
EVACUATION OF RECTANGULAR STANDARD YOUNG

TABLEAUX AND CHIP-FIRING

ROHIT AGRAWAL, VLADIMIR SOTIROV, AND FAN WEI

Abstract. We elaborate upon a bijection discovered by Cools et al. in

[CDPR10] between rectangular standard Young tableaux and representatives,
known as G-parking functions, of chip configurations on certain graphs modulo

the chip-firing equivalence relation. We present an explicit formula for com-

puting the G-parking function associated to a given tableau, and prove that
evacuation on tableaux corresponds (under the bijection) to a reflection on the

graph.

1. Introduction

In [CDPR10], Cools et al. investigate the divisors of the family of graphs Γg

consisting of a chain of g loops with edge lengths (`1, . . . , `g,m1, . . . ,mg) that are
generic in the sense that `i/mi (as a reduced fraction) is not the ratio of two integers
with sum less than 2g−2. These graphs arise as the dual graphs of the special fiber
of a strongly connected semistable regular model of smooth curves over a discretely
valued field, and the analysis of their divisors is key to Cools et al.’s tropical proof
of the Brill-Noether Theorem.

In the course of their proof, Cools et al. find a bijection between linear equiv-
alence classes of rank r degree d divisors such that g = (g − d + r)(r + 1), and
(g−d+ r)× (r+ 1) rectangular standard Young tableaux. This bijection raises the
natural question of what the standard operations on rectangular standard Young
tableaux such as conjugation, evacuation, and promotion translate to for divisors
on generic graphs Γg. In this paper we will prove our advisor Gregg Musiker’s con-
jecture that evacuation corresponds to a reflection of the generic graph Γg. In the
course of our proof, we will provide and use an explicit formula for computing the
reduced divisor that represents the linear equivalence class of divisors associated to
a given rectangular standard Young tableau.

The organization of our paper is as follows. In Section 2 we review the pre-
requisite theory of divisors on finite graphs. We do so using the language of the
chip-firing game on finite graphs introduced by Baker and Norine in their seminal
paper [BN07]. In Section 3 we review in detail the construction of the lingering
lattice paths due to Cools et al. associated to (reduced) divisors of generic Γg,
and through which Cools et al. derive the bijection to standard Young tableaux.
Finally, in Section 4 we state and prove our results on explicit formulae for the
bijection, as well as our theorem that evacuation on tableaux corresponds, via the
bijection, to reflection of generic graphs Γg.

The reader who feels comfortable with the material in Sections 2 and 3 may pro-
ceed straight to Section 4, but is advised to familiarize themselves with Lemma 3.6,
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which is crucial to our argument in Section 4. Of additional interest in Section 3
are Lemma 3.13 and Theorem 3.14 which constitute a slightly clearer proof of why
lingering lattice paths determine the rank of a G-parking function on a graph Γg

than the one present in Cools et al.’s original exposition.

2. The Chip-Firing Game and Divisors on Graphs

By a graph G we will mean a pair G = (V,E) where V is a finite set of vertices,
and where E : V ×V → Z≥0 is an edge function assigning a number of edges between
any two vertices. We will require throughout that the edges are undirected, i.e. that
E(u, v) = E(v, u) for all u, v ∈ V , and we will also disallow loops, i.e. E(v, v) = 0
for all v ∈ V , since we will have no use for edges that merely connect a vertex to
itself.

We will say that a sequence of vertices (v1, . . . , vn) in a graph G is a path if
E(vi, vi+1) > 0 for 1 ≤ i < n. We will say that a graph G is connected if for any
two vertices v1 and vn there exists a sequence of vertices (v2, . . . , vn−1) such that
(v1, . . . , vn) is a path.

By a full subgraph H of G = (V,E) determined by a subset S ⊂ V of vertices
of G, we will mean the graph H = (S,E|S) where ES is the restriction of the edge
function to that subset, i.e. the vertices of H are those specified by the subset
S ⊂ V and its edges are precisely those edges in G that join only vertices in S.
Furthermore, for any full subgraph H = (S,ES) of G = (V,E) we define G \H to
be the full subgraph (V \ S,EV \S).

We may occasionally abuse notation by referring to a subset S ⊂ V as a subgraph
S of G = (V,E) – whenever we do this, we mean the full subgraph of G generated
by S.

2.1. The chip-firing game. The chip-firing game has had a somewhat convoluted
development. It was introduced in general by Dhar in [Dha90], where it is called
the abelian sandpile model, and where the several key general results were proved.
Independently, it was introduced as a game on graphs and named the “chip-firing
game” by Bjorner, Lovasz, and Shor in [BLS91]. Finally, it has been reinterpreted
by Baker and Norine in [BN07] as a convenient language for navigating certain facts
regarding divisors on finite graphs and their linear equivalence classes. The term
divisor has been borrowed from the theory of Riemann surfaces, as finite graphs
can be seen as discrete analogues of Riemann surfaces. Since our work is purely
combinatorial, we will only mention in passing how the theory of the chip-firing
game on a finite graph translates to the theory of divisors; the interested reader
may find the details of the connection in [BN07].

Definition 2.1. A chip configuration c on a graph G is an element of ZV , i.e. it
is an assignment of an integer to every vertex of the graph. We interpret positive
integers as numbers of “chips” and negative integers as “debts”; for any c ∈ ZV we
denote by c(v) the number of chips at vertex v, with negative numbers implying
debt.

Note that chip configurations on a graph are precisely the divisors on that graph.

Definition 2.2. We define the Laplacian matrix L(G) of a graph G to be the

|V | × |V | matrix L(G) = (avw) where avw =

{
deg(v) v = w

−E(v, w) v 6= w
.



EVACUATION OF RECTANGULAR STANDARD YOUNG TABLEAUX AND CHIP-FIRING 3

Definition 2.3. Firing a vertex v is an operation on chip configurations which
acts as follows: for every edge connecting v to a vertex w, a chip is removed from
v and added to the vertex w. More formally, the configuration c ∈ ZV is sent to
the configuration c′ = c − Pv where Pv is the column corresponding to v in the
Laplacian matrix L(G).

Note that this definition immediately implies that firing a sequence of vertices is
independent of the sequence’s order since the columns of L(G) certainly generate
an abelian group. Therefore, it makes sense to talk about firing a multiset S of
vertices, which will naturally be the transformation obtained by firing each v ∈ S
as many times as it occurs in S in whatever order. For the sake of simplicity, we
will refer to firing a subset of vertices S ⊂ V as firing the subgraph H in G where
H = (S,ES) is a subgraph of G. The behavior of subgraph-firing will prove key to
our development of the theory of the chip-firing game, so we proceed to define the
notions of interior and boundary vertices of a full subgraph, which will allow us to
explicitly describe subgraph-firing in Lemma 2.5.

Definition 2.4. If H is a full subgraph of G, define the interior of H, IntH, to
be the set of vertices in H such that no edge of G joins them to a vertex in G \H.
Define also the boundary of H, δH, to be the set of vertices of H for which there
exists an edge of G joining them to G \H.

Lemma 2.5 (Subgraph-firing). Let G = (V,E) be a graph and let H be a subset
of vertices. Then firing H inside of G has the following effects:

(1) the number of chips on the interior vertices IntH does not change;
(2) the number of chips on δH changes in exactly the same way it would by

firing the set δH inside the subgraph of G \ IntH obtained by removing all
edges joining vertices of δH to vertices of δH. In particular, the number of
chips on each vertex of δH necessarily decreases.

