g. [33], [39] and [18, Chap. 2] to men-
tion only a few. A collection of articles on dessins d’enfants including many
explicit examples is contained in [32]. More on origamis can be found e. g.
in [19] and [30] and the references therein. Almost all results in this chapter
were known previously, with the exception of the examples in the last sections.

Acknowledgments: We would like to thank André Kappes and Florian
Nisbach for proofreading.

2 From Riemann surfaces to algebraic curves

One fascinating aspect of the theory of dessins d’enfants is that it touches two
different fields of mathematics, namely algebraic geometry and complex geom-
etry. The bridge between these two fields is built on the following observation
which was already understood by Riemann himself: Closed Riemann surfaces
and regular complex projective curves can be considered to be the same. More
precisely, we have an equivalence between the following three categories (see
e.g. [27, Thm. 7.2]) and [12, Cor. 6.12]):

• Closed Riemann surfaces with non-constant holomorphic maps;

• Function fields over C of transcendence degree 1 with C-algebra homo-
morphisms;

• Regular complex projective curves with dominant algebraic morphisms.
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Recall that a function field over a field k is a finitely generated extension field
of k. We give here only a brief outline of the above equivalences and refer for
further readings to literature in complex geometry (e.g. [7, §16], [23, IV,1])
and algebraic geometry (e.g. [12]).

In a first step we describe how to get from the category of closed Riemann
surfaces to the category of function fields over C of transcendence degree 1.
Let X be a Riemann surface and C(X) the field of meromorphic functions from
X to C. Then C(X) is a function field: The fact that C(X) has transcendence
degree 1 essentially follows from the Riemann-Roch theorem. Recall that the
theorem determines for a divisor D on X the dimension of the complex vector
space L(D) = H0(X,OD) of meromorphic functions f satisfying div(f) ≥ −D.
It states in particular that if the divisor D is effective, i.e. D =

∑
i aiPi with

ai ≥ 0, then dim(L(D)) ≤ 1 + degD.
Suppose now that the degree of C(X) were greater or equal to 2. Then there
would exist two algebraically independent meromorphic functions f and g.
Let P1, . . . , Pk be the poles of f and Q1, . . . , Qm be the poles of g, with
degrees a1, . . . , ak and b1, . . . , bm respectively. One picks the divisor D =∑

aiPi+
∑

j bjQj . By the definition of D we have, for i+j ≤ n, f igj ∈ L(nD).

Since f and g are algebraically independent, we have that all the f igj are
linearly independent. Therefore dim(L(nD)) ≥ (n2 + 3n + 2)/2. On the
other hand, one obtains from the Riemann-Roch theorem that dim(L(nD)) ≤
1 + deg(nD) = 1 + ndeg(D). These two inequalities give a contradiction for n
large enough. Hence the transcendence degree of C(X) is ≤ 1. Equality fol-
lows from the fact that each compact Riemann surface admits a non-constant
meromorphic function. The Riemann-Roch theorem precisely guarantees the
existence of meromorphic functions. E.g. if we fix a divisor of degree greater
or equal to g + 1, then dim(L(D)) ≥ 2, therefore we have a non-constant
meromorphic function in L(D). Altogether we have seen that each closed Rie-
mann surface defines a function field of transcendence degree 1. Furthermore a
non-constant holomorphic function defines a morphism of C-algebras between
the function fields by pulling back the rational functions. We have thus con-
structed a contravariant functor from the category of closed Riemann surfaces
to the category of function fields of transcendence degree 1.

The equivalence between function fields and regular projective complex
curves is described e.g. in [12, Chap. I]. In fact the statement holds a bit
more generally. One may replace the field C by any algebraically closed field
k. Similarly as before one obtains a function field k(C) of degree 1 starting
from an algebraic curve C over k. In this case k(C) is the field of all rational
functions from C to P1(k), the projective line over k. Two algebraic varieties
are birationally equivalent if and only if they have the same function field [12,
I Cor. 4.5] and nonsingular curves are birationally equivalent if and only if
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they are isomorphic [12, Prop. 6.8]. Hence it remains to show that for each
function field K of degree 1 over k one can construct a projective regular curve
C whose function field is K. This construction is described in [12, I,§6]. It
is based on the following observation: Each point p on an algebraic curve C
defines a discrete valuation ring whose quotient field is K = k(C), namely the
local ring Op of germs of regular functions on C near p. The main idea is to
identify the points of the curve with the valuation rings, which they induce,
in order to reconstruct the projective curve C from its function field k(C).
Hence, given a function field K, we take the set CK of discrete valuation rings
of K. We want to think of its elements R as points of the algebraic curve that
we are going to construct. First, CK becomes a topological space by taking
the finite sets and the whole space to be the closed sets. Next, we can cover
CK by affine regular curves as follows. Suppose that R is a point of CK , i.e.
R is a discrete valuation ring in K. Hence K is the quotient field of R and
R is a local ring of dimension 1. Let mR be its maximal ideal. We want to
define an affine curve Y together with an embedding of Y into CK , such that
the image contains the point R. We pick an arbitrary y ∈ R\k and define B
to be the integral closure of k[y] in K. It follows from commutative algebra
that B is contained in R, it is a Dedekind domain and a finitely generated k-
algebra. Thus B is in particular the affine coordinate ring of an affine regular
curve Y . Finally, we want to construct an injective continuous map from Y
to CK . Recall from algebraic geometry that the points in Y correspond to the
maximal ideals of B. Let Q be in Y and nQ the corresponding maximal ideal
of B. Then BnQ

is a local ring in K, and indeed a discrete valuation ring.
Hence we may map Q ∈ Y to BnQ

∈ CK . This gives a continuous map from
Y to CK . Let mQ be the unique maximal ideal in BnQ

. Then nQ = mQ ∩ B.
Hence the map is injective. Furthermore R is in the image, since mR ∩B is a
maximal ideal in B.
One then shows that CK with this structure is a regular projective curve.

In order to close the circle between the three categories, one constructs for
each regular complex projective curve C a closed Riemann surface X with the
same function field: Suppose that C lies in Pn(C). Pn(C) becomes a com-
plex manifold using the natural cover by An(C)’s for charts to Cn. (Be aware
that An(C) and Cn do not have the same topology. Therefore one speaks of
the Zariski topology and the complex topology of Pn(C) and later also of the
curve C). C is the zero set of finitely many homogeneous polynomials f1,
. . . , fm. Since C is regular, the Jacobian matrices ( δfi

δxj
(p))i,j are invertible

for all points p on C. The implicit functions theorem together with the fact
that the complex dimension of C is 1, provides us locally with a function from
C to C, which is invertible. Its inverse map is a chart for C. C becomes a
closed Riemann surface X with these chart maps. Finally, one shows that the
function fields are the same by checking that rational functions on C become
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meromorphic functions on the Riemann surface X and vice versa.

We will use this equivalence between the category of closed Riemann sur-
faces and the category of regular complex projective curves throughout the
whole chapter. Observe in particular that the Riemann sphere corresponds to
the projective line P1(C) under this identification.

3 Dessins d’enfants

In this section we give a brief introduction to dessins d’enfants. They are a
nice way to describe coverings β : X → P1(C) from a closed Riemann surface
X to the Riemann sphere P1(C) which are ramified at most over the three
points 0, 1 and ∞. Such coverings are called Belyi morphisms. One reason
why they are particularly interesting is the famous Theorem of Belyi. This
theorem establishes a connection between complex Riemann surfaces X , which
allow a Belyi morphism, and projective algebraic curves C which are defined
over the algebraic closure Q of Q. As described in Section 2 we identify the
closed Riemann surface X with the corresponding projective regular curve C
defined over C. C is defined over Q if it can be described as the zero set of
polynomials whose coefficients lie in Q. Observe that in this case the curve C
actually is defined over a number field, since a curve can be defined by finitely
many polynomials and therefore there exits a finite field extension of Q which
contains all coefficients. Therefore Belyi morphisms provide a tool for studying
complex curves over number fields.

Theorem 3.1. (Theorem of Belyi, [3]) Let X be a projective complex regular
curve. Then X is defined over Q if and only if there exists a finite morphism
β : X → P1(C) from X to the projective line P1(C) which is ramified at most
over 0, 1 and ∞.

It follows from the proof of the theorem that if the condition of the theorem
holds, we can choose the morphism β such that it is defined over Q. Therefore
in the following, if we call β a Belyi morphism, we will always assume that it
is defined over Q.

The surprising part of Belyi’s result was the only-if direction. Belyi gave
an elementary but tricky algorithm for how to calculate the morphism β. For
the if part of the proof, Belyi referred to a very general result of A. Weil.
Later on, more direct proofs were given by B. Köck in [17] in the language of
algebraic geometry and by J. Wolfart in [38] using uniformisation theory. We
shall sketch the main idea of the proof in Section 4.2



Dessins d’enfants and Origami curves 7

The theorem makes it particularly desirable to describe Belyi morphisms β
as simple as possible. Fortunately, this can be done using “objects so simple
that a child learns them while playing” (Grothendieck in [9]). In the following
we present several methods on how to describe β and give an idea of the proofs
why they are all equivalent and how one can retrieve β from them.

Let (X, β) be a Belyi pair, i.e. a closed Riemann surface X together with
a Belyi morphism β : X → P1(C). We say that two Belyi pairs (X1, β1) and
(X2, β2) are equivalent, if there exists an isomorphism f : X1 → X2 such that
β2 ◦ f = β1. We consider Belyi pairs up to this equivalence relation.

Proposition 3.2. A Belyi pair (X, β) is up to equivalence uniquely determined
by:

• a dessin d’enfants (defined below) up to equivalence;

• a bipartite connected ribbon graph up to equivalence;

• a monodromy map α : F2 → Sd, i.e. a transitive action of F2 on
{1, . . . , d}, up to conjugation in Sd;

• a finite index subgroup of F2 up to conjugation.

Here F2 denotes the free group on two generators. The first part of Propo-
sition 3.2 is often called the Grothendieck correspondence. In the following we
will sketch the proof of the proposition by explaining how to pass from one
description to the next.

From the Belyi pair to a dessin One starts from the observation that a
Belyi pair (X, β) naturally defines a bipartite graph G on the surface X : Let
I be the closed segment on the real line R between 0 and 1. Then its preimage
β−1(I) is a graph on X . Its vertices are the preimages of the two points 0
and 1. It carries a natural bipartite structure: we may colour all preimages
of 0 with one colour (e.g. black) and all preimages of 1 with another colour
(e.g. white). It is a striking fact which we will see in the rest of this section
that the graph embedded into the topological surface carries already enough
information. It uniquely determines the Belyi pair (X, β) up to equivalence
and thus in particular the complex structure on X .
Furthermore, one observes that X − G decomposes into components each of
them containing precisely one preimage of ∞. The holomorphic map β re-
stricted to one of the components is therefore ramified at most in one point
and hence at this point is locally of the form z 7→ zn. Its image is an open
cell. Therefore the component itself is an open cell and thus holomorphically
equivalent to the open unit disk. Altogether, the graph G decomposes the
surface into open cells containing precisely one preimage of ∞.
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Example 3.3. In Figure 1 we show the dessin on the elliptic curve C : y2 =
x(x− 1)(x−λ0) with λ0 = 1/2 + (

√
3/2)i. The curve C has an automorphism

of order 3. The Belyi morphism β is the quotient map with respect to this
automorphism.

β

Figure 1: A Belyi morphism and its dessin d’enfants.

Definition 3.4. A dessin d’enfants is a bipartite connected graph G which is
embedded into an orientable closed topological surface X , such that it fills the
surface, i.e. X\G is a union of open cells. Two dessins d’enfants (X1, G1) and
(X2, G2) are called equivalent if there exists a homeomorphism f : X1 → X2

such that f(G1) = G2.

