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Signed Permutation Statistics and Cycle Type
VIicToR REINER

We derive a multivariate generating function which counts signed permutations by their cycle
type and two other descent statistics, analogous to a result of Gessel and Reutenauer [4, 5] for
(unsigned) permutations. The derivation uses a bijection which is the hyperoctahedral analogue
of Gessel's necklace bijection.

1. INTRODUCTION

The goal of this paper is to derive a multivariate generating function counting signed
permutations s by three statistics: their descent number d(x), major index maj(sr) and
cycle type A(m). This provides an analogue for the hyperoctahedral group B, of a result
of Gessel [4] for the symmetric group S,. Our method is to develop a bijection for B,
analogous to Gessel's necklace bijection for S, (described in [2,5, 11]). We hope that
this bijection may have applications to other problems, similar to applications of the
necklace bijection [2, 6].

After giving the relevant definitions in Section 2, we describe the key bijection in
Section 3, and use it to derive the main result in Section 4. Section 5 presents a few
applications; namely, generating functions counting descents of invoiutions in B,
domino tableaux, and hyperoctahedral and cubical derangements.

2. DEFINITIONS

The hyperoctahedral group B, is the group of signed permutations, i.e. permutations
and sign changes of the co-ordinates in R". We will use the following two-line notation
for signed permutations: letting e; denote the ith standard basis vector in R", then

( 1 2 n)
.‘,Tr = LR
T, T 7T,
(where m; € {£1, ..., £n}) means that m(e;) = sgn(s,)e ..
Let A be the following linear order on Z — (O
+1</\+2</\' - -+n<,\~ M ‘<A_n<A' N '<A_2<A_1'
The descent set of m is then defined to be
Dmy={i:1<sisn m<,m,}

(where by convention we set m,,.,=#n +1). We then define its descent number to be
d(mw)=#D(m) + 1 and its major index to be maj(x) = X, .p() L. For example, if

_( 1 2 3 4 5 6 7 8 )

“\42 47 -1 -5 48 +3 +6 —4
then D(x)={3,4,5, 8}, d(z)=4+1=5, and maj(m)=3+44+5+8=20.

A signed permutation decomposes uniquely into a product of commuting cycles just
as permutations do. Given such a cycle

i i L i
C _ ( I- 2. . m 1 m- )
El; &l Epm—ilm  Emiy
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where €, = £1 and i; >0, we say that C is an even cycle (of size m) if £,6;- -+ ¢, = +1
and an odd cycle if £, ---€,=—1. The cycle type of & is the pair of vectors
A(m) =((Ay, A5, ...), (41, Uz, .. .)) where o has A; even cycles of size / and yu; odd
cycles of size i. For example, if & is the same as in our previous example, then

n_(l 2 7 6 3)(4 5 8)
+2 +7 +6 +3 -1/\-5 +8 -4/

Mm) =((0,0,1,0,0,...),(0,0,0,0,1,0,0,...)).

SO

It is worth noting (although we will not need it) that the conjugacy class of & in B,
determined by its cycle type A(s).

A Z-word of length m is a vector a=(a,, ..., a,) e Z". Given such a word a, we
define |a|=|a |+ -+ ]|a,} and max{a)=max{|a;]}/Z,, We will have use for two
different group actions on Z-words of length m which we now describe. The cyclic
group C,,, of order 2m acts by having its generator g act as a cyclic shift with sign

change gla,, a.,...,a,)=(az ..., a,. a_,). The group Z, X C,, of order 2m acts by
having the generator r of C,, act as a cyclic shift r{a,, a,,...,a,)=(a,, ..., a,, a),
and by having the generator v of Z, act as a global sign change v(a,,...,a,)=
(""a], ey _'ﬂn).

An orbit or equivalence class P of Z-words of length m under the G,,,-action will be
called a twisted necklace of size m, and an orbit D under the Z, X C,,-action will be
called a blinking necklace of size m. Note that both group actions leave la| or max{a)
invariant, so |[P{, max(P), |D| and max(D) all make sense for a twisted necklace P or
blinking necklace D. We say that a twisted necklace P is primitive if its C,,,-action is
free (i.e. no non-trivial group elements fixes any vector in the orbit P), and we say that
a blinking necklace is primitive if its C,,-action is free (although its Z; x C,-action
need not be free). A signed ornament f is a set of primitive twisted necklaces along with
a multiset of primitve blinking necklaces. We say that f has rype A(f)=
{((41, &3, . - 2), (g, 3, .. )Y if f consists of A, blinking necklaces of size { and y; twisted
necklaces of size . We also say that the size of f is the sum of the sizes of all of its
blinking necklaces, and that

Ifl = > |D| + > P,

blinking neckbaces Def wisted necklaces Fef

max(f) = max{max(D), max(P)}hlinking necklaces D, twisted necklaces P in f

See Figure 1 for some examples, and a way of visualizing twisted necklaces, blinking
necklaces and signed ornaments.