Proof. Suppose that firing H takes the initial configuration c to c′, and consider
any vertex v ∈ V . Then v both sends and receives a chip along each edge joining
it to a vertex in H, while it only loses chips along edges joining it to vertices in
G \H. �

Corollary 2.6. Firing all vertices of a graph G does not change the configuration
c.

Proof. Taking H = G in the Subgraph-firing Lemma is enough since then the
number of chips on IntG = G must remain unchanged. �

Corollary 2.7. If firing v0 in a graph G = (V,E) sends a configuration c to c′, then
firing V \ {v0} is the inverse operation sending c′ to c. More generally, the inverse
of firing a multiset S of vertices in a graph G, with k being the largest number of
occurrences of any particular vertex v in S, is firing the complement multiset kV \S
where kV is the multiset consisting of k copies of each vertex of V .

Proof. Let H = G\{v0}. Then the boundary δH consists of precisely those vertices
in G that have an edge joining them to v0, i.e. the neighbors of v0. Note that
G \ IntH = δH ∪ {v0}.

Then the Subgraph-firing Lemma says that firing G\{v0} = H in G is equivalent
to firing δH in the subgraph of G \ IntH = δH ∪ {v0} obtained by removing all
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edges joining vertices of δH to vertices of δH. Since δH consists of the neighbors
of v0, it follows that the total effect will be sending a chip to v0 along each edge
incident to v0, which is precisely the inverse of chip-firing v0. �

This important corollary shows in particular that obtaining one chip configura-
tion from another by a sequence of chip-firing operation is necessarily a symmetric
relation between chip configurations. Since this relation is trivially reflexive and
transitive, the corollary shows that it is an equivalence relation. In fact, this equiv-
alence relation is the correct analogue of linear equivalence of divisors, as described
in [BN07].

Definition 2.8. We say that two chip configurations c and c′ are chip-firing equiv-
alent, denoted c ∼ c′, if one can be obtained from the other by a sequence of
chip-firing operations.

The following lemma, easily proved by the Subgraph-firing Lemma, will be cru-
cial to the investigation of chip configurations on the graphs Γg in the latter sections
of the paper.

Lemma 2.9 (Conservation of momentum). Suppose that (v−1, . . . , vj , . . . , vj+k) is
a path in a graph G (the vi do not have to be distinct), and suppose that there exist
subgraphs Hi of G for 0 ≤ i < j + k such that:

(1) δHi = {vi};
(2) the degree of each vi in G \ IntHi is 2, and the two edges in G \ IntHi

involving vi join vi to vi−1 and vi+1.

Then any chip configuration c on G is chip-firing equivalent to the chip configuration
c′ on G obtained by transferring k chips from v0 to v−1 and one chip from vj to
vj+k.

Proof. The equivalence is given by firing the sequences of graphs (H0, H1, . . . ,Hj),
(H0, H1, . . . ,Hj+1), . . . , (H0, H1, . . . ,Hj+k−1). To see this, notice that the Subgraph-
firing Lemma guarantees that firing Hi is the same as firing δHi = {vi} in the
subgraph G \ IntHi. By our hypothesis there are only two edges involving vi in
G\ IntHi, and they join vi to vi−1 and vi+1. Hence firing Hi in G for 0 ≤ i < j+k
transfers one chip from vi to vi−1 and one chip from vi to vi+1.

For 1 ≤ i < k + j, firing (H0, . . . ,Hi) is the same as first firing (H0, . . . ,Hi−1)
and then firing Hi. Inductively, we may assume that firing (H0, . . . ,Hi−1) trans-
fers one chip from v0 to v−1 and one chip from vi−1 to vi. Since firing Hi certainly
transfers one chip from vi to vi−1 and one chip from vi to vi+1, we have that firing
(H0, . . . ,Hi−1) and then Hi overall transfers one chip from v0 to v−1 and one chip
from vi to vi+1. Similarly, a second induction shows that firing the sequences of
graphs (H0, H1, . . . ,Hj), (H0, H1, . . . ,Hj+1)), . . . , (H0, H1, . . . ,Hj+k−1) will over-
all transfer k chips from v0 to v−1 and one chip from vj to vj+k, as desired. �

2.2. Linear equivalence classes of divisors and their ranks. The equivalence
classes of chip configurations on a graph G under chip-firing are nothing more
than the linear equivalence classes of divisors on the graph. The study of these
equivalence classes for connected graphs G is facilitated by the existence of nice
systems of representatives for each vertex v known as G-parking functions. These
were first introduced in the context of graphs by Postnikov and Shapiro in [PS04]
and were subsequently reinterpreted by Baker and Norine in [BN07] as v-reduced
divisors.
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Definition 2.10. We say that a chip configuration c ∈ ZV for a connected graph
G = (V,E) is G-parking relative to v0 if c(v) ≥ 0 for all v 6= v0 and if firing any
subset of vertices of V \ {v0} produces a new configuration c′ such that c′(w) < 0
for some w 6= v0.

In [Dha90], where Dhar introduced the general chip-firing game, called the
abelian sandpile model at the time, he also presented a simple algorithm which
in the case of (connected) graphs specializes to transforming any chip configuration
c into its chip-firing equivalent G-parking function, thus demonstrating existence
of G-parking functions in every equivalence class.

Theorem 2.11 (Dhar’s Burning Algorithm). Fix a vertex v0 of a connected graph
G.

Then every chip configuration on G is chip-firing equivalent to a G-parking func-
tion relative to v0, and furthermore such a G-parking function is determined by the
following algorithm.

(1) Transform the configuration c into a configuration c′ such that c′(w) ≥ 0
for all w 6= v0 by firing vertex v0 a sufficient number of times and slowly
forging a path to the vertices in c that are in debt.

(2) Start a “fire” from the vertex v0 and let it travel along the edges of the
graph;

(3) If a vertex has fewer chips than the number of edges along which the “fire”
reaches it, declare the vertex “burnt” and continue the fire along all edges
coming out of that vertex;

(4) If a vertex has more chips than the number of edges along which the “fire”
reaches it, declare the vertex “unburnt” and do not perpetuate the “fire”
along any more edges coming out of that vertex;

(5) The “unburnt” vertices determine a subgraph H of G: fire those vertices
and then start a “fire” again;

(6) If the whole graph burns, then the configuration is a G-parking function
relative to v0.

Proof. First, we make rigorous the first step of the algorithm, which claims that
every chip configuration is equivalent to one that is non-negative on V \ {v0}.
Consider a path P = (v0, v1, . . . , vn) that joins v0 to a vertex vn such that c(vn) < 0
and induct on the length of P . If n = 1, then simply firing v0 −c(v1) times will
increase c(v1) to c′(v1) = 0 and decrease only the number of chips on v0. For a
path of length n+1, do the above process until c′(vn) ≥ −c(vn+1) deg(vn) then fire
vn −c(vn+1) times. Then c′′(vn) ≥ 0 still and c′′(vn+1) ≥ 0 as desired.

Next, we will show that the fire of the burning algorithm does in fact determine
a subset of vertices that can be fired without any of them going into debt. The fire
determines recursively subsets Ii ⊂ V of “burnt” vertices as follows: set I0 = {v0},
and for every i declare the edges incident to Ii to be “burnt”, and let Ii+1 be the
union of Ii and the vertices v in V \ Ii such that c(v) < #{edges that join v to
“burnt” vertices}. We have that {v0} = I0 ⊂ I1 ⊂ · · · is an ascending chain of
subsets of V and since V is finite it must stabilize, i.e. there exists an n such that
In = In+1 = · · · .