Dessins and bipartite ribbon graphs Ribbon graphs are a handy way to
describe dessins. Let D be a dessin, i.e. D = (G, i), where G is a connected
graph and i : G →֒ X is a continuous embedding of G into a closed topological
surface X . We start from the observation that the abstract graph G does
not uniquely determine the dessin. One can e.g. embed the same graph into
surfaces of different genera, see Example 3.6. How much information do we
have to add to the graph in order to nail down the dessin? It turns out that
it suffices to assign to each vertex a cyclic permutation of the edges which
are adjacent to the vertex. To simplify notations, we divide each edge into
two half edges and number them with 1, . . . , 2d, where d is the number of
edges of the graph. For each vertex v of G we take a chart (U, ϕ) of a small
neighbourhood U of v in X to the plane R2 such that the image of G ∩ U is
a star with the vertex ϕ(v) as centre. Imagine we circle anticlockwise around
the vertex in ϕ(U). Let πv be the cyclic permutation which denotes the order
in which we meet the images of the half edges adjacent to v. Hence πv is in
the symmetric group S2d. For the dessin in Figure 1 we obtain e.g. the cyclic
permutations (1 3 5) and (2 4 6), if we label the half edges as in Figure 2.

1
2

3 4

5

6
e

f

g

Figure 2: Labelling the half edges of the dessin in Figure 1.
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Definition 3.5. A ribbon graph (G, O) – often also called fat graph – is a
connected graph G together with a ribbon structure O = {πv|v a vertex of G},
which assigns to each vertex v of G a cyclic permutation πv of the half edges
adjacent to v. Two ribbon graphs (G1, O1) and (G2, O2) are called equivalent
if there exists an isomorphism h : G1 → G2 of graphs such that the pull back
of O2 is equal to O1.

Let π be the product of all the πv’s and τ the transposition which maps
each half edge to the other half edge that belongs to the same edge. Then the
tuple (π, τ) determines the ribbon graph.

Recall that by the definition of dessins the graph G fills the surface X ,
i.e. X\G consists of disjoint open cells C1, . . . , Cs. Observe that we obtain
the edges of the cycle bounding a cell C clockwise successively by taking the
edges on which the half edges e, τπ(e), (τπ)2(e), . . . lie. Here e is the half edge
at the beginning of an edge in the cycle, where the cycle carries the natural
anti-clockwise orientation. For example, for the dessin in Figure 1 we obtain
one cell which is bounded by the cycle (e f g e f g).

One gets the dessin back from the ribbon graph doing the reverse procedure:
Each cycle (e, τπ(e), . . . , (τπ)k(e)) defines a cycle in the graph which is the
union of the corresponding edges. One glues a cell to each such cycle . Then
each edge is on the boundary of precisely two cells (which may coincide) and
one obtains a closed surface X in which G is embedded.

Example 3.6. In Figure 3 we show two ribbon graphs (G1, O1) and (G2, O2).

G1:

•0 ◦1

e1

65

e2

43

e3

21

with ribbon structure
O1 = {π1 = (5 3 1), π2 = (2 4 6)}.

G2:

•0 ◦1

e1

65

e2

43

e3

21

with ribbon structure
O2 = {π1 = (5 3 1), π2 = (2 6 4)}.

Figure 3: Two ribbon graphs.

Observe that the two ribbon graphs have the same underlying graph, but the
ribbon structures are different and they define different surfaces. The second
one is the ribbon graph from Figure 2.
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For both ribbon graphs we have τ = (1 2)(3 4)(5 6). Hence for the first
graph we obtain τπ = (1 6)(2 3)(4 5) and for the second graph we have
τπ = (5 4 1 6 3 2). Thus, in the first case we obtain three cells: The first one
is bounded by e3 and e1, the second one is bounded by e3 and e2 and the third
one is bounded by e2 and e1. Gluing the disks along their edges gives a genus 0
surface. This can be checked with a short Euler characteristic calculation. As
we already saw above, we obtain in the second case one cell bounded clockwise
by the edges e1, e2, e3, e1, e2 and e3, and a surface of genus 1.

Hence we may equivalently talk about dessins or about bipartite ribbon
graphs. One can check that the respective equivalence relations match each
other.

Remark 3.7. The constructions above define a bijection between the set of
equivalence classes of dessins and the set of equivalence classes of bipartite
connected ribbon graphs. Furthermore we described a natural way to assign
to each Belyi pair an equivalence class of dessins.

In order to see how we can retrieve the Belyi pair from a given dessin or a
given ribbon graph, it is convenient to introduce monodromy maps.

Monodromy maps and subgroups of F2 Recall that for an unramified
degree d covering p : X∗ → Y ∗ of surfaces we obtain the monodromy homo-
morphism α : π1(Y

∗) → Sd to the symmetric group Sd on d letters as follows:
Fix a point y ∈ Y ∗. Call its d preimages x1, . . . , xd. For [c] ∈ π1(Y

∗, y) map
i ∈ {1, . . . , d} to j, if xj is the end point of the lift of c to X , which starts in
xi. The resulting map α is independent of the chosen point y and of the choice
of the labelling of its preimage up to composition with a conjugation in Sd.

Let us now consider the natural embedding π1(X
∗) →֒ π1(Y

∗) induced by
p and let U be its image. U depends on the chosen base points of the funda-
mental groups only up to conjugation. Hence we may assume that the base
point of π1(X

∗) is the preimage of the base point of π1(Y
∗) labelled by 1.

Then the image of π1(X
∗) →֒ π1(Y

∗)
α→ Sd is the stabiliser StabSd

(1) of 1 in
Sd and U is its full preimage in π1(Y

∗). Hence one obtains U directly from
α, namely U = α−1(StabSd

(1)). Conversely given U one obtains α as follows:
π1(Y

∗) acts on the d cosets Ugi of U in π1(Y
∗) by multiplication from the

right; α is the induced action on the indices.

Starting now from a Belyi pair (X,β), we obtain an unramified cover by
removing the three ramification points 0, 1 and ∞ from P1(C) and all their
preimages from X . We denote the resulting punctured surfaces by

...
P and X∗,

respectively. We fix an isomorphism between π1(
...
P) and F2, the free group
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in two generators. Then p : X∗ → ...
P is an unramified covering and defines

a monodromy map from F2
∼= π1(

...
P) to Sd (where d is the degree of p) or

equivalently a finite index subgroup U of F2
∼= π1(

...
P ).

Finally we describe how to retrieve the Belyi pair from the subgroup U .
The main ingredient that we use is the universal covering theorem. Let us
choose a universal covering u : H̃ → ...

P . By the theorem we may identify
F2

∼= π1(
...
P) with the group of deck transformations Deck(H̃/

...
P). By the same

theorem each finite index subgroup of π1(
...
P ) defines an unramified covering β

from some surface X∗ to
...
P such that it induces an embedding Deck(H̃/X∗)

→֒ Deck(H̃/
...
P) whose image is the subgroup U . There is a unique complex

structure on X∗ which makes β holomorphic, namely the lift of the complex
structure on

...
P via β. It follows from the classical theory of Riemann surfaces

that there is a unique closed Riemann surface X which is the closure of X∗.
It is obtained by filling in one point for each puncture. Furthermore β can be
extended in a unique way to β : X → P1(C).
One can check that all this is independent of the choices that we did in between
up to the equivalence relations, that the equivalence relations fit together and
that the constructions are inverse to each other.

Remark 3.8. The above constructions define bijections between the set of
equivalence classes of Belyi pairs, the set of conjugacy classes of group homo-
morphisms F2 → Sd which are transitive actions, and the set of conjugacy
classes of finite index subgroups of F2.

As a last step, we have to show how we can relate dessins and ribbon graphs
to monodromy maps or finite index subgroups of F2.

From a dessin D to a Belyi pair (X, β) Let D be a dessin and (G, O =
{π1, . . . , πs}) the corresponding ribbon graph from Remark 3.7. How can we
retrieve the monodromy of β from these data? Recall that G is bipartite and
the vertices are coloured: the preimages of 0 are black and those of 1 are white.
We may also colour the half edges used in the construction of Remark 3.7 with
the colour of the vertex which lies on them. Observe that π acts on the set
Eblack of black half edges and the set Ewhite of white half edges separately.
Thus we can decompose π = πblack ◦ πwhite with πblack ∈ Perm(Eblack) and
πwhite ∈ Perm(Ewhite).

Let us now choose a base point y ∈ ...
P on the segment between 0 and 1

close to 0. Hence all its preimages xi lie on black half edges. Furthermore we
pick two curves c1 and c2 as generators of π1(

...
P ) ∼= F2, where c1 is a simple

closed circle around 0 and c2 is a simple closed circle around 1; both starting
in y and both anti-clockwise. By the definition of π (see Remark 3.7), the
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monodromy α(c1) is the permutation πblack and the monodromy α(c2) is the
permutation τπwhiteτ . Here we identify the point xi with the black half edge
on which it lies.

c1 c2

y

Figure 4: Generators of the fundamental group of
...
P .

Hence, we may assign to a dessin the monodromy map

F2 → Sn, x 7→ πblack, y 7→ τπwhiteτ.

Again one can check that this construction is inverse to the construction given
in Remark 3.7 and the equivalence relations fit together.
Furthermore it follows from the above construction that given the monodromy
map α : F2 → Sd of a Belyi pair (X, β), one obtains the corresponding bipartite
ribbon graph (G, O) directly as follows: Label the black half edges with 1, . . . ,
d and the white half edges with d + 1, . . . , 2d. Then (G, O) is described by
the two permutations

τ : i 7→ d + i and π = πblack ◦ πwhite

with πblack : i 7→ α(x)(i) and πwhite : d + i 7→ d + α(y)(i)

Remark 3.9. The above construction defines a bijection between the set of
equivalence classes of dessins and the set of equivalence classes of Belyi pairs.
This map is the inverse map to the one described before Remark 3.7.

With Remark 3.9 we have finished the outline of the proof of Proposition
3.2.

It follows in particular that we can describe a Belyi pair (X, β) or equiva-
lently the corresponding dessin D by a pair of permutations (σ1, σ2), namely
σ1 = α(c1) and σ2 = α(c2), where α : F2 → Sd is the monodromy map. We
will say the dessin has monodromy (σ1, σ2). This description is unique up to
simultaneous conjugation with an element in Sd. Furthermore the group gener-
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ated by σ1 and σ2 acts transitively on {1, . . . , d} and each pair of permutations
with this property defines a Belyi pair.

The genus of a dessin Suppose that a dessin (X, β) of degree d has mon-
odromy (σ1, σ2). The dessin naturally defines a two-dimensional complex. By
the construction in Remark 3.9 we have:

• The black vertices are in one-to-one correspondence with the cycles in
σ1. Denote their number by s1.

• The white vertices are in one-to-one correspondence with the cycles in
σ2. Denote their number by s2.

• The faces of the complex are in one-to-one correspondence with the cycles
in σ1 ◦ σ2. Denote their number by f .

Hence, we can calculate the genus as follows:

g =
2 − χ

2
with χ = s1 + s2 − d + f

Definition 3.10. We call g as above the genus of the dessin D.

4 The Galois action on dessins d’enfants

One of the original motivations to study dessins d’enfants was the hope to get
new insights into the structure of the “absolute” Galois group Gal (Q/Q) of
the algebraic closure Q of the rational number field Q. This hope came from
the fact that, as a consequence of the Grothendieck correspondence between
dessins d’enfants and Belyi pairs explained in the previous section, Gal (Q/Q)
acts on the set of dessins d’enfants. We shall see that this action is faithful,
so in principle, all information about Gal (Q/Q) is somehow contained in the
dessins d’enfants. Unfortunately, except for very special cases, it is so far not
known how to describe the action of a Galois automorphism on a dessin in
terms of the combinatorial data that determine the dessin. Nevertheless this
approach led to many beautiful results concerning e. g. the faithfulness of the
action on special classes of dessins d’enfants. Perhaps the most conceptual
outcome of the investigation of the Galois action on dessins is the embedding
of Gal (Q/Q) into the Grothendieck-Teichmüller group ĜT .