Some last bits of terminology are as follows: given a subset D < {1, 2, ..., n}, we
say that a vector s = (s, . . . , 5,) € N" is D-compatible if:
(i) 512' : ‘Bsn23n+1 20;

(i) s;,>$;,, whenever i € D.

3. THE SIGNED ORNAMENT BUECTION

THEOREM 3.1.  Let O, be the set of all signed ornaments of size n, and P, the set of all
pairs (z, a), where we B, and s € N" is D(x)-compatible. Then there is a bijection
¢: 6,— P.. Furthermore, if ¢(f) = (m, £) then we have:

() AMfy=May
@) 1fI=1sk;
(3} max(f} = max(s).
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FiIGURE 1. (a) A blinking neckiace D=¢(1,2,3,1,2,3%*% which is not primitive since
r(1,2,3,1,2,3)=(1,2,3, 1,2, 3). We visualize D as the sequence 1,2,3,1,2,3 read clockwise around a
ring. The generator # of C,, acts as a shift of the numbers counterclockwise by one position. (b) A twisted
necklace P =(1, —1,1)"* which is not primitive since g*(1, —1, 13=(1, -1, 1). We visualize P as the
sequence 1, —, | read clockwise around a ring, beginning to the right of the marker at 12 o’clock. The
generator g of C,,, acts as a sign change of the number to the right of the marker and then a shift of the
numbers_counterclockwise. (c) A primitive twisted necklace P =(/, -2, 3)°*. (d) A signed ornament
F=HLY% (0, -3,0%, (1, -2, —1,2)2%C%, (1, -2, -1, )%*%, 0/} of type AMf)=
((0,1,1,0,0,...).(1,0,0,2,0,0,...)), size 14, with | f| = 18 and max(f) =3.

SketcH ofF Proor. The bijection is similar to Gessel’s necklace bijection, described
in [2,5,11). We will describe the bijection ¢ and its inverse, omitting the straight-
forward verification that they are well-defined and have the image sets that we have
claimed.

To describe ¢, we start with a signed ornament f of size n. If (f,, ..., f,) is the list
of entries appearing in all the twisted necklaces and blinking necklaces of f in any
order, let s = (s, ..., s,) be the weakly decreasing rearrangement of (£, ..., |f.]D.
For example, if f is the signed ormament of Figure 1(d), then s=
(3,2,2,2,2,2,1,1,1,1,1,0,0,0).

Defining & takes more work. We start by picking one representative Z-word for each
twisted necklace and blinking necklace in f. We also choose a linear order (to be used
later for breaking ties) on each set of identical blinking necklaces in f. Given a position
x on some twisted necklace or blinking necklace, we define an infinite word
w, = (w), wl,...) as follows: w? is the value in position x in our chosen representative,
while w' is the value in the same position after applying the cyclic action i times (i.e.
applying g’ if x is on a twisted necklace, r' if on a blinking necklace). Alternatively, one
can think of w, as the infinite word obtained by starting at position x, reading clockwise
and wrapping around the twisted necklace or blinking necklace that x lies on (with a
sign change every time your go past a marker on a twisted necklace—see Figure 1). We
define &, = £1 as follows: g = —1 if the first non-zero co-ordinate in w, = (w9, wl, .. ))
is negative, else £, = +1. Next we linearly order the positions {x} by lexicographically
ordering the words {g,w,} from largest to smallest, and break ties using the following
procedure:

If g, w,,=---=¢,w, for some set of positions {x,,..., x,}, then one can
check that at most one of them lies on a twisted necklace, and all the rest li¢
on copies of the same blinking necklace. We can relabel the x;’s to have

Xy, .-, Xy on distinct copies of the same blinking necklace with g, =---=
£,-1=*t1, x; lying on a twisted necklace, and x,,,, ..., x, lying on distinct
copies of the same blinking necklace with ¢, =---=¢g_=-1. We then

linearly order them
Xy L X K <X,

in such a way that x, <<- - - <x; agrees with the linear order chosen beforehand
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on their identical blinking necklaces, and x, ., <---<x, is the reverse of the
linear order chosen beforehand on their identical blinking necklaces.