It follows that S = V \ In is the set of vertices of V that ultimately remain
“unburnt”. The Subgraph-firing Lemma then says that firing S is the same as firing
δS in the subgraph of G \ IntS obtained by removing all edges joining vertices of
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δS to vertices of δS. It is plain to see, however, that δS consists of those vertices
v ∈ V with edges joining them to In = V \ S, and that, because In+1 = In, for
every v ∈ δS we have that c(v) ≥ #{edges that join v to “burnt” vertices, that is,
to In = V \ S}. It follows then by the Subgraph-firing Lemma that firing S inside
G does not bring any of the vertices in δS into debt, and also does not change the
number of chips on any vertex in IntS. Hence, the chip configuration so obtained
is, like the one it was obtained from, non-negative on V \ {v0} and furthermore the
total number of chips on V \ {v0} has not increased.

Finally, we note that there are only finitely many chip configurations that are
non-negative on V \ {v0} with at most a certain number of chips on V \ {v0}, and
make the claim that the action of repeatedly running a “fire” from v0 and then firing
the “unburnt” subgraph will never produce a chip configuration that has already
occurred. Since there are only finitely many chip configurations possible, it will
follow that eventually firing the “unburnt” subgraph of G does not change the chip
configuration, which happens only if the graph is empty, that is, if running a fire
from v0 will “burn” the whole graph G and leave no “unburnt” subgraph to fire.

Thus, to finish the proof of correctness of the algorithm, we have only to prove our
final claim that the action of repeatedly running a “fire” from v0 and then firing
the “unburnt” graph will never return to a chip configuration that has already
occurred. To see this, notice that chip-firing a multiset of V \ {v0} inside G cannot
ever be be reversed by chip-firing another multiset of V \ {v0} since the chip-firing
inverse of a multiset inside G is unique and necessarily involves chip-firing a multiset
including v0, as per Corollary 2.7. Now certainly firing the set of “unburnt” vertices
S ⊂ G\{v0} does not leave the configuration c unchanged (as the number of chips on
δS necessarily decreases), and hence the subsequent firings of “unburnt” subgraphs
of G\{v0} cannot invert the firing of S and return us to the configuration c. Hence,
our claim is proved, and with it – the correctness of the algorithm. �

With existence settled, we now prove uniqueness of G-parking functions, once
again with the help of the Subgraph-firing Lemma.

Proposition 2.12. No two distinct G-parking functions relative to a vertex v0 are
chip-firing equivalent.

Proof. Let c and c′ be two G-parking functions relative to a vertex v0, and let S be
the multiset whose firing takes c to c′. Let k be the largest number of occurrences
of any particular vertex v ∈ S. We may assume without loss of generality that the
vertex v0 does not occur with multiplicity k since if it does, then the multiset that
represents the inverse transformation from c′ to c does not by Corollary 2.7.

Then let Mk be the set of vertices in S that occur k times, and note that we can
decompose S into the union of the setsMk, Mk∪Mk−1, Mk∪Mk−1∪Mk−2, . . . , Mk∪
Mk−1 ∪ · · · ∪M1. Note that each of these contains Mk and hence by the Subgraph-
firing Lemma, firing any of these sets does not increase the number of chips on Mk.
Yet firing Mk the first time must surely give us a debt on one of the boundary
vertices since Mk does not contain v0 and c is a G-parking function relative to
v0, and therefore firing all of S will at best preserve and at worst exasperate that
debt. This would mean, however, that c′(v) < 0 for that boundary vertex v of Mk,
contradicting the fact that c′ is a G-parking function. Therefore, the multiset S is
empty and c = c′. �
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Finally, we define the crucial notions of the genus of a (connected) graph, and
the rank and degree of a chip configuration introduced by Baker and Norine in
[BN07], and state without proof the general results necessary for the analysis in
Section 3 of the G-parking functions on the graphs Γg.

Definition 2.13. The rank r(c) of a configuration c on a connected graph G is −1 if
c is not chip-firing equivalent to any non-negative chip configuration, and otherwise
it is the largest number of chips that can be removed from any set of vertices and
give us a configuration c′ equivalent to some non-negative chip configuration.

Note that a simple application of Dhar’s burning algorithm to a non-negative
configuration c′ relative to any vertex v will necessarily produce a non-negative G-
parking function c′. This implies that equivalence to a non-negative configuration
c′ of some configuration c can conclusively be checked by computing the G-parking
function of c relative to any vertex v0, and checking whether the number of chips on
v0 is non-negative. Also note that rank is invariant under chip-firing since subtrac-
tion of chips is the same as subtraction in the abelian group of chip configurations
Z|V |, and hence commutes with subtraction of columns of the Laplacian L(G).

Definition 2.14. For any chip configuration c on a graph G define the degree
deg(c) of c to be

∑
v∈V c(v), i.e. the sum total of all chips and debts on G.

Definition 2.15. For any connected graph G, define the genus g of G by g =
|E| − |V |+ 1 where |E| is the total number of edges and |V | is the total number of
vertices of the graph.

In the course of their tropical proof of the Brill-Noether theorem in [CDPR10],
Cools et al. make use of the Tropical Riemann-Roch theorem, first proved by Baker
and Norine in [BN07] and Luo’s theorem, first proved in [Luo11]. For the sake of
our review of Cools et al.’s construction of lingering lattice paths in the following
section, we include the statements of these theorems here.

Theorem 2.16 (Tropical Riemann-Roch Theorem). If K is the canonical chip
configuration on a graph G given by K(v) = deg(v) − 2, then for any other chip
configuration we have r(c)− r(K − c) = deg(c) + 1− g.

Theorem 2.17 (Luo’s Theorem). Let A be a finite subset of a connected graph
Γ such that the closure in Γ of each connected component of Γ \ A is contractible.
Then the rank r(c) of a non-negative chip configuration c is the largest number of
chips that can be removed from any multiset of vertices contained in A and then
give us a configuration c′ equivalent to a non-negative chip configuration.

3. Lingering Lattice Paths of chip configurations on Γg and standard
Young tableaux

In this section we reinterpret the crucial construction of lingering lattice paths
due to Cools et. al. in [CDPR10] as a procedure for determining the rank of G-
parking functions on the graphs of interest Γg. The following exposition is mostly
a slight rearrangement of what is already present in their paper, emphasizing the
precise roles played by both the genericity of Γg and the condition (r+1)(g−d+r) =
g behind the bijection between rank r degree d chip configurations on Γg and
(g − d+ r)× (r + 1) standard Young tableaux. The only notable difference is our
proof of Theorem 3.14 (Theorem 3.6 in [CDPR10]), in which we attempt to give
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explicit motivation behind the concrete computations in the proof that Cools et al.
give.

3.1. G-parking functions and genericity of the graphs Γg.

Definition 3.1. Let Γg be a graph consisting of g consecutively concatenated
loops γ1, γ2,. . . ,γg such that v1, . . . vg−1 are their intersection points, while v0 and
vg are points on the first and last loop respectively. Define also the sequence of
pairs (mi, li)1≤i≤g where li is the clockwise distance from vi to vi−1 and mi is the
counter-clockwise distance (so that mi + li is the number of vertices on γi). For an
illustration, see Figure 4.5.

Our first order of business is to characterize at least some set of G-parking
functions on Γg.

Proposition 3.2. A configuration c on Γg is G-parking relative to vi if and only
if c restricted to every cut loop γj \ {vj} for j ≤ i and γj \ {vj−1} for j > i is of
degree at most 1.

Proof. We make use of Dhar’s burning algorithm to determine the necessary con-
ditions for a configuration c to be G-parking relative to vi.