4.1 The action on dessins

In this section we explain the action of Gal (Q/Q) on dessins d’enfants by say-
ing how it acts on Belyi pairs.
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By the theorem of Belyi, every Riemann surface X that admits a Belyi mor-
phism β is defined over a number field and thus in particular over Q. As
explained in the first paragraph of Section 3, this means that, as an algebraic
curve, X can be described as the zero set of polynomials with coefficients in
Q. The fancier language of modern algebraic geometry expresses this property
by saying that X admits a morphism of finite type ϕ : X → Spec(Q) to the
one point scheme Spec(Q). Such a ϕ is called a structure morphism of X .

Every Galois automorphism σ ∈ Gal (Q/Q) induces an automorphism σ∗ of
Spec(Q). Composing it with the structure morphism ϕ gives a new structure
morphism σϕ := (σ−1)∗ ◦ ϕ : X → Spec(Q). We call σX the scheme X en-
dowed with the structure morphism σϕ. In more elementary language, σX is
obtained from X by applying σ to the polynomials defining X . In general, X
and σX are not isomorphic as Q-schemes or as Riemann surfaces, i. e. there is
in general no isomorphism making the following diagram commutative:

X
? //

ϕ
##GGGGGGGGG

σX

σϕ{{vvvvvvvvv

Spec(Q)

Example 4.1. Let E be an elliptic curve over C, in other words a Riemann
surface of genus 1. E can be embedded into the projective plane as the zero
set of a Weierstrass equation y2 = x3 + ax + b (or rather its homogenisation).
It is defined over a number field if and only if a, b ∈ Q. A Belyi map for E is
obtained e. g. by applying Belyi’s algorithm to the four critical values of the
projection β0 : E → P1, (x, y) 7→ x. The elliptic curve σE is the zero set of
y2 = x3 + σ(a)x + σ(b). It is well known that Weierstrass equations define
isomorphic Riemann surfaces if and only if their j-invariants agree. Thus σE

is isomorphic to E if and only if j(E) = j(a, b) = a3

4a3+27b2 is fixed by σ.

To describe the Belyi map σβ : σX → P1 that gives the image of the Belyi pair
(X, β) under σ, we first look at the characterisation of X as the zero set of
polynomials f1, . . . , fk in variables x1, . . . , xn: then β is, at least locally, also
given as a polynomial in x1, . . . , xn with coefficients in Q, and σβ is obtained
by applying σ to the coefficients of this polynomial.

The description of σβ in terms of schemes is as follows: Let π : P1 → Spec(Q)
denote the (fixed) structure morphism of the projective line P1; π is related to
the structure morphism ϕ of X by the equation

ϕ = π ◦ β.
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Since P1 clearly is defined over Q, for every σ ∈ Gal (Q/Q) the induced auto-
morphism σ∗ of Spec(Q) lifts to an automorphism ρσ of P1. Then we have

σβ = ρσ−1 ◦ β.

This is summarised in the following commutative diagram:

X

σβ

44

β

��

ϕ

##GGGGGGGGG
σϕ

**TTTTTTTTTTTTTTTTTTTT

Spec(Q)
(σ−1)∗

// Spec(Q)

P1

π

;;wwwwwwwww ρ
σ−1 // P1

π

99sssssssssss

4.2 Fields of definition and moduli fields

Before studying properties of the Galois action on dessins d’enfants, we shortly
digress for the following question: Given a Riemann surface X , what is the
smallest field over which X can be defined?

In general we say that a variety (or scheme) X/K over a field K can be defined
over a subfield k ⊂ K if there is a scheme X0/k over k such that X is obtained
from X0 by extension of scalars: X = X0 ×k K. In this case, we call k a field
of definition for X .

For example, a Riemann surface can always be defined over a field K which
is finitely generated over Q. Namely, considered as an algebraic curve, X
is the zero set of finitely many polynomials, and we may take K to be the
extension field of Q which is generated by the finitely many coefficients of
these polynomials.

It is not true in general that there is a unique smallest subfield of K over
which a given variety X/K can be defined. Therefore we cannot speak of “the
field of definition” of X . But there is another subfield of K associated with
X , called the moduli field, which is uniquely determined by X and turns out
to be closely related to fields of definition:

Definition 4.2. Let Aut (C) be the group of all field automorphisms of C.
For a Riemann surface X denote by U(X) the subgroup of all σ ∈ Aut (C) for
which σX is isomorphic to X . The fixed field M(X) ⊂ C of U(X) is called
the moduli field of X .

There are two rather straightforward observations about moduli fields:
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Remark 4.3. Let X be a Riemann surface of genus g.

a) If k ⊂ C is a field of definition for X , then M(X) ⊆ k.

b) Suppose that X can be defined over Q and let [X ] be the corresponding
point in the moduli space Mg,Q of regular projective curves defined over Q

(considered as a variety over Q). Recall that Mg,Q is obtained from a variety
Mg,Q which is defined over Q by extension of scalars. Then the orbit of [X ]
under the action of Gal (Q/Q) on Mg,Q gives a closed point [X ]Q in the variety
Mg,Q whose residue field is isomorphic to M(X).

Proof. a) If X is defined over k and if σ ∈ Aut (C) fixes k, then idX is an
isomorphism between σX and X . Thus {σ ∈ Aut (C) : σ|k = idk} ⊆ U(X),
hence M(X) ⊆ k.

b) (Sketch) Let V ⊂ Mg,Q be an affine neighbourhood of [X ]Q and let A be
its affine coordinate ring. Then [X ]Q corresponds to a maximal ideal m in A,
and k = A/m is its residue field. In A⊗ k, m decomposes into maximal ideals
m1, . . . , md which are in bijection with the points in the Galois orbit of [X ].
Thus the fixed field of the stabiliser of, say, m1 in Gal (Q/Q) is A ⊗ k/m1 =
k.

The relation between the field of moduli and fields of definition of a Rie-
mann surface is much closer than indicated in part a) of the remark:

Proposition 4.4. Any Riemann surface can be defined over a finite extension
of its moduli field.

This result is proved in [38]. for a proof in the language of algebraic ge-
ometry that holds for curves over any field, see [10]. Further results on mod-
uli fields, in particular on the moduli field of a Belyi pair, can be found in
[17]. There it is shown, among other nice properties, that for “most” curves,
the moduli field is also a field of definition. The precise statement is that
X/Aut (X) can be defined over M(X) for any curve X of genus g ≥ 2. This
implies in particular that X can be defined over M(X) if X admits no nontriv-
ial automorphism. In this case, which holds for a generically chosen Riemann
surface of genus ≥ 3, the moduli field is the unique smallest field of definition.

Proposition 4.4 plays a key role in the proof of the “if”-direction of Belyi’s
theorem. As explained in Section 3 one has to show that a Riemann surface
can be defined over Q if it admits a finite covering β : X → P1(C) which is
ramified at most over 0,1 and ∞. Observe that, up to isomorphism, there
are only finitely many coverings Y → P1(C) from some Riemann surface Y of
a fixed degree that are unramified outside 0, 1, ∞ (see [17, Prop. 3.1] for an
elementary proof of this fact). It follows that the moduli field of β and hence
in particular that of X is a finite extension of Q. From Proposition 4.4 we
then conclude that X can be defined over a number field.
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4.3 Faithfulness

We have established an action of Gal (Q/Q) on Belyi pairs by defining σ ·(X, β)
to be the Belyi pair (σX, σβ) for σ ∈ Gal (Q/Q). Example 4.1 shows that this
action is faithful, since for every Galois automorphism σ 6= id we can find a, b ∈
Q such that σ(j(a, b)) 6= j(a, b) and thus σE is not isomorphic to E, where E
is the elliptic curve with Weierstrass equation y2 = x3 + ax + b. Translating
the Galois action to dessins d’enfants via the Grothendieck correspondence we
deduce:

Proposition 4.5. The action of Gal (Q/Q) on dessins d’enfants is faithful.

Several nice examples for this Galois action on dessins are worked out in
the manuscript [39] by J. Wolfart; he attributes the following one to F. Berg:
Let σ ∈ Gal (Q/Q) be an element that maps the primitive 20th root of unity
ζ = eπi/10 to ζ3. Then σ maps the left hand dessin in Figure 5 to the right
hand one:

Figure 5: Two Galois equivalent dessins which are not isomorphic.

The dessin on the left lies on the elliptic curve y2 = (x+ 1)(x− 1)(x− cos π
10 ),

whereas the right hand dessin lies on y2 = (x + 1)(x − 1)(x − cos 3π
10 ). The

Belyi map is in both cases the composition of the projection β0(x, y) = x with
the square T 2

5 (z) of the fifth Chebyshev polynomial.

In the proof of Proposition 4.5 we have shown more precisely that the action is
faithful on dessins of genus 1. The same faithfulness result holds for the Galois
action on dessins of any fixed genus g ≥ 1. This can be seen for example using
hyperelliptic curves: for mutually distinct numbers a1, . . . , a2g in P1(C), the
(affine) equation y2 = (x − a1) · . . . · (x − a2g) defines a nonsingular curve
X of genus g. The automorphism (x, y) 7→ (x,−y) is called the hyperelliptic
involution on X ; the quotient map is the projection (x, y) 7→ x. It is a covering
X → P1 of degree 2, ramified exactly over a1, . . . , a2g. Two hyperelliptic curves
with equations y2 = (x − a1) · . . . · (x − a2g) and y2 = (x − a′

1) · . . . · (x − a′
2g)

are isomorphic if and only if there is a Möbius transformation that maps the
set {a1, . . . , a2g} to the set {a′

1, . . . , a
′
2g}.
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A hyperelliptic curve is defined over Q if all the ai are algebraic numbers. In
this case, for σ ∈ Gal (Q/Q), the curve σX is given by the equation y2 =
(x − σ(a1)) · . . . · (x − σ(a2g)). It is then easy, if σ 6= id, to choose a1, . . . , a2g

in such a way that there is no Möbius transformation that maps the ai to the
σ(aj). An explicit way to find suitable ai’s is explained in [1].

With a bit more work, it is also possible to show that the Galois action on genus
0 dessins is faithful. Since all Riemann surfaces of genus zero are isomorphic
to the projective line, it is not possible to find, as in the case of higher genus,
a Riemann surface X such that σX 6∼= X . Rather one has to provide, for a
given σ ∈ Gal (Q/Q), σ 6= id, a rational function β(z) such that σβ is not
equivalent to β, i. e. not of the form β ◦ ρ for some Möbius transformation
ρ. L. Schneps [33] showed that one can always find a suitable polynomial.
The dessin d’enfants obtained from a polynomial is a planar graph whose
complement in the plane is connected, hence the dessin is a tree. Schneps’
result thus is

Proposition 4.6. The Galois action on trees is faithful.

Using a similar argument as for the hyperelliptic curves, F. Armknecht [1]
gave an alternative proof of this result. L. Zapponi [41] improved the result
to trees of diameter at most 4.

4.4 Galois invariants

To understand the Galois action on dessins d’enfants one can look for Galois
invariants, i. e. properties of a dessin that remain unchanged under all Galois
automorphisms. The idea, or rather the dream, is to find a complete list of
invariants; then two dessins d’enfants would be Galois conjugate if and only if
they agree on all the data from the list. Unfortunately such a list is not known
up to now.