Having linearly ordered the positions {x}, we let r, be the rank of x in this order (e.g.
if x comes first then r, = 1}. We then define x by saying that for each blinking necklace
consisting of positions (x;, ..., x,) in f, 7 has an even cycle

( rXr Txs . Ten—1 rxm )
k)
€ Slzrl’z Exzsxs r-\'_'l Exmqermrxm Exmsrnr’fl
and for each twisted necklace consisting of positions (x,, ..., x,) in f, 7 has an odd
cycle
( rx. rX: e Kp— 1 X )
Ex S-'zr-l‘z Exzs—l’srxa Exm-lgrmrxm EIMS Fy

For example, let f be the signed ornament of Figure 1(d). Choosing representatives,
and linearly ordering identical blinking necklaces arbitrarily we obtain

wwisted necklaces blinking necklaces
F={1,-2)0, 3,00 {1.-2,-L,2)<(1, -2, =1, 2)(0).
XXz X3X4Xs XeX7X3Xg XX 11X 12X 3% 14
We then have
e =1,-2,-1,2,... £,=+1 e We,=1,-2,-1,2, ...
w,=-2,-1,2,1,... g,=—1 W, =2,1, -2, -1, ...
w,=0,-3,00,3,0,... £,=—1 £, Wy, =0,3,0,0,-3,0,. ..
w,,=—3,0,0,300,... E,=—1 £,We,=3,0,0,-3,0,0,...
w,.=0,0300-3,... £,=+1 £, w,,=0,03,0,0 -3,...
W, =w,,=1,-2,-1,2,... Er,= Exyy =41 €Wy, = Ex, Wy,
=1,-2,-1,2,...
W,=w,.=—2,-1,2,1,... E,, = E;,=—1 Ee We, =B W, =2,1,-2, -1, ..
w,=w,,=—1,2,1,-2,... €= Exp=—1 £ We, = E Wy, =1, -2, —1,2,. ..
wy, =W, =2,1,-2,-1,... Epy = Ey, = +1 £ Wi, = Ec, Wy, =2, 1, -2, —1, ...
w,=00... £, =*+1 MW, =00, ...

Ranking the x, according to the lexicographic order on g.x; (and using our tie-breaking
scheme) gives

position: X4 Xg X1 X3 X3 X7 Xo X1z X X9 Xg X3 X7 X4
rank: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

which then produces

_( 9 4)( 12 1 13)( 7 6 11 2)( 10 3 8 5)( 14)
T4 o/l —12 +12/\6 411 -2 +7/0-3 +8 -5 +10/\+14
_-( 1 2 3 4 5 6 7 8 9 10 11 12 13 14)

-13 +7 +8 49 +10 +11 -6 -5 —4 -3 -2 +1 +12 +14/

We have D(x) = {1, 11} and so the sequence s =(3,2,2,2,2,2,1,1,1,1,1,0,0,0) is
D(r)-compatible, as claimed.
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It is easy to see that the map ¢ is well-defined (i.e. it does not depend on the orbit
representatives or lincar orders chosen). It requires a little more work (which we omit)
to verify that s is always D(r)-compatible. The inverse of the map ¢ is not as hard to
describe: for each cycle,

E\lx  Ejls Em—1lm  Emh
in 7z, let
ve = sy, sgn(T())S g SE(IE))S 226y - - o SEA™ T (E )8 m i)

and add to f the blinking necklace represented by v, if C is even, or the twisted
necklace represented by v, if C is odd. It also requires a little work to verify that if s is
D(m) compatible, then every blinking necklace and twisted necklace in ¢~ '(x, s) is
primitive, and twisted necklaces appear no more than once. a

4. THE MaiN REesuLT

Given a pair of vectors (A, )= ({k), A2, ...), (1, 2, .. .)), let o*®=
ayasr- - BB - .. We adopt the convention that B, is the trivial group containing a
single signed permutation & with D(sx)=¢J and A(m)=((0,0,...),(0,0,...)). We
then have the following:

Tueorem 4.1 (cf. [4], equation (3)]). Let

(5@)=0-01-1q)1—1g%---(1—1g"™").
Then
s(m—1}

ST S g A =S e [T [ (- ax™g)) (L + Bax™g )y

nau(f q)n+lnEB s=0 m=l =0

where DS); is the number of primitive blinking necklaces D of size m with |D| =i and
max{D)=<s, and PS); is the number of primitive twisted necklaces P of size m with
|P| =i and max(P)=s.