First, we suppose that the vertex vi is burnt and consider how the fire spreads to
the loop γi (to the left of vi). There will be two fires starting from vi – the one going
counter-clockwise from vi and the one going clockwise from vi. If there is no chip
on γi \ {vi}, then both fires will reach vi−1 and the whole cut loop will have burnt.
If there is a single chip on γi, then both the clockwise and the counter-clockwise fire
will reach the vertex with that chip, and burn it. If there are at least two vertices
on γi \ {vi−1} with at least one chip each, then one is closest to vi along one of the
two directions (clockwise and counter-clockwise from vi) and hence will stop one of
the fires, while another vertex with a chip will be closest along the other direction
and so will stop the other one. Consequently, no part of the arc of γi containing
those two vertices will burn. Finally, a vertex with at least two chips will not burn
as there are only two fires within the loop.

Evidently, the same reasoning holds for the right loop γi+1, and inductively the
proposition follows for the whole graph. �

Given the above proposition, we obtain a concise way of recording G-parking
functions relative to v0, which will prove useful for the construction of the lingering
lattice paths.

Definition 3.3. For any G-parking function c relative to v0 we associate a sequence
(d0;x1, . . . , xg) where d0 is the number of chips on v0 and xi is the counter-clockwise
distance of the single chip on ith cut loop γi \ {vi−1} from vi−1, with xi = 0 if no
such chip exists.

Next, we use Luo’s theorem to simplify our computations of the rank of chip
configurations on c.

Proposition 3.4. A configuration c on Γg has rank at least r if and only if removing
any r chips from {v0, . . . , vg} transforms c into a chip configuration c′ equivalent
to a non-negative configuration.

Proof. Following [CDPR10], the connected components of Γg \ {v0, . . . , vg} are all
contractible, and hence an application of Luo’s Theorem shows the proposition. �
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For the sake of simplicity, we will collect the r chips that are to be subtracted
from a chip configuration c at the vertices {v0, v1 . . . , vg} in a configuration e that
is non-negative on {v0, . . . , vg} and zero everywhere else on G. For want of a better
term and for the sake of emphasis, whenever we wish to use a configuration e in
order to determine the rank of c, we will refer to any non-negative configuration e
as an effective divisor.

Remark 3.5. Supposing that c is a G-parking function relative to v0, we would like
to know whether c−e is chip-firing equivalent to a non-negative chip configuration.
This may be checked by computing the G-parking function equivalent to c − e
relative to any vertex. Cools et al. adopt, at least implicitly, a more sophisticated
strategy. First decompose e as a sum e = e0 + e1 + · · · + eg, where ei is a chip
configuration with some non-negative number of chips on vi and zero everywhere
else. Then let c0 = c and define ci to be the G-parking function relative to vi
of ci−1 − ei−1. As long as each of ci has more chips on vi than ei, c − e will be
chip-firing equivalent to a non-negative chip configuration. In particular, it will be
equivalent to the G-parking function cg − eg relative to vg.

The lingering lattice paths Cools et al. construct will then be a tool for keeping
track of the possible values of ci presuming each of the cj − ej for j < i had a non-
negative number of chips. Before we construct the lingering lattice paths, however,
we need to know how to transform a G-parking function relative to vi−1 to its
equivalent G-parking function relative to vi.

Lemma 3.6. Let c be a G-parking function on Γg relative to vi−1. Suppose that c
has k chips on vi−1. Then c is chip-firing equivalent to the G-parking function c′

relative to vi which agrees with c everywhere outside the ith closed loop γi, and on
γi restricts according to the following cases:

(1) If there is no chip on γi \{vi−1}, then c′ has k−1 chips on vi and one chip
that is (k − 1)mi away clockwise from vi−1;

(2) if there is a chip on γi \ {vi−1} and xi 6≡ (k + 1)mi mod (li + mi) then c′

has k chips on vi plus a chip that is kmi − xi away clockwise from vi−1;
(3) if there is a chip on γi \ {vi−1} and xi ≡ (k + 1)mi mod (li +mi), then c′

has k + 1 chips on vi.

Proof. This is an immediate consequence of repeatedly applying conservation of
momentum. To apply the lemma, define first for every vertex v ∈ γg a graph
Hv as follows: for v 6= vi−1, vi, set Hv = v, while for v = vi−1, vi set Hvi−1 =

{v0}
⋃(⋃i−1

j=1 γj

)
and Hvi =

(⋃g
j=i+1 γj

)⋃
{vg}.

Second, consider an arbitrarily large path obtained by starting at vi−1 and run-
ning counter-clockwise loops around γi. It is plain to see that for any subpath of
that arbitrarily long path, the graphs Hv for v in the subpath satisfy the conditions
of Conservation of momentum. Hence, we can move chips via mi applications of
Conservation of momentum as follows:

In the first case we move k − 1 chips from vi−1 a distance of mi in the counter-
clockwise direction, and one chip from vi−1 a distance of (k−1)mi in the clockwise
direction.

In the second case and third case, we move the k chips a distance of mi in the
counter-clockwise direction, and the already present single chip a distance of kmi

in the clockwise direction. �
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Note that the first case of the above lemma may simply move all the chips from
vi−1 to vi if it so happens that (k − 1)mi ≡ `i mod `i + mi, which is equivalent
to `i + mi dividing kmi. In order to define the lingering lattice paths, we need to
eliminate this possibility. Fortunately, we can do so by limiting the size of k using
the Tropical Riemann-Roch theorem, and restricting our attention to the graphs
Γg which Cools et al. call generic.

Proposition 3.7. If deg(c) > 2g − 2 for a configuration c on Γg, then r(c) =
deg(c)− g.

Proof. The Tropical Riemann-Roch theorem states that r(c)− r(K− c) = deg(c) +
1 − g where g is the genus of the graph and K is the canonical divisor given by
K(v) = deg(v)− 2.

On the one hand, the genus of Γg is exactly g since each of the cut loops γi \{vi}
has just one more edge than it has vertices, giving us that g = |E| − |V | + 1 =
g − 1 + 1 = g where the −1 comes from the vertex v0 that is not a part of any cut
loop.

On the other hand, every vertex of Γg that is not in {v1, . . . , vg−1} is of degree 2,
while deg(vi) = 4 for 1 ≤ i ≤ g − 1. Hence, the canonical divisor K which satisfies
K(v) = deg(v) − 2 has 2 chips on each of v1, v2, . . . , vg−1 and no chips anywhere
else, which means that its degree is 2g − 2.

Computing r(K−c) when deg(c) > 2g−2 is then easy since deg(K−c) will have
to be negative, which, since chip-firing does not change the degree of a configuration,
implies that K − c cannot be equivalent to a non-negative configuration and hence
that r(K− c) = −1. As a result, the Tropical Riemann-Roch theorem gives us that
r(c) + 1 = deg(c) + 1− g and so r(c) = deg(c)− g. �

The above proposition allows us to assume that deg(c) ≤ 2g − 2 for the chip
configurations c whose rank we wish to compute using the lingering lattice paths.
Hence, in the above lemma we may take k ≤ 2g − 2, and the first case will always
move all but one chip from vi−1 to vi if and only if `i +mi does not divide kmi for
any k ≤ 2g − 2. In order to ensure this latter condition, we restrict our attention
to the following graphs.

Definition 3.8. A graph Γg is called generic if when we take the ratios `i/mi and
reduce them to lowest terms ai/bi, we have that ai + bi > 2g − 2.