But several Galois invariants are known and can at least help distinguishing
different orbits. The most fundamental invariants are derived from the corre-
spondence of dessins d’enfants with Belyi pairs: If (X, β) is a Belyi pair and
σ ∈ Gal (Q/Q), there is a bijection between the ramification points of β on X
and the ramification points of σβ on σX ; moreover this bijection preserves the
ramification orders. It therefore follows from the Riemann-Hurwitz formula
that X and σX have the same genus. Translating these remarks to the cor-
responding dessin D and observing that the ramification points of β over 0, 1
and ∞ correspond to the black vertices, the white vertices and the cells of D,
respectively, we obtain:

Proposition 4.7. The genus and the valency lists of a dessin d’enfants are
Galois invariants.
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Recall that the genus of a dessin d’enfants D = (G, i) is the genus of the
surface onto which the dessin is drawn, see Definition 3.10. D has 3 valency
lists: one for the black vertices, one for the white vertices, and one for the
cells. These lists contain an entry for each vertex (resp. cell), and the entry is
the valency of this vertex (resp. cell).

A famous example that these invariants do not suffice to separate Galois orbits
is “Leila’s flower”, see [33], [40]. A few more subtle Galois invariants are known:
the automorphism group of D, properties of the action of Aut(D) on vertices or
edges (like “regularity”); Zapponi [40] introduced the spin structure of a dessin
and showed that it is a Galois invariant and in particular that it separates the
two non-equivalent versions of Leila’s flower.

4.5 The action on F̂2

Recall that
...
P is the projective line P1(C) with the three points 0, 1 and

∞ removed. We saw in Proposition 3.2 that dessins d’enfants correspond
bijectively to finite unramified coverings of

...
P and thus to (conjugacy classes

of) finite index subgroups of F2 = π1(
...
P ). In this section we explain how the

Galois action on dessins induces an action of Gal (Q/Q) on F̂2, the profinite

completion of F2, and thus an embedding of Gal (Q/Q) into Aut (F̂2).

We restrict our attention to dessins for which the associated covering of
...
P is

Galois. The corresponding subgroup of F2 is then normal, and we have no
ambiguity “up to conjugation”. Moreover the action of Gal (Q/Q) on finite
index subgroups of F2 can also be interpreted as an action on the set of finite
quotient groups F2/N , where N runs through the normal subgroups of F2.
These finite quotient groups form a projective system of finite groups, with
projections F2/N

′ → F2/N coming from inclusions N ′ ⊂ N . The inverse limit

of this projective system is F̂2, the profinite completion of F2.

The action of Gal (Q/Q) on F̂2 can be described quite explicitly. We sketch
the approach by Y. Ihara, P. Lochak and M. Emsalem, see [16] and [6]; the
details are worked out in [28]. Let x and y be generators of F2 = π1(

...
P) that

correspond to loops around 0 and 1, resp. Their residue classes in the finite
quotients F2/N of F2 define elements (x mod N)N and (y mod N)N of F̂2,
that we still denote by x and y. They are called topological generators since
the subgroup they generate is dense in the profinite (or Krull) topology of F̂2.
Note that the group theoretical and the topological data are related as follows:
if N is a finite index normal subgroup of F2 which corresponds to the normal
covering p : Y → P1, then the order of x mod N in F2/N is the ramification
index of p above 0, i. e. the l.c.m. of the ramification indices of the points in
the fibre p−1(0); we denote this number by e(N). With this notation at hand
we can state the announced result:
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Proposition 4.8. For σ ∈ Gal (Q/Q) and x and y the topological generators

of F̂2 described above we have:

σ · x = xχ(σ)

σ · y = f−1
σ yχ(σ)fσ.

The element fσ ∈ F̂2 in the second formula will be explained later; xχ(σ) is

the element of F̂2 defined by x
χ(σ)
N = (x mod N)χe(N)(σ), N running through

the finite index normal subgroups of F2, where for a positive integer e, χe :
Gal (Q/Q) → (Z/eZ)× is the cyclotomic character , i. e. χe(σ) = n if σ(ζe) =
ζn
e for a primitive e-th root of unity ζe. Note that χ(σ) = (χe(N)(σ))N can be

considered as an element of Ẑ×.

The starting point for the proof of Proposition 4.8 is the equivalence of the
following categories:

• finite normal coverings of P1(C) unramified outside 0, 1 and ∞;

• finite normal coverings of P1(Q) unramified outside 0, 1 and ∞;

• finite normal holomorphic unramified coverings of
...
P ;

• finite Galois extensions of Q(T ) unramified outside T , T − 1 and 1
T .

The first equivalence is a consequence of Belyi’s theorem, the others are stan-
dard results on Riemann surfaces and algebraic curves (cf. Section 2 and the
paragraph before Remark 3.8).

A crucial technical tool in the proof is the notion of a tangential base point
of a Riemann surface X . It consists of a point together with a direction in
this point. For the fundamental group with respect to a tangential base point,
only closed paths are considered that begin and end in the prescribed direc-
tion. For example, we denote by ~01 the tangential base point of P1(C) which is
located at 0 and whose direction is the positive real axis. We take the element
x ∈ π1(

...
P , ~01) to be a small loop around 0, that begins and ends in 0 in the

direction towards 1:

Figure 6: The generator x in the tangential base point ~u = ~01.

Another important tool is the field P~u of convergent Puiseux series in a tan-
gential base point ~u. For ~u = ~01, these are series of the form

∑∞
n=k anT

n
e for

some integer k, some positive integer e and complex coefficients an, such that
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the series converges in some punctured neighbourhood of 0. These Puiseux
series then define meromorphic functions in a neighbourhood of 0 that is slit
along the real line from 0 to 1.

Given a covering p : X → P1 that is possibly ramified over 0, the function field
C(X) of X can be embedded into P~u as follows: fix a point v ∈ X above 0
and choose a local coordinate z in v such that p is given by z 7→ ze in a neigh-
bourhood of v. For a meromorphic function f ∈ C(X), let f(z) =

∑
anzn be

the Laurent expansion in v, and take
∑

anT
n
e to be its image in P~u, where e

is the ramification index of p in v. If ζ is an e-th root of unity, we get another
embedding by sending

∑
anzn to

∑
anζnT

n
e . These embeddings correspond

bijectively to the tangential base points in v that are mapped to ~u by z.

Lifting the (small!) loop x via p to X with starting point v we again get a
closed path, but it may end in v in a different direction from the starting one.
In this way we get an action of x on the tangential base points over ~u and
hence on the embeddings of C(X) into P~u.

Now let σ ∈ Gal (Q/Q). To describe σ · x, we have to specify, for each Be-
lyi pair (X, β), the embedding of C(X) into P~u induced by σ · x. By the
above equivalences of categories, it suffices to take the function field Q(X)
and Puiseux series with coefficients in Q. Then σ acts on the coefficients
of the Puiseux series, and an embedding that maps f ∈ Q(X) to the series∑

anT
n
e is transformed by σ · x into the embedding

f 7→
∑

anT
n
e 7→

∑
σ−1(an)T

n
e 7→

∑
σ−1(an)ζnT

n
e 7→

∑
anσ(ζ)nT

n
e

where ζ is the root of unity corresponding to x. Since σ(ζ) = ζχe(σ), this
shows the first formula of Proposition 4.8.

The second formula is proved similarly using a small loop y around 1. The
difference is that here we need the path t from 0 to 1 along the real line
to make y into a closed path around ~u. But t can also be interpreted as
acting on embeddings of Q(X) into the field of Puiseux series. Working with
fundamental groupoids instead of the fundamental group, we can calculate σ ·t
in a similar way as σ · x. The element fσ in the formula then turns out to be
t−1 σ · t.

4.6 The action on the algebraic fundamental group

At first glance the action of Gal (Q/Q) on F̂2 described in the previous section
might look very special. But in fact it is an explicit example of the very gen-
eral and conceptual construction of Galois actions on algebraic fundamental
groups. We shall briefly explain this relation in this section.

The algebraic fundamental group πalg
1 (X) of a scheme X is defined as the pro-
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jective limit of the Galois (or deck transformation) groups of the finite normal
étale coverings of X . In general, a morphism of schemes is called étale if it
is “smooth of relative dimension 0”. If X is an algebraic curve over the com-
plex numbers, this property is equivalent to the usual notion of an unramified
covering. So in this case the projective system defining πalg

1 (X) is the system
of the finite quotient groups of the topological fundamental group π1(X). It
follows that the algebraic fundamental group of a Riemann surface is the profi-
nite completion of its topological fundamental group, cf. [26, p. 164].

In the proof of Proposition 4.8 we used the equivalence of four categories,
namely the normal coverings of P1 as a variety over C resp. Q that are un-
ramified outside 0, 1 and ∞, the unramified coverings of

...
P , and the suitably

ramified Galois extensions of the function field Q(T ) of P1
Q
. In all four cat-

egories, to every object there is associated a finite group (the Galois group
of the covering resp. the field extension). The morphisms in the respective
category make these groups into a projective system. The inverse limits of
these systems are resp. the algebraic fundamental groups of

...
PC

and
...
PQ

, the

profinite completion F̂2 of the topological fundamental group π1(
...
P) = F2, and

the Galois group of Ω/Q(T ), where Ω is the maximal Galois field extension of
Q(T ) which is unramified outside T , T−1 and 1

T . As a corollary to Proposition
4.8 we thus obtain:

Remark 4.9. We have the following chain of group isomorphisms:

πalg
1 (

...
PC

) ∼= πalg
1 (

...
PQ

) ∼= F̂2
∼= Gal (Ω/Q(T )).

From the chain of Galois extensions Q(T ) ⊂ Q(T ) ⊂ Ω we obtain the exact
sequence

1 → Gal (Ω/Q(T )) → Gal (Ω/Q(T )) → Gal (Q/Q) → 1

of Galois groups (since Gal (Q(T )/Q(T )) ∼= Gal (Q/Q)). Using the isomor-
phisms of Remark 4.9, we obtain the following special case of Grothendieck’s
exact sequence of algebraic fundamental groups, cf. [26, Thm. 8.1.1] :

1 → πalg
1 (

...
PQ

) → πalg
1 (

...
PQ

) → Gal (Q/Q) → 1.

This exact sequence provides us a priori with an outer action of Gal (Q/Q) on

πalg
1 (

...
PQ

), i. e. a group homomorphism from Gal (Q/Q) to the outer automor-

phism group Out(F̂2) = Aut (F̂2)/Inn (F̂2) of F̂2
∼= πalg

1 (
...
PQ). The additional

information that we obtain from the explicit results in Section 4.5 is that the
sequence splits, and that the outer action thus is in fact a true action. In other
words, the construction in Section 4.5 corresponds to a particular splitting ho-
momorphism Gal (Q/Q) → πalg

1 (
...
PQ

).
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4.7 The Grothendieck-Teichmüller group

In the last two sections we established a group homomorphism τ : Gal (Q/Q) →
Aut (F̂2) coming from the Galois action on dessins. It follows from Proposi-
tion 4.5 that τ is injective. In this way, Gal (Q/Q) is embedded into a group
whose definition does not refer to field extensions or number theory; but since
Aut (F̂2) is a very large group that is not well understood, there is not much
hope that this embedding alone can shed new light on the structure of the
group Gal (Q/Q).

In his paper [4], V. Drinfel’d defined a much smaller subgroup of Aut (F̂2),
which still contains the image of Gal (Q/Q) under τ . He called this group

the Grothendieck-Teichmüller group and denoted it by ĜT . It is still an open
question whether Gal (Q/Q) is equal to ĜT . In this section we present the

definition of ĜT and indicate how Gal (Q/Q) is embedded into ĜT .