REMARK. More explicit formulas for D), and P% will be given in the next
theorem.

Proor. Let @ be the set of all signed ornaments. We use the method of [3] and
count

E tm.lx(f)+1 1fi J.(f) size(f)
fet

in two ways; one direct, and the other using the signed ornament bijection.
For the direct approach, we have

E tMilX(f}+lqlf|a,l(f) size(f) (1 —t) 2 # z qlf\al(f)xsizcu)

fe@ =0 fet
max{f)+1=s
= (1 - [) 2 t* H (1 — qlDlaA(D)xsize(D])—l
s=0) prim. blinking necklaces £
max(D)+1i=s
X l_[ (1 + qlplﬁl(p).xSizc(P))

prim. twisted necklaces P
max(P)+1=s

{(s—1)m

=(-n2e [l T (- aumg) ™0+ gamg)™ (1)

s=0 m=1 =0
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For the other approach, using the bijection of Theorem 3.1 we have

E Imax(f)+!qlfla,l(f)xsim(f) = 2 Z max(s)HqISIal(-'r)xn
fet n=0 (msimenB,
D{m)-compatible s

__.E E a,A(Jr)xn z tmax(s)+lq|si_ (2)

nz=l) neB, D(r)-compatible s
For a fixed n, we can encode a D(m)-compatible sequence s=(s,,...,s,) as a
partition p =(p, = - - - = p, = 0) with at most n parts in the following way: let
pi=s;—#{je D(x):j=i}
It is easy to see that this encoding is reversible and that it has two key properties: (i)
max(s) = max(p) + #D(xr) and (ii) |s| = |p| + max(x). So for a fixed & € B,, we have
praxis) + q"' = td(n)qmaj(n) E tmﬂx(P)qlpl

D{a)-compatible s partitions p
with =n parts

1
(tq;9),"

where the last equality comes from a standard argument in partitions. Plugging this last
equation into equation (2) yields

z tmax(f)+l 1£1 ).(f)xsizc(f)= E

— td(:t)

max{x)

q

EJ’CGB [d(n)q maj(:r)a).(:t)xn
q @ *
feo n=0 (tq;9)x
and setting this equal to the direct count (equation (1)) yields the theorem. d

b

One can make this theorem more explicit by computing generating functions for D¢,
and P3):

THEOREM 4.2. Let
s—1)m

D)= 2 DS

i=0

and
(s—1)m

PRa)= 2 P’

i=0

form=1, s=0. Then we have

E pd)([2s - 174 -1),  s>0,

P = a' aa
’ O 5=0,
1
= 2 w2 -1 -1),  s>0,m>1
2m dlem
Df;? - d odd

@ (2 -1+ 1) 5>0,m=1

0 s=40

where u(d) is the number-theoretic Mabius function (see, e.g., [7]) and
[2s__1]d=qd(s—1)+__.+q2d+qd+1+qd+q2d+_‘_+qd(s7])

is a g-analogue of the number 2s — 1 (i.e. when q =1 we have [25s — 1],=25s — 1).
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Proor. The special cases when ¢ither m or s is small are easy to check, so assume
m>1,s>1.

Computing PS)(q) is easier. For each cyclic subgroup C; of order d in C,,, let
P.,= ¥, ¢!, where the sum ranges over all Z-words of size m with max(p) =s — 1 whose
symmetry group intersects C,,, in exactly C,, and let P_., be the same except that we
sum over words whose symmetry group contains C,. We then have trivially that

P C,=ZP=C,,

eld
and hence

P_c, —21“( ) =2Cy

e|d

by Mébius inversion [(7, Section 16.3]). Note that since each primitive twisted necklace
is represented by exactly 2m distinct words, we have

1 1
PSNg)=s—Poc,=— d)Pec,
(q) 2m Cy 2md|22m u( ) =Cy

One can check that if d | 2m and d is even, then the only Z-word the symmetries of
which contain C,is (0,0,...,0). If d | 2m and d is odd, such a Z-word must be of the
form

d

A,

)

oy —
P=w, —W, W, —W, ..., —W, W,

where w is an arbitrary Z-word of length m/d. Hence P_, = [2s — 1]7"“. This gives us

Po@ =5 ( 3 u@+ 3 w@fas - 113)

d 2m d 2m
d cven d odd
and since
> udy=- 2 ud
d[2m d|2m
deven o odd
we have

P"’(Q)‘*E u(d)([2s — 1J7 - D).