Proposition 3.9. The condition that Γg be generic is equivalent to requiring that
the first case of Lemma 3.6 always moves all but one chip from vi−1 to vi for
1 ≤ k ≤ 2g − 2.

Proof. We need a condition that implies that kmi 6= 0 mod `i + mi for 1 ≤ k ≤
2g−2. Letmi = bi gcd(`i,mi) and `i = ai gcd(`i,mi), i.e. let ai/bi be the expression
for `i/mi reduced to lowest terms. Then kmi 6= 0 mod `i +mi holds if and only if
kbi 6= 0 mod ai + bi. We need it to hold for 1 ≤ k ≤ 2g− 2 and since bi is relatively
prime to ai + bi, this happens if and only if ai + bi > 2g − 2, as desired. �

3.2. Lingering lattice paths.

Definition 3.10. For any non-negative integer r we define the open Weyl chamber
C ⊂ Zr by C = {y ∈ Zr : y(0) > y(1) > · · · > y(r − 1) > 0}.
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Definition 3.11. For any generic graph Γg and any G-parking function c relative
to v0 given by sequence (d0;x1, . . . , xg) and of total degree at most 2g − 2, we
associate for any positive integer r ≤ d0 the lingering lattice path P ⊂ Zr consisting
of points p0, . . . , pg in Zr with pi = (pi(0), pi(1), . . . , pi(r − 1)) such that p0 =
(d0, d0 − 1, . . . , d0 − (r − 1)) and:

pi − pi−1 =


(−1, . . . ,−1) if xi = 0

ej
if xi ≡ (pi−1(j) + 1)mi mod `i +mi

and both pi−1, pi−1 + ej ∈ C
0 otherwise

where e0, e1, . . . , er−1 are the standard basis vectors for Zr.

The above definition contains the implicit claim that, in using this procedure to
construct P , there are never two distinct j such that xi ≡ (pi−1(j)+1)mi mod `i +
mi. This claim demands proof, which we give below.

Proposition 3.12. Suppose that c is a G-parking function relative to v0 on generic
Γg and given by the sequence (d0;x1, . . . , xg) with deg(c) ≤ 2g − 2 and that p0 =
(d0, d0 − 1, d0 − 2, . . . , d0 − (r − 1)), p1, . . . , pi−1 ∈ Zr for i < g are points in the
open Weyl chamber whose consecutive differences satisfy the rule of Definition 3.11.
Then the following are true:

(1) for any 1 ≤ j ≤ r − 1 and k < i, pk(j − 1) > pk(j);
(2) pk(0) = ck(vk) where ck is the G-parking function relative to vk that is

chip-firing equivalent to c;
(3) (pi−1(j) + 1)mi ≡ (pi−1(j′) + 1)mi mod `i +mi implies j = j′, allowing us

to define pi.

Proof. For the first property, notice that the rule of the definition does one of three
things at any step from pk−1 to pk: it either decreases all entries by 1, keeps all
entries constant, or increases a single entry by 1 as long as the resulting pk remains
in the open Weyl chamber. All of these preserve the strictly decreasing property,
and since p0 = (d0, d0 − 1, . . . , d0 − (r − 1)) is strictly decreasing, so is each pk for
k < i.

For the second property, we obviously have that c = c0 and p0(0) = d0 = c0(v0).
By Lemma 3.6, we see that the value of ck(vk) is related to the value of ck−1(vk−1)
in precisely the same way that pk(0) is related to pk−1(0).

Finally, to show the third property, we use the other two. Evidently we have that
pi−1(j), pi−1(j′) ≤ pi−1(0) = ci−1(vi−1) ≤ deg(ci−1) = deg(c) ≤ 2g−2 (the number
of chips on a special vertex vi−1 of a G-parking function ci−1 relative to vi−1 is
necessarily less than or equal to deg(ci−1) since all other vertices have non-negative
number of chips on them by definition). Then the difference pi−1(j) − pi−1(j′) is
at most 2g − 2 and the genericity condition ensures that (pi−1(j)− pi−1(j′))mi ≡
mod`i +mi if and only if pi−1(j)− pi−1(j′) is 0. �

Having defined the lingering lattice paths, and keeping in mind Remark 3.5, it is
easy to see that the lingering lattice path associated to a G-parking function relative
to c contains the kind of information we would need in order to determine the rank.
In particular, the definition makes it plain to see that if c′ is a G-parking function
relative to vi−1 with c′(vi−1) = pi−1(j) and pi−1(j−1)−pi−1(j) > 1, then certainly
pi(j) = c′′(vi) where c′′ is the G-parking function relative to vi that is equivalent to
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c′. As Remark 3.5 suggests, keeping track of how many chips there are on vertex vi
for the G-parking function relative to vi is key to Cools et al.’s implicit procedure
for computing the rank. It is at this point that we diverge from [CDPR10] and
offer our own, slightly more elegant proof of the fact that a G-parking functions is
of rank r if and only if the associated lingering lattice path in Zr is contained in
the open Weyl chamber. Specifically, we replace the combined argument of their
Proposition 3.10 and Theorem 3.6 with the following:

Lemma 3.13. Suppose that c is a G-parking function relative to v0 on generic
Γg and given by the sequence (d0;x1, . . . , xg) with deg(c) ≤ 2g − 2. Suppose that
P ⊂ Zr is the associated lingering lattice path.

Suppose also that c′ is any G-parking function relative to vi−1 and c′′ is a G-
parking function relative to vi that is equivalent to c′, then the lingering lattice path
P satisfies the following properties:

(1) c′(vi−1) ≥ pi−1(j) if and only if c′′(vi) ≥ pi(j);
(2) if j = 0 or pi(j − 1) − pi(j) > 1, then c′(vi−1) = pi−1(j) if and only if

c′′(vi) = pi(j).

Proof. Both properties are more or less obvious if we compare the Definition 3.11
and the statement of Lemma 3.6.

To verify the first property, we consider separately the case in which the cut loop
γi \ {vi−1} does not contain a chip, and the case in which it does. First, in the
case in which there is no chip on the cut loop, pi−1(j) decreases by 1 to pi(j) by
definition, and c′(vi−1) decreases by 1 to c′′(vi) by Lemma 3.6. Hence in this case
the inequalities c′(vi−1) ≥ pi−1(j) and c′(vi) ≥ pi(j) are logically equivalent.

Second, in the case in which there is a chip on the cut loop, then by definition
we have two subcases: either pi−1(j) = pi(j), or pi−1(j) increases by 1 to pi(j). If
pi−1(j) = pi(j), then the presence of a chip on the cut loop means that c′(vi−1)
does not decrease to c′′(vi), hence c′′(vi) ≥ c′(vi−1) ≥ pi(j) = pi−1(j) as desired.

If pi−1(j) increases by 1 to pi(j), then it does so because xi ≡ (pi−1(j)+1)mi mod
`i + mi. If c′(vi−1) = pi−1(j) or c′′(vi) = pi(j), then Lemma 3.6 implies that
c′′(vi) = c′(vi−1) + 1 and hence that c′′(vi) = c′(vi−1) + 1 = pi−1(j) + 1 = pi(j).
Alternatively, if c′(vi−1) > pi−1(j), then Lemma 3.6 implies that c′′(vi) = c′(vi−1) ≥
pi−1(j) + 1 = pi(j). Thus, our casework is complete and we have verified the first
property.

