MATH 23b, SPRING 2005
THEORETICAL LINEAR ALGEBRA
AND MULTIVARIABLE CALCULUS

The Inverse Function Theorem

The Inverse Function Theorem. Let f : R — R” be continuously
differentiable on some open set containing a, and suppose det J f(a) # 0. Then
there is some open set V' containing a and an open W containing f(a) such
that f : V — W has a continuous inverse f~! : W — V which is differentiable
forally € W.

Note: As matrices, J(f)(y) = [(JF)(fy)]

Lemma: Let A C R"™ be an open rectangle, and suppose f : A — R" is
continuously differentiable. If there is some M > 0 such that

af;
Ji ()| < M, ¥x € A, then ||f(y) — f@)| <n?-M-|ly — 2|, Vy,z € A,

J
Proof: We write

fily) — fi(z) = fil(yla"wyn)_fi(zh"‘ﬂzn)

= Z [f(yl: e ,yj,ZjJrl, .. '7Zn) — f(yl; . ,yjfl,Zj,qu,l, e
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for some x;; = (y1,...,Yj-1,Cj, Zjt+1, - - -, 2,) Where, foreach j =1,...,n,
we have ¢; is in the interval (y;, z;), by the single-variable Mean Value
Theorem.

Then

1f(y) = @) < Z 1 fi(y) = fi(z)]]
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Proof of the Inverse Function Theorem:
(borrowed principally from Spivak’s Calculus on Manifolds)

Let L = Jf(a). Then det(L) # 0, and so L' exists. Consider the com-
posite function L= o f : R® — R". Then:

J(L7t o f)(a) = J(L7)(f(a)) o Jf(a)
= L 'oJf(a)
= L'oL

which is the identity. Since L is invertible, the theorem is equally true or false

for both L= o f and f simultaneously, and hence we prove it in the case when
L=1

[f(a+h) - f(a) - L(h)| _ |h]

Suppose f(a+h) = f(a). Then =-—=1
|h| |h|
On the other hand, we have have HEIIHmO flath) ﬂ}{‘(‘a) — L(h) =0,

which is a contradiction, and hence there must be some open neighborhood /rectangle

U around a in which f(a+h) # f(a), Ya+he U, h#0.
Furthermore, we may choose this neighborhood U small enough so that:
o det(Jf(x))#0, VxeU

ofi ofi
E)xj (x) - Oz,

1
< —, Vi, 5, VxeU
@] < grz s
since these are conditions on n? 4+ 1 continuous functions!

Claim 1: ||x; — xo|| < 2-||f(x1) — f(x2)]], Vx1,%x2 €U

Proof of Claim 1: First, we let g(x) = f(x) — x. By construction and

dg; of; af; 1
the second fact above, we have 8_5:]()()' = 8xfj< X) — ai( a)| < ool
1
and so we apply the Lemma with M = 5 oL
n

|1 = x| = [[f(x1) = f(x2)l| H(( 1) = %) = (f(x2) = %)

(x1) = g(x2)]

||X1—X2||

IA A

and so, combining these inequalities, we have

bolba—xol| < [1fGa) = f(x)l]



Now consider the set OU, which is compact since U is bounded. We know
by the reasoning in the second paragraph of the proof that if x € 9U, then
f(x) # f(a). Hence 3d > 0 such that ||f(x) — f(a)|| > d, Vx € 9OU.
(Since both f and the taking of norms are continuous functions, the expression
|| f(x) — f(a)|| attains its non-zero minimum on the compact set OU.)

We construct the set W C R", thinking of it as a subset of the range of f,
as follows:

d

W = {y eR"||ly — f(a)]] < 5} = Byp(f(a))

By its construction and the use of the positive real number d, we see that if
y € W and x € 9U, then

ly = f@Il <lly = fFlI (1)

Claim 2: Given y € W, there is a unique x € U such that f(x) =y.

Proof of Claim 2:

Existence:
Consider h : U — R defined by h(x) = ||y — f(x)||*>. A straightfor-

ward simplification of this expression gives h(x) = Z (y; — f:(x))2.
Note that A is continuous and hence attains its fnilnimum on the
compact set U. This minimum does not occur on the boundary,
OU, by the inequality (1), and hence it must occur on the inte-
rior. Since h is also differentiable, we must have Vh(x) = 0 at the
minimum, and hence:

ofi .
axj ;2 fi(x)) - a%() vj

In other words, collecting this information over the various ¢ and 7,
we have

0=Jf(x)-(y - f(x),
but since we have assumed that det Jf(x) # 0 for any x € U, it
follows that Jf(x) is invertible, and hence y — f(x) = 0.

Uniqueness:
We use Claim 1. Suppose y = f(x1) = f(x2).
Then ||x; — xa|| < 2-||f(x1) — f(x2)|| =0, and hence x; = Xs.



By Claim 2, if we define V.= U N f~}(W), then f : V — U has an inverse!
It remains to show that f~! is continuous and differentiable. Even though
continuity would follow from differentiability, we do this in two steps because
we will use the continuity to help prove the differentiability.

Claim 3: f~!is continuous.
Proof of Claim 3:

For yi,y2 € W, find x;,x5 € U such that f(x;) =y; and f(x2) =
y2. Claim 1 implies that ||x; — x2|| < 2 ||f(x1) — f(x2)]], or in
other words, that ||/~ (y1) — [~ Hy2)|| £ 2+ |ly1 — y2ll-

It is now easy to see that given € > 0, we need only choose § = ¢/2
to guarantee that if ||y; — y2|| < 9, then ||/~ (y1) — [ (y2)|| < e.

i

Claim 4: f~!is differentiable.
Proof of Claim 4:

Let x e V,let A= Jf(x), and let y = f(x) € W.

We claim that Jf!(y) = A~%.

Define p(x) = f(x +h) — f(x) — A(h).

Then lim 1P
=0 [[h]|

Since det(A) = det Jf(x) # 0 by hypothesis, we know that A~

exists, and it is linear since A is. Then:

AT (f(x+h) = f(x)) = h+ A7 (p(h))
= [(x+h) —x]+ A7 (¢(h))

= 0, by the differentiability of f.

Letting y = f(x) and y; = f(x+ h) on both sides yields:
ANy —y) =) = I+ AT e ) = (7))
Re-arranging sides:

AN e )=o) =1y = ) —A v —y) (2



To show differentiability, we need:

1 (y) = ' (y) = Ay = )

-0
lly1—yl/—0 ly1 — ¥l

but by equation (2) above, this is the same as showing:

1A (o (f ) = S )]

1 = 0.
lly1—yl/—0 ly1 — vl

Since A~ is linear, it suffices to use the Chain Rule and show that:

le(f (y1) = )
lly1—yll—0 ly1 — vl

=0, (3)

so we factor the expression inside the limit as follows:

lo(f ) = ST O _ ||30(f‘1(y1> FEODI ) — 7 )]
lly1 — vl 1= (y1) — )] ly1 — vl '

The first term on the right tends to 0 because of how we defined
¢ and the fact that the continuity of f~! means that f~'(y;) —

f(y)-

Observing that the second term on the right is less than or equal to
2 (by Claim 1) enables us to use the Squeeze Theorem and conclude
that the product on the right tends to 0, which establishes equation

(3)-

g

End Proof of Inverse Function Theorem.

(borrowed principally from
Spivak’s Calculus on Manifolds)