We saw in Proposition 4.8 that for σ ∈ Gal (Q/Q), the automorphism τ(σ) ∈
Aut (F̂2) is completely determined by the “exponent” λσ = χ(σ) ∈ Ẑ× and

the “conjugator” fσ ∈ F̂2. The explicit knowledge of fσ makes it possible to
show that it acts trivially on abelian extensions of Q(T ) and therefore that

fσ is contained in the (closure of the) commutator subgroup F̂ ′
2 of F̂2, see

[16, Prop. 1.5] or [28, Sect. 4.4]. The composition of automorphisms implies

that pairs in Ẑ× × F̂ ′
2 that come from Galois automorphisms, are multiplied

according to the rule

(λ, f) · (µ, g) = (λµ, fFλ,f (g)), (4.1)

where Fλ,f is the endomorphism of F̂2 which is induced by x 7→ xλ and y 7→
f−1yλf . Motivated by his investigations of braided categories Drinfel’d found
some natural conditions to impose on such pairs (λ, f):

Definition 4.10. a) Let ĜT 0 be the set of pairs (λ, f) ∈ Ẑ×× F̂ ′
2 that satisfy

( I ) θ(f) f = 1

( II ) ω2(fxm)ω(fxm) fxm = 1

where m = 1
2 (λ − 1) and θ resp. ω are the automorphisms of F̂2 defined by

θ(x) = y, θ(y) = x resp. ω(x) = y, ω(y) = (xy)−1.

b) Let ĜT 0 be the group of elements in ĜT 0 that are invertible for the com-
position law (4.1).

c) The Grothendieck-Teichmüller group ĜT is the subgroup of ĜT 0 of elements
that satisfy the further relation

( III ) ρ4(f̃) ρ3(f̃) ρ2(f̃) ρ(f̃) f̃ = 1
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which takes place in the profinite completion K̂5 of the pure braid group K5

on five strands. This group is generated by elements xi,i+1 for i ∈ Z/5Z, and

ρ is the automorphism that maps xi,i+1 to xi+3,i+4; finally f̃ = f(x1,2, x2,3).

It is not obvious from the definition that ĜT 0 is a group, more precisely the
group of all elements in ĜT 0 that induce automorphisms on F̂2. The proofs
of these facts can be found in [20] and [34]; a careful proof with all details is
contained in [8].

The relation between the Galois group and the Grothendieck-Teichmüller group
is stated in

Theorem 4.11. Via the homomorphism τ , Gal (Q/Q) becomes a subgroup of

ĜT .

That the pairs (λσ, fσ) coming from Galois automorphisms satisfy the first
two relations (I) and (II) can be shown using the explicit computations of the

action on F̂2, see [28, Sect. 5.1]. The proof of the third relation is a bit more
complicated; we refer to [16].

5 Origamis

5.1 Introduction to origamis

In the world of dessins d’enfants we study finite unramified holomorphic cov-
erings β : X∗ → ...

P between Riemann surfaces. We have seen in Section 3 that
such a covering is up to equivalence completely determined by the covering
R∗ → ...

S of the underlying topological surfaces. It is very tempting to gen-
eralise this and look at general finite unramified coverings between punctured
closed surfaces, i.e. closed surfaces with finitely many points removed. It turns
out that choosing the once punctured torus E∗ = E\∞ (∞ some point on the
torus E) as base surface instead of

...
S is in some sense the next ”simplest” case.

Following the spirit and the denominations of [19], we call a covering p : R → E
ramified at most over the point ∞ an origami. Note that this defines the un-
ramified covering R∗ → E∗, where R∗ = R\p−1(∞), and conversely each finite
unramified cover of E∗ is obtained in this way. Similarly as for Belyi pairs we
call two origamis O1 = (p1 : R1 → E) and O2 = (p2 : R2 → E) equivalent, if
there exists some homeomorphism f : R1 → R2 such that p2 ◦ f = p1.

The first observation is that the different combinatorial descriptions of a
topological covering R∗ → ...

S explained in Section 3 smoothly generalise to
arbitrary unramified coverings of punctured closed surfaces. In the case of
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origamis we obtain the equivalent descriptions stated in Proposition 5.1. The
generalisation of a dessin d’enfants can be done as follows: In the case of the
three punctured sphere

...
S , we used that we obtain a cell if we remove the

interval I = [0, 1] from
...
S . For the once-punctured torus E∗ we remove two

simply closed curves x and y starting in the puncture as shown in Figure 7.

y x

x

y

x

y

Figure 7: Removing two simply closed curves from the torus E gives a cell.

The cell that we obtain in this way is bounded in E by four edges labelled
with x and y. We identify it with a quadrilateral. Similarly as described in
Section 3, we have for an origami p : R∗ → E∗ that R∗\(p−1(x) ∪ p−1(y))
decomposes into a finite union of quadrilaterals. Unlike the case of dessins,
the map p restricted to R∗\(p−1(x)∪ p−1(y)) is unramified and the number of
quadrilaterals is the degree d of p. We retrieve the surface R∗ by gluing the
quadrilaterals. Hereby only edges labelled with the same letter x or y may be
glued. Furthermore we have to respect orientations. Altogether this leads to
the following ”origami-rules”: Glue finitely many copies of the Euclidean unit
square such that

• Each left edge is glued to a unique right edge and vice versa.

• Each upper edge is glued to a unique lower one and vice versa.

• We obtain a connected surface R.

R has a natural covering map p : R → E by mapping each square to one square
which forms the torus E. The map p is unramified except possibly above ∞,
which is the one point on E that results from the vertices of the square. Thus
p : R → E is an origami. Note that for the moment we are only interested
in the topological covering p and it would not be necessary to take Euclidean
unit squares which endows R in addition with a metric.

It is remarkable that by some fancy humour of nature the fundamental
groups of

...
P and E∗ are both the same abstract group, the free group F2 in

two generators.

Proposition 5.1. An origami p : R∗ → E∗ is up to equivalence uniquely
determined by

• a surface obtained from gluing Euclidean unit squares according the “origami
rules” (see above).
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• a finite oriented graph whose edges are labelled with x and y such that
each vertex has precisely one incoming edge and one outgoing edge la-
belled one with x and one with y, respectively.

• a monodromy map α : F2 → Sd up to conjugation in Sd.

• a finite index subgroup U of F2 up to conjugation in F2.

The equivalences stated in Proposition 5.1 are carried out in detail e.g. in
[31, Sect.1]. Thus we restrict here to giving the different descriptions for an
example.

Example 5.2. In the following we describe the origami, commonly known as
L2,2, in the different ways assembled in Proposition 5.1.

1 2

3

Gluing squares according
to the origami-rules:
Opposite edges age glued.

?>=<89:;3

y

��

x
vv

?>=<89:;1

y

OO

x //?>=<89:;2

x

gg

y

��

The finite graph which
describes the origami.

The monodromy map is the map ρ : F2 → S3 which is given by x 7→
(1 2) and y 7→ (1 3) and a corresponding subgroup of F2 is U = <
x2, y2, xyx−1, yx−1y >.

A short Euler characteristic calculation shows that for this example the
surface R has genus 2. The covering map p : R → E has degree 3 and the
puncture ∞ has one preimage on R.

5.2 Teichmüller curves

So far, we have only considered coverings between topological surfaces. A cru-
cial point of the theory of dessins d’enfants is that the three-punctured sphere...
S has a unique complex structure as a Riemann surface. Therefore choosing
a finite unramified covering β : R∗ → ...

S defines a closed Riemann surface of
genus g = genus(R): Take the unique complex structure on the sphere and lift
it via p to R∗. For the so obtained Riemann surface X∗ there is a unique closed
Riemann surface X into which we can embed X∗ holomorphically. Hence, β
defines the point [X ] in Mg, respectively [X∗] in Mg,n, where Mg is the moduli
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space of regular complex curves of genus g, Mg,n is the moduli space of regular
complex curves with n marked points and n is the number of points in X\X∗.
Recall from algebraic geometry that Mg and Mg,n are themselves complex
varieties. In fact they are obtained by base change from schemes defined over
Z. By Belyi’s Theorem the image points [X ] ∈ Mg, respectively [X∗] ∈ Mg,n

are points defined over Q.

How can we generalise this construction for origamis? Since we have a
one-dimensional family of complex structures on the torus E, an origami
O = (p : S → E) will define a collection of Riemann surfaces depending
on one complex parameter. More generally, an unramified cover p : R∗

1 → R∗
2

between punctured closed surfaces naturally defines the holomorphic and iso-
metric embedding

ιp : T (R∗
2) →֒ T (R∗

1), [µ] 7→ [p∗µ], (5.1)

from the Teichmüller space T (R∗
2) to the Teichmüller space T (R∗

1), which maps
a complex structure µ on R∗

2 to the complex structure p∗µ on R∗
1 obtained as

pull back via p. We now project the image B := ιp(T (R∗
2)) to Mg,n and further

to Mg. How do the images in the moduli spaces look like? Can we describe
their geometry based on the combinatorial data of the map p with which we
started?

In the following we restrict to the case of origamis. Thus we obtain an
embedding ιp : H ∼= T1,1 →֒ Tg,n which is holomorphic and isometric. Such
a map is called a Teichmüller embedding and its image in Teichmüller space is
called a Teichmüller disk. Teichmüller disks arise in general from the following
construction, which is described in detail and with further hints to literature
e.g. in [14]: Let X be a Riemann surface together with a flat structure ν on
it; i.e. we have an atlas on X\{P1, . . . , Pn} for finitely many points Pi such
that all transition maps are locally of the form z 7→ ±z+ c with some constant
c. Suppose furthermore that the Pi’s are cone singularities of ν. Then each
matrix A ∈ SL2(R) induces a new flat structure νA by composing each chart
with the affine map z 7→ A · z. This defines a map

ιν : H ∼= SL2(R)/SO2(R) → Tg, [A] 7→ [νA] (5.2)

which is in fact a holomorphic and isometric embedding, i.e. it is a Teichmüller
embedding. It is a nice feature that for an origami O = (p : S → E) the surface
S comes with a flat structure: One identifies E with C/(Z⊕Zi). This quotient
carries a natural flat structure induced by the Euclidean structure on C. It
is actually a translation structure, i.e. the transition maps are of the form
z 7→ z + c. Note that in the description of origamis with the ”origami-rules”
we obtain the translation structure for free, if we glue the edges of the unit
squares via translations. The translation surfaces arising in this way are often
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called square tiled surfaces. It is not hard to see that for an origami O the
induced maps ιν defined in (5.2) and projg,n ◦ ιp (with ιp from (5.1)) from H

to Tg are equal (see e.g. [30, p.11]); here projg,n : Tg,n → Tg is the natural
projection obtained by forgetting the marked points. In the following we will
therefore denote the map ιp = ιµ just by ιO.

The study of Teichmüller disks has lead to vivid research activities con-
necting different mathematical fields such as dynamical systems, algebraic ge-
ometry, complex analysis and geometric group theory. Many different authors
have contributed to this field in the last years with a multitude of interesting
results (see e.g. [25] in this volume or [14] for comments on literature). Im-
portant impacts to this topic were already given in [35]. An important tool
for the study of Teichmüller disks is the Veech group, which was introduced
in [36]. For a translation surface (X, ν) one takes the affine group Aff(X, ν)
of diffeomorphisms which are locally affine. The Veech group Γ(X, ν) is its
image in SL2(R) under the derivative map D, which maps each affine dif-
feomorphism to its linear part. The article [25] in this volume gives a more
detailed introduction to Veech groups, an overview on recent results and hints
to more literature. In Theorem 5.3 we list the properties of Veech groups
that we will use. It is a collection of results contributed by different authors,
which we have learned mainly from [36], [5] and [22]. Section 2.4 in [14]
contains a quite detailed summary of them and further references. An impor-
tant ingredient is the fact that if we have a translation structure and pull it
back by an affine diffeomorphism f , it is changed by composing each chart
with the affine map z 7→ Az, where A is the inverse of the derivative of f .
Therefore the elements in the mapping class group which come from affine
diffeomorphisms stabilise the image ∆ of the Teichmüller embedding ιν . One
shows that in fact, they form the full stabiliser of ∆. Furthermore the group
Trans(X, µ) = {f ∈ Aff(X, µ)| D(f) = identity matrix} acts trivially on ∆
and Γ(X, ν) ∼= Aff(X, ν)/Trans(X, ν).