To verify the second property we only need to note that either of the conditions
j = 0 and pi−1(j− 1)−pi−1(j) > 1 precludes the possibility in the definition of the
lingering lattice path that xi ≡ (pi−1(j)+1)mi mod `i+mi but pi−1+ej 6∈ C. With
that case precluded, the remaining cases of Definition 3.11 and the corresponding
relationships between pi−1(j) and pi(j) match precisely with the cases of Lemma 3.6
and the corresponding relationships between c′(vi−1) and c′′(vi). Hence we certainly
have that c′(vi−1) = pi−1(j) if and only if c′′(vi) = pi(j). �

Theorem 3.14. A G-parking function relative to v0 on generic graph Γg and of
degree at most 2g−2 has rank at least r if and only if the associated lingering lattice
path in Zr is in the Weyl chamber C.

Proof. To see that if the lingering lattice path in Zr is in C, then c has rank at least
r, first suppose that c′ is a G-parking function relative to vi such that c′(vi) ≥ pi(j)
and that n is a positive integer such that j + n < r. Then the fact that pi ∈ C
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implies that pi(j) > pi(j + 1) > · · · > pi(j + n). Hence pi(j + n) ≤ pi(j) − n so
that removing d chips from vi results in a chip configuration c′′ that is G-parking
relative to vi and such that c′′(vi) = c′(vi)− n =≥ pi(j)− n ≥ pi(j + n).

Second, fix an effective divisor e′ = e0 + e1 + · · · + e′k of degree r, where ei are
effective divisors that necessarily have zero chips away from vi, and e′k is an effective
divisor that has zero chips everywhere except at vk. Let e = e0+e1+ · · ·+ek be the
effective divisor of degree r−1 obtained by removing one chip from e′ at vk, so that
ek is the effective divisor obtained by removing one chip from e′k at vk. Let c0 = c
and let ci be the G-parking function relative to vi that is chip-firing equivalent to
ci−1 − ei−1. We know that c0(v0) = p0(0) by Proposition 3.12, and by the above
we have that (c0 − e0)(v0) = c0(v0)− deg(e0) = p0(0)− deg(e0) ≥ p0(deg(e0)).

Hence, we may inductively suppose that (ci−ei)(vi) ≥ pi(deg(e0 +e1 + · · ·+ei))
for some 0 ≤ i < k. Since ci+1 is the G-parking function relative to vi+1 that is chip-
firing equivalent to ci−ei, by the first property of Lemma 3.13 the inequality of the
inductive hypothesis implies the inequality ci+1(vi+1) ≥ pi+1(deg(e0+e1+ · · ·+ei).
Hence (ci+1− ei+1)(vi+1) = ci+1(vi+1)−deg(ei+1) = pi+1(deg(e0 + e1 + · · ·+ ei))−
deg(ei+1) ≥ pi+1(deg(e0 + e1 + · · ·+ ei+1).

Hence, by induction we have that the G-parking function ck relative to vk that is
equivalent to c−e satisfies ck(vk) ≥ pk(r−1). Since pk is in the open Weyl chamber
C, we have that pk(r − 1) ≥ 1, which means that ck with one chip removed from
vk has a non-negative number of chips on vk. Since ck with a chip removed from
vk is the G-parking function relative to vk that is equivalent to c − e′, this shows
that as long as the lingering lattice path in Zr associated to c is in the open Weyl
chamber C, we can subtract any effective divisor of degree r from c and obtain a
non-negative chip configuration, i.e. that the rank of c is at least r.

To see the converse, we will suppose that the lingering lattice path in Zr associ-
ated to c is not in the open Weyl chamber, and we will construct an effective divisor
e of degree r such that c− e is not equivalent to a non-negative chip configuration.

First, however, for every k such that 0 ≤ k ≤ g we will construct an effective
divisor e of degree 0 ≤ j < r such that pk+1(j) = ck+1(vk+1) where ck+1 is the
G-parking function of c− e relative to vk+1, presuming that p0, p1, . . . , pk are all in
the open Weyl chamber.

Since p0 = (d0, d0−1, . . . , d0−(r−1)) and c(v0) = d0, it follows that e′ consisting
of j < r chips on v0 and zero chips everywhere else is such that (c − e)(v0) =
c0(v0) = d0 − j = p0(j). Hence, we may inductively suppose that we can construct
an effective divisor e′ of degree 0 ≤ j − n < r such that if c′k is the G-parking
function relative to vk equivalent to c− e′, then c′k(vk) = pk(j).

Then let n be the largest number (possibly 0) such that pk+1(j−n)−pk+1(j) = n
if j > 0 and set n = 0 otherwise. Then certainly either n − j = 0, or pk+1(j −
(n + 1)) − pk+1(j − n) > 1 and pk+1(j − n) > pk+1(j − (n − 1)) > . . . pk+1(j) is
a string of consecutive integers. Nevertheless, the second property of Lemma 3.13
applies. So let e′ be an effective divisor such that c− e′ is equivalent to G-parking
function c′k relative to vk such that c′k(vk) = pk(j−n). Then the second property of
Lemma 3.13 states that the G-parking function c′′k+1 relative to vk+1 and equivalent
to c′k satisfies c′′k+1(vk+1) = pk+1(j − n). It follows then that subtracting n chips
from vk+1 gives a G-parking function ck+1 relative to vk+1 such that ck+1(vk+1) =
c′′k+1(vk+1) − n = pk+1(j − n) − n = pk+1(j). Hence, the effective divisor e such
that c− e is equivalent to cvk is given by adding n chips to e′ at vk+1.
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To finish the proof that the lingering lattice path in Zr associated to c fits in the
Weyl chamber if c is of rank at least r, suppose that P ⊂ Zr does not fit inside the
open Weyl chamber, and let pi be the first point of P not in C. Then the fact that
pi is the first such point implies that pi(r− 1) = 0. Using the above, we know that
we can construct an effective divisor e′ of rank r−1 such that c−e′ is equivalent to
a G-parking function c′i relative to vi with c′i(vi) = 0. Adding an additional chip to
e′ at vi gives a rank r effective divisor e such that c−e is equivalent to a G-parking
function ci relative to vi such that ci(vi) = −1. Hence, c− e is not equivalent to a
non-negative chip configuration and the rank of c is less than r. �

The above theorem allows us to compute the rank of a G-parking function as
follows. For convenience, imagine graphing P in Zd0 as d0 non-intersecting paths in
the plane that go diagonally up or diagonally down starting at the heights (d, d−
1, . . . , 1) on the y-axis. If at some point pi 6∈ C, i.e. if the lowest path touches the
x-axis, then remove this lowest path (i.e. project onto Zd0−1). Then the new path
P ′ will have p′i in the open Weyl chamber, and we may continue constructing the
path. Iterating this process will ultimately leave us with a path P ′′ in Zr that fits
in the open Weyl chamber, and such that the path in Zr+1 does not fit.

The observant reader will have noticed that the lingering lattice paths which
disallow lingering, that is, which only increase at some level or decrease at all levels
at every step are in bijection with standard Young tableaux. We formalize this
fact and related results due to Cools et al. regarding the number of lingering steps
below.

Definition 3.15. For any configuration c on graph Γg, let ρ = g−(r+1)(g−d+r).

Theorem 3.16. The following holds for G-parking functions relative to v0 of degree
d > 2g − 2 on any graph Γg, and for G-parking functions relative to v0 of degree
d ≤ 2g − 2 on generic graphs.

(1) If ρ is negative, then any c of degree d is of rank −1.
(2) If ρ is non-negative, then the number of chips d0 at v0 is ≤ r + ρ.
(3) If ρ is non-negative, then the number of lingering steps where the path

neither increases nor decreases is bounded above by min{ρ, g}.
(4) If ρ is zero, then d0 = r, association between configurations and paths is

bijective, and the paths are in one-to-one correspondence with rectangular
standard Young tableaux of shape (g − d+ r)× (r + 1).