d odd

We undertake a similar argument for D{)(g). Say that a Z-word p of size m with
max(p)=<s — 1 is totally free if Z, X C,, acts freely on its orbit, cyclically free if C,, acts
freely, and a half -moon if C,, acts freely but Z, X C,, does not. We let TF, CF and HM
denote the sum ¥, ¢'"' as p ranges over each of the previous three sets, respectively.
Given a primitive blinking necklace D, as an orbit of words it either consists of 2m
totally free words, or m half-moons, so we conclude that

1 1
Df,i)(q) = é“m'— TF + ;HM

On the other hand, a cyclically free word is either totally free or a half-moon so
CF =TF + HM and hence

, 1 1 1
DS:)(Q)=5;(CF—HM)+;HM=ﬁ(CF+HM).
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We can compute CF and HM separately, each by a M&bius inversion similar to our
analysis of P4)(q), yielding

CF = X, p(d)[2s — 113",

d|m

> u(d)([2s — 1]5424 — m even,
HM =4 dlm
d odd
O: m odd.
Combining these with the last equation, and a little manipulation, gives the expression
stated in the theorem. a

THeOREM 4.3 (cf. [4, equations (4), (5)]).

5 B8O 5 b5 5 kg - (-84 PN)

w=0 (@) ns1) =0 m=1 k=1
t

=1+1_a1x (3)

LS (S S ek (B o 3 waizs~ - 1)

1X 522 mz] k;l dodd

14— 4
B 1-ax )

amsree( S5 @) S ke (Fu))
©)

Proor. The second equality follows from the first using the expressions for D$(q)
and P$q) and PS’(g) given by the previous theorem. The third equality follows from
the second upon replacing mk by m and dk by k. Thus it suffices to show the first
equality above. By Theorem 4.1, we need to show that

s(m—1}

IT I1 Q- anxmg) 291+ Bxmg)™

m=1 i=0

xmk &

—exp( S 3 T [ahD(g") ~ (~BP(H)
m=1 k=l

This is achieved by taking the natural logarithm of both sides and using the Taylor

series for log(1 — a,,xq’) and log(1 + B,.x™q’) on the left-hand side. O

5. APPLICATIONS

In this section we give corollaries to Theorems 4.1 and 4.3 obtained by specializing
the various variables. Most of the proofs will be omitted, as they require only standard
manipulations of generating functions and a few simple calculations with the
number-theoretic Mobius function.

By setting a;=f,=1 for all i in Theorem 4.3, formula (5), we recover a result
equivalent to the specialization p =a = 1 in ([8, Section 3]):
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COROLLARY 5.1.

xl‘l tj
Z - d(x)  muj(m) _ 2 - -
: T A s 1),
H?U([v q)n-H nel, §=0 X[ ]l

By eliminating ¢ in Theorem 4.3, formula (4) we obtain the following:

CoroLLARY 5.2

"n

E x z qmaj(:r)a,)_(:r)

a70{q; Q) xet, dky mid
exp( 2 25 ‘(_Bm)k)ﬁ 2 ud )((1+q ) _1))'

d ndd

By eliminating ¢ in this last corollary, we obtain the generating function for the cycle
indicators of B, the hyperoctahedral analogue of a result of Touchard [10] (this result
may also be derived in a much more direct fashion):

CoOROLLARY 5.3.

SIS wn—ap( 3 2t Py

nmoh! nelB, me1

Rather than looking at statistics over the whole group B,, one can count d(7)
(and/or maj(sr)) as & ranges over classes of signed permutations that are characterized
by their cycle type. For example, an element 7 € B, is an involution (i.e. n° = 1) iff it
has no even cycles of size greater than two and no odd cycles of size larger than one.
Hence by setting «; =0 for i=3 and 8;,=0 for i>=2 (and ¢ = 1 for convenience) in
Theorem 4.1, we obtain the following:

CoroLLArY 5.4 (cf. [4, equation (11)]).

n

X
2 Z Id(:r)al(n) =14 2 [,(1 _ a(]x)f.s-(l + ‘B]x).s‘—l(l _ azx‘l)s(l—s)'

nz{](l - t)n+| meB, ¥=1
nl={
This last result has a second interpretation involving domino tableaux. A domino
tableau of size n is a plane partition whose multiset of entries is {1,1,2,2,... .1, n},

weakly decreasing along rows and columns, with the two occurrences of i adjacent
either horizontally or vertically for all i (see Figure 2). Stanton and White [9] give a
generalization of the Robinson—Schensted correspondence which, as a special case,
produces a bijection between involutions in B, and