Theorem 5.3. Let X be a holomorphic surface and ν a translation structure
on X with finitely many cone singularities. Let ι = ιν : H →֒ Tg be the
corresponding Teichmüller embedding, ∆ its image in Tg, pg : Tg → Mg the
natural projection and Γg the mapping class group for genus g. Then we have:

• StabΓg
(∆) ∼= Aff(X, ν).

• pg|∆ factors through the quotient map q : ∆ → ∆/Γ(X, ν), i.e. we obtain
a map n : ∆/Γ(X, ν) → Mg with p|∆ = n ◦ q.

• The image of ∆ in Mg is an algebraic curve C if and only if the Veech
group Γ(X, ν) is a lattice in SL2(R). If this is the case, C is called a
Teichmüller curve, and n is a birational map. Therefore it is the normal-
isation of C. C is birationally equivalent to a mirror image of H/Γ(X, ν).
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In the following we will only consider Teichmüller embeddings coming from
origamis. In this case, the Veech group is commensurable to SL2(Z) and thus a
lattice in SL2(R). It turns out to be useful given an origami O = (p : X → E),
to consider only affine diffeomorphisms which preserve p−1(∞). The image of
this group is in fact a subgroup of SL2(Z). Following the notations in [30], we
denote it by Γ(O) and call it the Veech group of the origami O. If we replace
Tg by Tg,n and Mg by Mg,n in Theorem 5.3, then Γ(O) becomes the effective
stabilising group of ∆ ⊆ Tg,n. [29] describes an algorithm which computes
Γ(O).

Coming back to the question asked at the beginning of this section, we state
that in the case of an origami the image of the map ιp in Mg is an algebraic
curve which comes from a Teichmüller disk. In the following sections we study
these curves, which we call origami curves. More precisely we point out some
explicit relations between them and dessins d’enfants.

6 Galois action on origamis

In [19], Lochak suggested to study the action of Gal(Q/Q) on origamis in some
sense as generalisation to the action on dessins d’enfants following the spirit
of Grothendieck’s Esquisse d’un programme. Recall from Section 4 that for
each σ ∈ Gal(Q/Q) and each projective curve X defined over Q, we obtain a
projective curve σX . This actually defines an action of Gal(Q/Q) on Mg,Q,

the moduli space of regular projective curves which are defined over Q.

In the following we want to make the definition of an action of Gal(Q/Q) on
origamis more precise: Let O = (p : R → E) be an origami with genus(R) = g.
Recall that O defines a whole family of coverings pA : XA → EA (A ∈ SL2(R))
between Riemann surfaces. It follows from Theorem 5.3 that two coverings
pA and pA′ are equivalent, if and only if A and A′ are mapped to the same
point on C̃(O) = H/Γ(O), where Γ(O) is the Veech group; furthermore XA

and XA′ are isomorphic, if and only if the two matrices are mapped to the
same point on the possibly singular curve C(O). In particular we may param-
eterise the family of coverings by the elements t of C̃(O) and denote them as
pt : Xt → Et. In the following we will restrict to those t for which pt : Xt → Et

is defined over Q. We denote this subset of C̃(O) by C̃Q(O) and similarly we
write C

Q
(O).

Let us now pick some σ ∈ Gal(Q/Q). One immediately has two ideas how
σ could act on origami curves; both lead at first glance to a problem:
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• C = CQ(O) is mapped to its image σCQ = {σ(Xt)| t ∈ C̃Q(O)}. Is the
image again an origami curve; or more precisely is there some origami
σO such that σC

Q
= C

Q
(σO)?

• For pt : Xt → Et (defined over Q) define σpt similarly as σβ in Section 4.
Each σpt defines an origami. Do they all lead to the same origami curve?

In [24, Prop. 3.2] Möller showed that the two approaches lead to the same
unique origami curve σC. We denote the corresponding origami by σO, i.e.
σC = C(σO).

The basic ingredient of the proof in [24] is to consider the Hurwitz space
of all coverings with the same ramification behaviour as p for a given origami
O = (p : X → E). By a result of Wewers in [37], one obtains a smooth stack
over Q. The covering p lies in a connected component of it, whose image in
moduli space is the origami curve C(O). Möller deduces from this that C(O)
is defined over a number field and that one has the natural action of Gal(Q/Q)
described above.

The Galois action on origamis is faithful in the following sense: For each
σ in Gal(Q/Q) there exists an origami O such that C(O) 6= σC(O). This is
shown in [24, Theorem 5.4]. The proof uses the faithfulness of the action of
Gal(Q/Q) on dessins of genus 0 (see Prop. 4.6). Starting with a Belyi mor-
phism β : P1(C) → P1(C) with σβ 6∼= β, one takes the fibre product of β with
the degree 2 morphism E → P1(C), where E is an elliptic curve which is de-
fined over the fixed field of σ in Q. Precomposing the obtained morphism with
the normalisation and postcomposing with multiplication by 2 on E, gives an
origami as desired.

This is a nice example for some interplay going on between origamis and
dessins in the way it was proposed in [19]. In the next two sections we describe
two further ways, how origamis and dessins can be related.

7 A dessin d’enfants on the origami curve

Let O = (p : R → E) be an origami and let Γ(O) be its Veech group. In this
section we consider the corresponding Teichmüller curve in the moduli space
Mg,n of n-punctured curves and denote it by C(O). As always, g is the genus
of R and n is the number of preimages of the ramification point ∞ ∈ E. Let
C̃(O) be the quotient H/Γ(O). Recall from Theorem 5.3 that C̃(O) is the
normalisation of C(O).
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The quotient C̃(O) naturally defines a dessin d’enfants, as it was pointed
out in [19, Proof of Prop.3.2].: Γ(O) is a finite index subgroup of SL2(Z).
Thus we obtain a finite covering q : H/Γ(O) → H/SL2(Z) ∼= A1(C). We may
fill in cusps and extend q to a finite covering q : X → P1(C) of closed Rie-
mann surfaces. This covering has ramification at most above three points of
P1(C): the two ramification points of the map H → H/SL2(Z) and the cusp
∞ = P1(C)\A1(C). Hence q is a Belyi morphism. Applying once more the
Theorem of Belyi, one obtains for free that the complex curve C̃(O) is defined
over Q.

The dessin corresponding to q is obtained quite explicitly from this descrip-
tion, as we explain in the following. Recall that SL2(Z) is generated by the
two matrices

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
.

We take our favourite fundamental domain for SL2(Z), namely the ideal tri-

angle with vertices P = ζ3 = e
2πi
3 , Q = ζ3 + 1 and the cusp R = ∞, see

Figure 8. Recall that P is a fixed point of the matrix S ◦ T , which is of order
3 in PSL2(Z). Furthermore, i is a fixed point of the order 2 matrix S and
thus a further hidden vertex of the fundamental domain. Finally, the trans-
formation T maps the edge PR to QR and S maps the edge Pi to Qi. We
obtain P1(C) by ”gluing” PR to QR and Pi to Qi and filling in the cusp at ∞.

H

R

QP

i

Figure 8: Fundamental domain of SL2(Z).

In order to make the dessin explicit, we identify the image of P on P1(C)
with 0, the image of i with 1 and the image of the cusp with ∞. The geodesic
segment PQ is then mapped to our interval I; its preimage q−1(I) on X is the
dessin.
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The algorithm in [29] gives the Veech group Γ by a system G of generators
and a a system C of coset representatives. C is in fact a Schreier-transversal
with respect to the generators S and T of SL2(Z), i.e. each element in C is
given as a word in S and T such that each prefix of it is also in C. There-
fore C defines a connected fundamental domain F of Γ which is the union of
translates of the triangle PQR; for each coset we obtain one translate. The
identification of the boundary edges of F are given by the generators in G.
Thus the fundamental domain F is naturally tessellated by triangles, which
indicate the Belyi morphism. The dessin is the union of all translates of the
edge PQ.

In the following we describe the dessin for an example. We take the origami
D drawn in Figure 9, which is studied in [31].

1 2 3

4

5

a

ab

b
• • •

•

• •

◦ ◦

* *

*

*

Figure 9: The origami D. Edges with the same label and unlabelled edges that
are opposite are glued.

The Veech group Γ = Γ(D) and the fundamental domain of Γ are given in
Section 3 of [31]. The index of Γ in SL2(Z) is 24 and the quotient H/Γ is a
surface of genus 0 with six cusps. Figure 10 shows a fundamental domain of
Γ(D).
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Figure 10: The fundamental domain for the Veech group Γ(D).

We use a schematic diagram: Each triangle represents a translate of the
triangle PQR. The vertices labelled with A, . . . , F are the cusps. The thick-
ened edges form the dessin. The planar graph is redrawn in Figure 11. This
picture matches its embedding into P1(C).

*

* *

*
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*E
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5 6
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8

Figure 11: The dessin on the origami curve C̃(D).
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8 Dessins d’enfants related to boundary points of
origami curves

Let O = (p : X → E) be an origami of genus g ≥ 2 and C(O) the correspond-
ing origami curve in the moduli space Mg. Recall that the algebraic variety
Mg can be compactified by a projective variety Mg, the Deligne-Mumford
compactification, which classifies stable Riemann surfaces, i. e. surfaces with
“nodes” (see below for a precise definition). The closure C(O) of C(O) in Mg

is a projective curve; its boundary ∂C(O) = C(O) − C(O) consists of finitely
many points, called the cusps of the origami curve.

In this section we shall associate in a natural way dessins d’enfants to the
cusps of origami curves.

8.1 Cusps of origami curves

There is a general procedure to determine the cusps of algebraic curves in
moduli space, called stable reduction. We first recall the notion of a stable
Riemann surface:

Definition 8.1. A one-dimensional connected compact complex space X is
called stable Riemann surface if

(i) every point of X is either smooth or has a neighbourhood which is ana-
lytically isomorphic to {(z, w) ∈ C2 : z · w = 0} (such a point is called a
node) and

(ii) every irreducible component of X that is isomorphic to P1(C) intersects
the other components in at least three points.

Now let C0 be an algebraic curve in Mg and x ∈ ∂C a cusp of C. We may
assume that C0 is smooth (by removing the finitely many singular points of
C0) and that also C = C0 ∪ {x} is smooth (by passing to the normalisation).
Next we assume that over C0 we have a family π0 : C0 → C0 of smooth curves
over C0, i. e. a proper flat morphism π0 such that the fibre Xc = π−1(c) over
a point c ∈ C0 is isomorphic to the compact Riemann surface which is repre-
sented by c (for this we may have to pass to a finite covering of C0). The stable
reduction theorem (see [11, Prop. 3.47]) states that, after passing to another
finite covering C′ of C (which can be taken totally ramified over x), the family
C0×C0 C′

0 extends to a family π : C → C′ of stable Riemann surfaces, and that
the stable Riemann surface X∞ = π−1(x), that occurs as fibre over the cusp
x, is independent of the choice of C′.

Although the proof of the stable reduction theorem is constructive, this con-
struction usually becomes quite involved: First examples are discussed in [11,
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Sect. 3C]; a particularly nice example for the cusp of an origami curve is worked
out in [2].

If the algebraic curve C0 in Mg is a Teichmüller curve, there is a much more
direct way to find the stable Riemann surface to a cusp, avoiding the stable
reduction theorem. This construction is based on the description of Jenkins-
Strebel rays in [21] and worked out in detail in [14, Sect. 4.1]. The basic
observation is that for every cusp x of a Teichmüller curve C there is a direc-
tion on the flat surface X defining C in which X is decomposed into finitely
many cylinders; this direction is associated to a Jenkins-Strebel differential on
X . The stable Riemann surface corresponding to the cusp is now obtained by
contracting the core curves of these cylinders. See [14, Sect. 4.2] for a proof of
this result.