Proof. All of these are trivial for d > 2g− 2 since then the Tropical Riemann-Roch
theorem tells us that r = d− g which gives us ρ = g.

If d ≤ 2g − 2, then all of the properties will follow from counting the number
of decreases and giving a lower bound for the number of increases. In particular,
property 1) will follow by a contrapositive to showing that if the associated path
P is in the open Weyl chamber (and hence the rank is non-negative), then ρ is
a non-negative number such that the number of lingering steps in P is at most
min{ρ, g} and d0 ≤ r + ρ.

So suppose that P is in the open Weyl chamber. Then d− d0 is the number of
single chips distributed among the cut loops γi \ {vi−1}. Hence there are d−d0 cut
loops with single chips on them out of total of g cut loops, and hence g− (d−d0) =
g−d+d0 cut loops without chips on them, which correspond to the decreases along
the path P .
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Since P ins the open Weyl chamber, we have that pg must be in the open Weyl
chamber, i.e. r−j ≤ pg(j). We have, however, that p0 = (d0, d0−1, . . . , d0−(r−1))
and so r− j ≤ pg(j) = p0(j)− (g−d+d0)+#{increases in the jth direction} where
g−d+d0 is the number of decreases (same in every direction). Since p0(j) = d0−j,
the above inequality will be satisfied id and only if the total number of increases in
any particular direction j is at least g − d+ r.

Therefore, the total number of increases in all directions combined is at least
r(g − d + r). Since number of increases plus number of decreases plus number of
lingering steps is surely the total number of steps, we obtain that the number of
lingering steps is at most g−(g−d+d0+r(g−d+r)), which is surely non-negative.
We know, however, that r ≤ d0, so that setting ρ = g − (r + 1)(g − d + r), the
assertion that g − (g − d+ d0 + r(g − d+ r)) ≥ 0 transforms into d0 ≤ r+ ρ, while
the statement that g − (d+ d0 + r(g − d+ r) is an upper bound for the number of
lingering steps implies that min{ρ, g} is such an upper bound.

Finally, if ρ = 0, then necessarily d0 = r, and g = (r+1)(g−d+r), which implies
that each direction has exactly g− d+ r increases, that there are exactly g− d+ r
decreases, and that at every step the number of decreases up to that point is at most
the number of increases in each direction. These paths correspond to rectangular
standard Young tableaux of shape (g − d+ r)× (r + 1) as follows. At the ith step
one add the number i to the tableaux, with increases in the ethj direction/jth path

corresponding to adding the number to the j+1st column (recall that Cools et al.’s
indexing has e0, e1, . . . , er−1 as the standard basis vectors for Zr), and decreases
corresponding to adding the number to the r + 1st column. �

4. Evacuation on generic Γg with ρ = 0

In this section we state and prove our original result, conjectured by our super-
visor Gregg Musiker.

Definition 4.1. Let T be an m × n rectangular standard Young tableau with
p = mn, that is, an m × n matrix whose entries are the integers from 1 to p such
that ai,j+1, ai+1,j > ai,j . Then we define the evacuation, ev(T ), of T to be the m×n
rectangular standard Young tableau with (i, j)th entry (p+ 1− am+1−i,n+1−j).

For more details on evacuation of tableaux, see the wonderful survey in [Sta08] by
Richard Stanley. Geometrically, ev(T ) can be pictured as rotating the rectangular
standard Young tableaux 180◦ and flipping the entries according to the rule i →
p+ 1− i.

Definition 4.2. Given a chip configuration c on a graph Γg, we define the reflection
of c, which we write as σ(c), to be the chip conifugration c′ on Γ′g obtained by setting
v′i = vg−i and γ′i to be the image of γg−i under the reflection that exchanges vg−i−1
and vg−i.

Theorem 4.3. Under the bijection of Theorem 3.16 between chip-firing equivalence
classes of rank r degree d chip configurations c on generic Γg such that (g − d +
r)(r + 1) = g and rectangular (g − d + r) × (r + 1) standard Young tableaux, if
such a G-parking function c relative to v0 corresponds to a standard Young tableau
T , then the G-parking function relative to v′0 that is chip-firing equivalent to σ(c)
corresponds to ev(T ), the evacuation of T .



16 ROHIT AGRAWAL, VLADIMIR SOTIROV, AND FAN WEI

For the sake of our readers, we separate our exposition of the proof in two parts.
First, we offer a more detailed description of the bijection in question including
an explicit formulae for computing the associated path from a tableau, and for
computing the G-parking function c relative to v0 both from the associated path
and from the associated tableau. We then use these formulae to compute how
evacuation of tableaux and reflections act on the chip configurations, and thus to
see that they act in precisely the same way.

4.1. The bijection in detail. Recall that we can describe any G-parking function
relative to v0 on the graph Γg by a sequence (d0;x1, . . . , xg) where xi is the counter-
clockwise distance of the single chip on the cut loop γi \ {vi−1} from vi−1. Since
such a sequence determines a G-parking function relative to v0, and hence a unique
representative of the chip-firing equivalence class of chip configurations, we will say
that any rank r degree d chip configuration with g = (g − d+ r)(t+ 1) determines
such a sequence.

Recall also that to any rank r degree d G-parking function c relative to v0 on a
generic graph Γg described by a sequence (d0;x1, . . . , xg) we associate a lingering
lattice path P ⊂ Zr = (p0, p1, . . . , pg) given by:

(1) p0 = (r, r − 1, . . . , 1);

(2) pi − pi−1 =


(−1, . . . ,−1) if xi = 0

ej
if xi ≡ (pi−1(j) + 1)mi mod `i +mi

and both pi−1, pi−1 + ej ∈ C
0 otherwise

where C ⊂ Zr is the open Weyl chamber of points y ∈ C such that y(1) >
y(2) > · · · > y(r) and e1, . . . , er is the standard basis for Zr (for the sake
of convenience, in this section we depart from Cools et al.’s indexing and
take e1, e2, . . . , er to be the standard basis vectors for Zr),

which satisfies the following properties:

(1) pi(1) > pi(2) > · · · > pi(r) ≥ 1;
(2) when g = (g − d+ r)(r + 1) we have that:

(a) pi − pi−1 is never 0,
(b) the number of steps in the j − 1st direction up to a certain point (i.e.

the number of times pi − pi−1 = ej−1 for 1 ≤ i ≤ k) is always greater
than or equal to the number of steps in the jth direction, and always
greater than or equal to the number of steps in (−1, . . . ,−1) which we
call the r + 1st direction;

(c) pg = (r, r − 1, . . . , 1);
(d) r = d0, the number of chips on v0.

Restricting our attention only to the cases when g = (g − d + r)(r + 1), to any
such P we can associate a (g− d+ r)× (r+ 1) rectangular standard Young tableau
T where the equation g = (g − d + r)(r + 1) determines d, by placing the number
i for 1 ≤ i ≤ g in the jth column if pi − pi−1 = ej , and in the r + 1st column if
pi − pi−1 = (−1,−1, . . . ,−1).

This case in which the chip configurations c satisfy (g− d+ r)(r+ 1) = g allows
us to make a few simplifications to our notation. Note that the fact that pi − pi−1
is never 0 if and only if for every i with a non-zero xi, there exists a j such that
xi ≡ (pi−1(j) + 1)mi mod `i + mi. Additionally, xi 6= mi, i.e. the single chip on
γi \ {vi−1} is never on vi, since that would imply that pi−1(j)mi ≡ 0 mod `i +mi
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which is impossible by genericity of Γg and 1 ≤ pi−1(j) ≤ 2g − 2. Thus, we make
the following definition.