/12 3 4 5 6 76 4 3 2
”_(—4 +5 +3 -1 +2 —6) 6 53 2 1
113 45 21
T=2 2 3 4 5 ®)

6 6
(a)

FIGURE 2. (a) An involution 7 € B, and its corresponding domino tableau T. Note that D(a)=D(T)=

{1,2,4,6}. (b) The hook lengths for the shape of T from (a). From this we can see that it has one

distinguished marked row (row 1) and one distinguished unmarked row (row 3}, which agrees with the fact
that A(x)={((1,2,0,0,...),(1,0,0,.. )}
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domino tableaux of size n. It turns out that one can read off the descent set and cycle
type of the involution from its corresponding domino tableau fairly easily, by a method
which we now describe. Given a domino tableau T of size n and i < n, the head of i is
the entry of T containing i that lies farthest to the northeast. If the head of i is the
(x, y)-entry T, then the orientation of i is O(i) = (—1)”. We then define the descent set
of T by

0[)=0(+1)=+1 }
head of i is strictly west of head of i + 1
it O(i)=0(G+1)=-1
{head of i is not strictly west of head of i + 1]
U{io@)=-1, 0(+1)=+1}

D(T) ={

where by convention we say that O(n + 1) = +1 (see Figure 2). It is not hard to show,
using the results of [9], that if the involution & corresponds to the tableau T, then
D(m)= D(T). To recover the cycle structure of xx, we need only look at the shape of
T, but first we need some definitions Given a cell in the shape of T, its hook length is
one plus the number of cells strictly to the right in the same row or strictly below it in
the same column. A row of T (or its shape) is distinguished if among the cells of that
row there are an odd number which have even hook lengths. Finally, a row is marked if
(—1Y"*"* = +1, where (x, y) is the last cell in the row; else it is unmarked. It is again not
hard to show using results from [9] that if an involution = with A(x)=
(A, A2, 0,0,...), (uy, 0,0, ...}) corresponds to the domino tableau T, then A, is the
number of distinguished marked rows of T’s shape, and u, is the number of
distinguished unmarked rows (and of course A, =3(n —A, —4,)). In light of these
facts, the left-hand side of the previous corollary may reinterpreted as a generating
function counting domino tableaux by their descents, and distinguished marked and
unmarked rows.

Another property determined by the cycle type of a signed permautation s is its
number of fixed points A,(x) = #{i: x, =i} and negated points ()= #{i. m,= —i}.
Specializing Theorem 4.3, equation (5} gives the folowing:

CorouLLARY 5.5 (cf. [4, equation (15)].

E X

n=0) (I; q)n+1 nel,

n

(0T gmaita) ghi( ) k)

t_ . r {(—bg; q),—\(xq;q);
1—ax 51 -x[2s— 1] (axq; q)s(—xq; g )

=1+

If one views B, as the symmetry group of the n-dimensional hyperoctahedron (the
convex hull in R" of the points {xe,, ..., e,}), then fixed points of s correspond to
pairs {te;} of vertices of the hyperoctahedron which are fixed by the action of . If &
has no fixed vertices, i.e. A, (m)=0, we will say that m is a hyperoctahedral
derangement. By setting a =0, b =1 in the previous corollary, we obtain the following:

COROLLARY 5.6.
" r

X din), maj(a) _ )
t B X5 k3
HE;‘(] (I; q)n+] ne%i),. q sgt)l _xlzs - 1]] ( q)

where HD,, is the set of all hyperoctahedral derangements in B,,.
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One may also view B, as the symmetry group of the n-dimensional cube (the convex

hull in ®" of all points of the form (g, ..., &,) where g = %1). In this context, a
signed permutation is a cubical derangement if it leaves no vertex of the n-cube fixed,
and a cubical rearrangement otherwise. Chen and Stanley [1] observe that & is a cubical

e

n?[}(t;q)rﬁ-l xeCR, X 521

arrangement iff & has no odd cycles. This leads to the following result:

CoRroLLARY 5.7.

n

. 1 "
S 3 regmemii S rep( S S (25— 15— D)

m==1 2m dim
d apowerof2

where CR,, is the set of all cubical rearrangements in B,,.

a;

Either by eliminating ¢ and g in the previous corollary or, more directly by setting
=1 and 8, = 0 in Corollary 5.3, we recover a resuit from [1]:

COROLLARY 5.8.

x" 1
#HCR,— = ———.
n§2:(l n! 1—-2x
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