In the special case of a Teichmüller curve coming from an origami, the con-
struction is particularly nice: Let O = (p : X → E) be an origami as above.
The squares define a translation structure on X and divide it into horizontal
cylinders, which we denote by C1, . . . , Cn. The core lines c1, . . . , cn of these
cylinders are the connected components of the inverse image p−1(a) of the
horizontal closed path a on the torus E. Contracting each of the closed paths
ci to a point xi turns X into a surface X ′

∞ which is smooth outside x1, . . . , xn.
It is shown in [14, Sect. 4.1] how to put, in a natural way, a complex structure
on X ′

∞. Then X ′
∞ satisfies the above Definition 8.1, except perhaps (ii). If an

irreducible component of X ′
∞ violates (ii), we can contract this component to

a single point and obtain a complex space which still satisfies (i). After finitely
many such contractions we obtain a stable Riemann surface X∞. This process
of contracting certain components is called “stabilising”. For simplicity we
used here the horizontal cylinders. But the construction is the same for any
direction in which there is a decomposition into cylinders.

If we apply this construction to the torus E itself, we obtain a surface E∞

which has a single node and whose geometric genus is zero. This surface is
known as Newton’s node and can algebraically be described as the singular
plane projective curve with affine equation y2 = x3 − x2.

Note that in the above construction, the covering p naturally extends to a
covering p∞ : X∞ → E∞, which is ramified at most over the critical point ∞
of p (or, to be precise, the point on E∞ that corresponds to ∞ on E), and
over the node. This is illustrated in the following picture for the origami W
from [15]:
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Figure 12: The origami covering for the cusp of W

8.2 The dessin d’enfants associated to a boundary point

The construction in 8.1 leads in a natural way to a dessin d’enfants, as was
observed in [19, Sect. 3.1], where it is attributed to L. Zapponi. Let, as before,
O = (p : X → E) be an origami of genus g ≥ 2 and C(O) the corresponding
origami curve in Mg. Furthermore let x ∈ ∂C(O) be a cusp and X∞ the
stable Riemann surface that is represented by x. Denote by X1, . . . , Xn the
irreducible components of X∞ and by p∞ : X∞ → E∞ the covering discussed
at the end of the previous section. For each i = 1, . . . , n, the restriction of p∞
to Xi gives a finite covering pi : Xi → E∞. For the degrees di of pi we have
the obvious relation

n∑

i=1

di = d = deg(p).

Now let Ci be the normalisation of Xi (i = 1, . . . , n). Then pi induces a
covering fi : Ci → P1(C) (which is the normalisation of E∞).

Proposition 8.2. For every boundary point x of the origami curve C(O) and
each irreducible component Xi of the stable Riemann surface X∞, the covering
fi : Ci → P1(C) is a Belyi morphism.

Proof. We already noticed in Section 8.1 that the covering p∞ : X∞ → E∞

is ramified at most over the critical point ∞ of p and over the node. The
normalisation map P1(C) → E∞ maps two different points to the node, so
each fi can be ramified over these two points, and otherwise only over the
inverse image of ∞.

In Section 3 we explained that a dessin d’enfants is completely determined
by the monodromy map of the corresponding Belyi map β, i. e. two permuta-
tions σ0 and σ1 in Sd, where d is the degree of β.
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Similarly, an origami O = (p : X → E) is also determined by two permutations
σa and σb, see Section 5.1; they describe the gluing of the squares in horizontal
resp. vertical direction: a horizontal cylinder consists of the squares in a cycle
of σa, and the vertical ones are given by the cycle decomposition of σb. At the
same time, σa and σb describe the monodromy of the covering p by looking at
the lifts of the horizontal closed path a and the vertical closed path b on the
torus E.

There is a nice relation between the permutations σa and σb of the origami
O and the permutations σ0 and σ1 of the dessin d’enfants associated to the
boundary point x on ∂C(O) which is obtained by contracting the centre lines
of the horizontal cylinders. It was first made explicit (but not published) by
Martin Möller as follows:

Proposition 8.3. Let O = (p : X → E) be an origami of degree d and σa, σb

the corresponding permutations in Sd. Then the dessin d’enfants associated to
the horizontal boundary point on C(O) is defined by

σ0 = σa, σ1 = σbσaσ−1
b .

In this proposition, the dessin d’enfants is not necessarily connected; it
is the union of the dessins to the irreducible components described above in
Proposition 8.2.

Proof. Recall the construction of the covering p∞ : X∞ → E∞ and the Belyi
map f∞ : ∪n

i=1Xi → P1(C): E∞ is obtained from the torus E by contracting
the horizontal path a to a single point, the node of E∞. Let U be a neigh-
bourhood of the node, analytically isomorphic to {(z, w) ∈ C2 : |z| ≤ 1, |w| ≤
1, z · w = 0}. U is the union of two closed unit disks U0, U1 which are glued
together at their origins. In the normalisation P1(C) of E∞, the node has two
preimages, and the preimage of U is the disjoint union of the two disks U0 and
U1. The loops l0 and l1 can be taken as simple loops in U0 resp. U1 around
the origin. On E∞, l0 and l1 are the images of parallels a0 and a1 of a, one
above a, the other below:

•P

a1

a

a0

E

-

�
�
�
�
�
�A

A
A
A
A
A

•P
l0

l1

E∞

�

•P ��
��r

��
��r

AA
AA
AA

l0

l1

P1

Figure 13: The loops on E, E∞ and P1
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Since all our loops have to be considered as elements of the resp. fundamental
groups, we have to choose base points in P1(C), E∞, and E. Since l0 and l1
may not pass through the origin (resp. the node), a0 and a1 may not intersect
a. Therefore, if we choose the base point as in the figure, a0 is homotopic to
a, but a1 is homotopic to bab−1.

Finally we have to lift a0 and a1 to X∞ resp. ∪n
i=1Xi and write down the

order in which we traverse the squares if we follow the irreducible components
of these lifts. Thereby clearly the lift of a0 induces σa, whereas the lift of a1

induces σbσaσ−1
b .

The Belyi map f∞ : ∪n
i=1Xi → P1(C) can also be described directly in a

very explicit way: In the above proof, E∞ − { node} is obtained by gluing U0

and U1 along their boundaries (with opposite orientation). We may assume
that the distinguished point ∞, over which the origami map p is ramified,
lies on this boundary, and that, for the given Euclidean structure, the bound-
ary has length 1. In this way we have described an isomorphism between
E∞ − { node} and

...
P .

Now let C1, . . . , Cn be the horizontal cylinders of the origami surface X .
Contracting the centre line ci of Ci to a point turns Ci − ci into the union of
two punctured disks U0,i and U1,i. If Ci consists of di squares, the boundary of
U0,i and U1,i has length di, and is subdivided by the squares into di segments
of length 1. The Belyi map f∞ is obtained by mapping each U0,i to U0 and
each U1,i to U1 in such a way that the lengths are preserved. Thus in standard
coordinates, the restriction of f∞ to U0,i is z 7→ zdi.

8.3 Examples

8.3.1 The origami L2,2 The smallest origami with a surface X of genus
> 1 (actually 2) is the one called L2,2 in Example 5.2; it is also the smallest
one in the family Ln,m of L-shaped origamis. The origami map p : L2,2 → E
is of degree 3 and totally ramified over the point ∞ ∈ E (the vertex of the
square). As explained in the previous section, the same holds for the covering
p∞ : X∞ → E∞ of the degenerate surfaces corresponding to the boundary
points in the horizontal direction. As X = L2,2 has 2 cylinders in the horizontal
direction, X∞ has 2 singular points which both are mapped by p∞ to the node
of E∞. X∞ is irreducible, and its geometric genus is 0. Thus the normalisation
of X∞ is P1(C), and the induced map f∞ : P1(C) → P1(C) is of degree 3. The
two points of the normalisation of E∞, that lie over the node (and which we
normalised to be 0 and 1), both have two preimages under f∞, one ramified,
the other not. Thus we obtain the following dessin for the Belyi map f∞:
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• ◦ • ◦

Figure 14: The dessin for a cusp of L2,2

Since f∞ is totally ramified over ∞, we can take it to be a polynomial. If we
further normalise it so that 0 is a ramification point, we find that f∞ is of the
form

f∞(x) = x2(x − a)

for some a ∈ C. The derivative of f∞ is

f ′
∞(x) = 3x2 − 2ax = x(3x − 2a),

thus the other ramification point of f∞ in C is 2a
3 . Since the corresponding

critical value is 1, we must have

1 = f∞(
2a

3
) =

4a2

9
(−1

3
a) =

(a

3

)3 · (−4)

or a = 3 · 3

√
−1

4
.

All three choices of the third root lead to the same dessin, as can be seen from
the following observation: The polynomial fa(x) = f∞(x) = x2(x − a) has its
zeroes at 0 and a, and takes the value 1 at 2

3a and −a
3 , as can easily be checked.

The cross ratio of these four points is −8, hence rational. This means that for
all possible choices of a, the Belyi map fa is equivalent to fa ◦ σa, where the
Möbius transformation σa is determined by

σa(0) = 0, σa(1) = −1

3
a, σa(∞) = a,

and consequently σa(−8) = 2
3a. An easy calculation shows

σa(x) =
ax

x − 4
and fa ◦ σa(x) = −27

x2

(x − 4)3
.

Note that fa ◦ σa has a triple pole (at 4), a double zero at 0 (and another zero
at ∞), and it takes the value 1 with multiplicity 2 at −8 (and a third time at
1).

It was shown in [30] that the origami curve C(L2,2) has only one further cusp
besides the one just discussed. It corresponds to cylinders in the “diagonal”
direction (1, 1). In fact, there is only one cylinder in this direction (of length
3), and by taking this direction to be horizontal, the origami looks like
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//

///

/

Figure 15: Another view on L2,2

where as usual edges with the same marking are glued.

The corresponding singular surface X∞ has one irreducible component with
one singular point. Its normalisation is an elliptic curve E0 which admits
an automorphism of order 3 (induced by the cyclic permutation of the three
“upper” and the three “lower” triangles of X∞). This property uniquely de-
termines E0: It is the elliptic curve with Weierstrass equation y2 = x3 −1 and
j-invariant 0.

The corresponding dessin d’enfants is

Figure 16: The dessin of a boundary point of C(L2,2)

It is the same ribbon graph as G2 in Example 3.6. The Belyi map f for
this dessin is, up to normalisation, the quotient map for the automorphism of
order 3. If E0 is given in Weierstrass form as above, this automorphism is the
map (x, y) 7→ (ζ3x, y), where ζ3 = − 1

2 + i
2

√
3 is a primitive third root of unity.

Such a quotient map is (x, y) 7→ y. It is easily seen to be totally ramified over
i, −i and ∞. To make the critical values 0, 1 and ∞, we have to compose with
the linear map z 7→ i

2 (z − i). This shows that our Belyi map is

f(x, y) =
i

2
(y − i).

8.3.2 General L-shaped origamis Denote by Ln,m the L-shaped origami
with n squares in the horizontal and m squares in the vertical direction:

. . .

...

m

n

Figure 17: The origami Ln,m; opposite edges are glued
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These origamis have been studied from several points of view by Hubert and
Lelièvre, Schmithüsen, and others. The genus of Ln,m is 2, independent of
n and m. The Veech group in general gets smaller if n and m increase, and
the genus of C(Ln,m) can be arbitrarily large. Also the number of cusps of
C(Ln,m) grows with n and m.

In this section we only discuss the cusp of Ln,m which is obtained by contract-
ing the core lines of the horizontal cylinders. The resulting singular surface
X∞ has m − 1 irreducible components: there is one component that contains
the cylinder of length n and also the upper half of the top square. All other
components consist of the upper half of one square, together with the lower
half of the next square. Each such component is a projective line that inter-
sects two of the other components. Moreover such a component contains a
vertex, i. e. a point which is mapped to ∞ by f∞ (but not ramified). It follows
that the Belyi map fi corresponding to such a component is the identity map
P1(C) → P1(C).

Thus the only interesting irreducible component of X∞ is the one that con-
tains the “long” horizontal cylinder. For simplicity we only discuss the case
where there are no components of the other type, i. e. m = 2. In this case we
have, as for the L2,2, exactly 2 singular points on X∞. They are both mapped
to the node of E∞ by p∞, one unramified, the other with ramification order n
(note that the degree of p∞ is n+1, the number of squares of Ln,2). As in the
previous subsection, this picture is preserved if we pass to the normalisation.
Thus f−1

∞ (0) and f−1
∞ (1) both consist of 2 points, one unramified, the other

ramified of order n, and the dessin looks as follows:

• ◦

1

2

n−1

...
• ◦

Figure 18: The dessin at the cusp of Ln,2

The n−1 cells of the dessin correspond to the fact that Ln,2 has n−1 different
vertices: one of order 3 and n − 2 of order 1. Therefore the two vertices of
order one of the dessin lie in the same cell.

Note that there is only one dessin of genus 0 with these properties, namely
two vertices of order n and two vertices of order one, which are in the same
cell. Hence our dessin is completely determined by its Galois invariants. This
implies in particular that the moduli field of the dessin is Q.

It is also possible to determine explicitly the associated Belyi map: To simplify
the calculation, we first exhibit a rational function with a zero and a pole of
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order n, and in addition a simple zero and a simple pole; later we shall change
the roles of 1 and ∞ to get the proper Belyi map. So we begin with a rational
function of the type

f0(x) = xn · x − 1

x − c
.

The condition that f0 has a further ramification point of order 3 implies that
f ′
0 has a double zero somewhere. A straightforward calculation shows that this

happens if and only if the parameter c has the value

c = cn =
(n − 1

n + 1

)2

.

The corresponding ramification point is

vn =
√

cn =
n − 1

n + 1
.

Since we want the critical value in this point to be 1, we have to replace f0 by

f1(x) = b−1
n · f0(x) with bn = −

(n − 1

n + 1

)n−1

= −c
n−1

2 .

Now we interchange 1 and ∞ (keeping 0 fixed); to give the final function a
nicer form, we bring the zeroes to 0 and ∞, and the places where the value 1
is taken to 1 and a forth point which is determined by the cross ratio of the
zeroes and poles of f1, i. e. 0, 1, ∞ and c; it turns out to be dn = 1 − 1

cn
.

Altogether we replace f1 by

fn = β ◦ f1 ◦ σ, where β(x) =
x

x − 1
and σ(x) =

x

x − dn
.

The final result is

fn(x) =
γnxn

γnxn − (x − dn)n(x − 1)
, with γn =

(n + 1

n − 1

)n+1

.

By construction, fn has a triple pole; it turns out to be pn = 2n
n−1 . Putting in

the values of the constants we find e. g.

f2(x) =
−27x2

(x − 4)3
and f3(x) =

−16x3

(x − 3)3(x + 1)
.

8.3.3 The quaternion origami Let W be the quaternion origami which
was illustrated at the end of Section 8.1 and studied in detail in [15]. It has
genus 3, and the origami map p : W → E is a normal covering of degree 8 with
Galois group Q8, the classical quaternion group. Its Veech group is SL2(Z),
which implies that the origami curve C(W ) in M3 has only one cusp. As
indicated in Figure 12 this cusp corresponds to a stable curve W∞ with two
irreducible components, both nonsingular of genus 1; the components intersect
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transversely in two points. Both components of W∞ admit an automorphism of
order 4 and are therefore isomorphic to the elliptic curve E−1 with Weierstrass
equation y2 = x3 − x. The normalisation of W∞ then consists of two copies of
E−1. On each of them, p induces a Belyi map f : E−1 → P1(C) of degree 4,
which is totally ramified over the 2 points that map to the node of E∞ (these
are the points of intersection with the other component). Over ∞ we have two
points on E−1, both ramified of order 2.

Thus the corresponding dessin d’enfants is

Figure 19: The dessin of the boundary point of C(W ).

The Belyi map in this case is a quotient map for the automorphism c of order
4, which acts by (x, y) 7→ (−x, iy). Such a quotient map is (x, y) 7→ x2; it is
ramified in the four 2-torsion points of E−1: two of them are the fixed points
of c, the other two are exchanged by c. The critical values are 0, 1 and ∞, but
not in the right order: To have the values 0 and 1 in the fixed points of c we
have to change the roles of 1 and ∞ in P1(C), and then obtain the Belyi map
f : E−1 → P1(C) as

f(x, y) =
x2

x2 − 1

or, in homogeneous coordinates,

f(x : y : z) = (x2 : x2 − z2) = (y2 + xz : y2).

8.3.4 The characteristic origami of order 108 Our last example in this
section is the origami B with 108 squares which corresponds to a normal
origami covering p : B → E with Galois group

G = {(σ1, σ2, σ3) ∈ S3 × S3 × S3 :

3∏

i=1

sign (σi) = 1}.

As for W in the previous section, the Veech group of B is SL2(Z). It was the
first normal origami of genus > 1 that was discovered to have the full group
SL2(Z) as Veech group. It is studied in detail in [2] and also (more shortly) in
[13].

The genus of B is 37; the horizontal cylinders all have length 6. Contracting
their core lines gives a stable curve B∞ with 6 irreducible components, each
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nonsingular of genus 4. Each of the irreducible components intersects three
others in two points each. The intersection graph of B∞ is

3 3

3 3

3 3

Figure 20: The intersection graph of the 108 origami.

Since the group G acts transitively on the irreducible components of B∞, they
are all isomorphic. Let us denote by C one of them. The stabiliser of C in G
is a subgroup H of order 18. The quotient map f : C → C/H = P1(C) is the
Belyi map corresponding to this (unique) cusp of the origami curve C(B).

The ramification of f over ∞ comes from the fixed points of the elements of
H . There are two different subgroups of order 3 that have 3 fixed points each,
and no other fixed points. The other ramification points lie over the two points
in P1(C), that are mapped to the node of E∞. Hence they are the 6 points
where C meets other components, and each of them has ramification order 6.
These considerations show by the way that the genus of C is in fact 4, since
by Riemann-Hurwitz we have

2g − 2 = 18 · (−2) + 6 · (6 − 1) + 6 · (3 − 1) = −36 + 42 = 6.

On the original origami B, the component C corresponds to 36 half squares.
The 18 upper halves among them are the lower halves of three horizontal
cylinders, and in the same way, the 18 lower halves contributing to C are the
upper halves of three other cylinders. The core lines of these six cylinders give
the six ramification points of f that lie over 0 and 1. The precise picture looks
as follows:
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Figure 21: The 36 half squares of which a component of the curve B∞ is
composed. Vertical gluings are indicated by capital letters, horizontal gluings
by small letters. The dashed lines are, in the order 1, . . . , 6, the boundary of

one of the six cells of the dessin.

In each row of the figure, the upper horizontal edges give one vertex of the
dessin (corresponding to a point lying over 0). The lower edges of the second
row give two vertices over 1, and the third comes from the six lower edges in
the first and the last row.

The 18 edges of the dessin are vertical centre lines of the squares; some of
them are shown in the figure. Each of the three “upper” vertices is connected
to two of the “lower” vertices by three edges each, and not connected to other
vertices. The order in which the edges leave the vertices is determined by the
horizontal gluing of the squares.

One way of describing the resulting dessin d’enfants is to consider its cells
and their gluing. Since f−1(∞) consists of 6 points of ramification order 6,
our dessin has 6 cells, and each of them is a hexagon. In the origami, these
hexagons are found as follows: begin with an arbitrary edge (i. e. a vertical
centre line of a square); at its end point, go one square to the right and
continue with the edge that starts at its centre. Go on like this until you reach
the first edge again. The figure shows one example for this. Note that the
6 vertices of this hexagon are all different. By symmetry this holds for all
6 hexagons. The way how these hexagons have to be glued can be read off
from the origami. Thus finally we find the following dessin, in which, as in the
pictures of origamis, edges with the same label have to be glued:
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Figure 22: The dessin d’enfants to the cusp of the 108 origami. The surface
consists of the six outer hexagons, with edges glued as indicated by the labels.
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[31] G. Schmithüsen, Origamis with non congruence Veech groups. Proceedings of

Symposium on Transformation Groups, Yokohama 2006, 31–55.

[32] L. Schneps (ed.), The Grothendieck Theory of Dessins d’Enfants, Cambridge
University Press, Lond. Math. Soc. Lect. Note Ser. 200 (1994).

[33] L. Schneps, Dessins d’enfants on the Riemann sphere, in L. Schneps (ed.), The
Grothendieck Theory of Dessins d’Enfants, Cambridge University Press, Lond.

Math. Soc. Lect. Note Ser. 200 (1994), 47–77.

[34] L. Schneps, The Grothendieck-Teichmüller group dGT : a survey, in P. Lochak,
L. Schneps (ed.), Geometric Galois Actions, 1. Around Grothendieck’s Esquisse
d’un programme, Cambridge University Press, Lond. Math. Soc. Lect. Note Ser.

242 (1997), 183–203.

[35] William P. Thurston, On the geometry and dynamics of diffeomorphisms of
surfaces. Bull. Am. Math. Soc., New Ser., 19(2) (1988), 417–431.

[36] W.A. Veech, Teichmüller curves in moduli space, Eisenstein series and an appli-
cation to triangular billiards. Inventiones Mathematicae, 97(3) (1989), 553–583.

[37] S. Wewers, Constructing Hurwitz spaces. PhD thesis, Universität Essen, 1998.

[38] J. Wolfart, The ‘obvious’ part of Belyi’s theorem and Riemann surfaces with
many automorphisms, in P. Lochak, L. Schneps (ed.), Geometric Galois Ac-
tions, 1. Around Grothendieck’s Esquisse d’un programme, Cambridge Univer-
sity Press, Lond. Math. Soc. Lect. Note Ser. 242 (1997), 97–112.

[39] J. Wolfart, Kinderzeichnungen und Uniformisierung. Unpublished manuscript,
2001.

[40] L. Zapponi, Fleurs, arbres et cellules: un invariant galoisien pour une famille
d’arbres. Compositio Mathematica, 122 (2000), 113–133.

[41] L. Zapponi, Galois action on diameter four trees. Unpublished manuscript, 2000.



Index

absolute Galois group, 13
affine group, 28
algebraic fundamental group, 21

Belyi morphism, 6, 36
Belyi pair, 7
boundary point of a Teichmüller curve,

34

curve defined over a number field,
6

cusp of an origami curve, 34
cyclotomic character, 20

Deligne-Mumford compactification,
34

dessin d’enfants, 7, 8, 30, 34
genus of, 13

discrete valuation ring, 5

elliptic curve
Belyi map for, 14

exact sequence of algebraic funda-
mental groups, 22

fat graph, 9
field of definition, 15
field of meromorphic functions, 4
flat structure, 27
free group on two generators, 7, 26
function field, 3
fundamental group of

...
P , 10

Galois action
faithfulness of, 17, 30
on F̂2, 19
on Belyi pairs, 13
on origamis, 29
on trees, 18

Galois group

absolute, 13
Galois invariants, 18
genus of a dessin, 13
Grothendieck correspondence, 7
Grothendieck-Teichmüller group, 23

horizontal cylinders, 35

intersection graph, 44

moduli field, 15
monodromy, 12, 36

homomorphism, 10
map, 7, 26

origami, 24
rules, 25
Veech group of, 29

origami curve, 29
cusp of, 34

planar graph, 9
profinite completion, 19
projective line, 6
Puiseux series, 20

quaternion origami, 42

regular projective curve, 3
ribbon graph, 7, 9
Riemann-Roch theorem, 4

square tiled surface, 28
stable reduction, 34
stable Riemann surface, 34
structure morphism, 14

tangential base point, 20
Teichmüller curve, 26, 28
Teichmüller disk, 27

49



50 Frank Herrlich and Gabriela Schmithüsen
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