Definition 4.4. For any rank r degree d G-parking function c relative to v0 on
generic Γg with (g − d+ r)(r + 1) = g, we associate a sequence (d0;x1, x2, . . . , xg)
where xi is 0 if there is no chip on γi \ {vi−1}, and otherwise xi is such that ximi

is the counter-clockwise distance of the chip from vi. Equivalently, given that the
G-parking function c determines (d0;x1, . . . , xg), we have (xi + 1)mi = xi if xi 6= 0
and xi = 0 if xi = 0.

This has the advantage of simplifying the rule for generating the lingering lattice
path of a rank r degree d G-parking function c such that (g− d+ r)(r+ 1) = g to:

pi − pi−1 =

(−1, . . . ,−1) if xi = 0

ej
if ximi ≡ pi−1(j)mi mod `i +mi

and both pi−1, pi−1 + ej ∈ C
(1)

Figure 1. The G-parking function of Example 4.5

2 v0

1

v1

1

v2

1

v3 v4

1

v5 v6

Example 4.5. Consider G-parking function on Γg given by (2; 2, 3, 1, 0, 1, 0) in
which the xi have values

x1 = 2, x2 = 3, x3 = 1, x4 = 0, x5 = 1, x6 = 0

and which is illustrated in Figure 1.
We decide to construct the lingering lattice path so we start with p0 = (2, 1) and

the rule (1). Note that in general, rule (1) would encounter a situation not covered
by its cases if and only if the rank r of c does not satisfy (g − d+ r)(r + 1) = g, in
which case we would switch to the more general present in the original definition
of the lingering lattice paths. We encounter no problem, however, as we obtain:

p0 =

(
2

1

)
, p1 =

(
3

1

)
, p2 =

(
4

1

)
, p3 =

(
4

2

)
, p4 =

(
3

1

)
, p5 =

(
3

2

)
, p6 =

(
2

1

)
The fact that rule (1) never failed implies that the rank of c certainly satisfies
(g − d+ r)(r + 1) = g, and so in particular is certainly d0. Hence the rank is 2, so
r + 1 = 3 and g − d + r = 2 = g/(r + 1) = 6/3 = 2, so we can assoicate a 2 × 3
standard Young tableau, which we fill as follows:

Since p0 increases to p1 along the top (i.e. the e1) direction, 1 must go in
the first column; since p2 increases to p3 along the second from the top (i.e. e2)
direction, 3 must go in the second column; since p3 decreases to p4 (i.e. changes
along (−1, . . . ,−1), 4 must go in the last (third) column, and so forth. We obtain
the tableau below:

1 3 4
2 5 6
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Since we are interested in how evacuation of tableaux pulls back through the
bijection, we better also see how to run the bijection in reverse. The following two
propositions will tell us how to obtain the lingering lattice path from the tableau,
and the numbers xi from the lingering lattice path. First, however, we will need a
certain statistics on standard Young tableaux.

Definition 4.6. Suppose that T is a rectangular (g − d + r) × (r + 1) standard
Young tableau. Fix a positive integer i such that i ≤ g.

We define lj to be the number of cells in the jth column of T whose entries are
at most i, and l′j to be the number of cells in the jth column of T whose entries are
at most i− 1.

Proposition 4.7. Suppose that T is rectangular (g − d + r) × (r + 1) standard
Young tableau associated to a lingering lattice path P .

For a fixed i, and the lj defined as above to be the number of cells in the jth

column whose entries are at most i, we have that the ith step pi of the lingering
lattice path associated to T is given by:

pi = p0 +


l1 − lr+1

l2 − lr+1

. . .
lr − lr+1

 =


r + l1 − lr+1

r − 1 + l2 − lr+1

. . .
1 + lr − lr+1

(2)

Proof. Recall that in the bijection between the lingering lattice paths and the stan-
dard Young tableaux, a number k ≤ i is placed in column j < r + 1 when the
pk − pk−1 = ej , i.e. when there has been an increase in the jth direction. The
number lj hence counts the number of increases that have occurred in the jth di-
rection by step the pi. On the other hand, a number k ≤ i is placed in column r+1
when pk − pk−1 = (−1,−1, . . . ,−1), i.e. when there has been a decrease along all
directions. Hence, lr+1 counts the number of decreases that have occurred by step
pi. Knowing that we start with p0 = (r, r − 1, . . . , 1), the proposition follows. �

Proposition 4.8. Suppose that P is a lingering lattice path in r = d0 directions
and length g with no lingering steps, and suppose that the associated G-parking
function on a generic graph Γg is given by the sequence (d0;x1, . . . , xg).

For a fixed i, we have that:

xi =

{
0 if pi − pi−1 = (−1,−1, . . . ,−1)

pi−1(j) if pi − pi−1 = ej

Proof. This is the obvious reversal of the rule for constructing the lingering lattice
paths (keeping in mind our convention). �

Combining the two propositions above, we obtain the following direct description
of the bijection:

Proposition 4.9. Supposing that T is the rectangular (g−d+r)× (r+1) standard
Young tableau associated to a G-parking function on a generic Γg described by
(r;x1, . . . , xg).

For a fixed i, and the l′s defined as above to be the number of cells in the sth

column of T whose entries are at most i− 1, we have that:

xi = r + 1− j + l′j − l′r+1(3)
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where l′s is the number of cells in the sth column of T whose entries are less than
or equal to i− 1.

Proof. Suppose that the number i is in the jth column of T for 1 ≤ j < r+ 1. This
means that pi − pi−1 = ej and hence Proposition 4.8 gives us: xi = pi−1(j), while
Proposition 4.7 gives us pi−1 = r + 1− j + l′j − l′r+1.

If the number i is in the r+ 1st column of T , then pi − pi−1 = (−1, . . . ,−1) and
xi = 0 = r + 1− (r + 1) + l′r+1 − l′r+1, so the formula holds in both cases. �

Example 4.10. Consider the standard Young tableau T with which Example 4.5
finished, and which is given below:

1 3 4
2 5 6

Then xi = r + 1 − j + l′j − l′r+1 where i is in column j and l′s is the number of
entries in column s that are at most i− 1. Throughout, r = 2. We summarize the
computations int the following table:

i j l′j l′2+1 r + 1− j + l′j − l′r+1 xi
1 1 0 0 2 + 1− 1 + 0− 0 = 2
2 1 1 0 2 + 1− 1 + 1− 0 = 3
3 2 0 0 2 + 1− 2 + 1− 0 = 1
4 2 1 1 2 + 1− 3 + 0− 0 = 0
5 2 1 1 2 + 1− 2 + 1− 1 = 1
6 3 1 1 2 + 1− 3 + 1− 1 = 0

As expected, we obtain back the chip configuration we started with, namely the
one given by the sequence (2; 2, 3, 1, 0, 1, 0).

4.2. The actions of ev(T ) and σ(c). Given the propositions in the preceding
section and the definition of evacuation on rectangular standard Young tableaux
(rotate by 180◦ and flip the numbers according to the rule i→ n+ 1− i where n is
the number of cells in the tableau), we should be able to explicitly determine what
evacuation does to the sequence (d0;x1, . . . , xg).

Proposition 4.11. If the (g−d+r)×(r+1) standard Young tableaux T is associated
to a G-parking function described by (d0;x1, . . . , xg) on generic Γg with d0 = r and
g = (g − d+ r)× (r + 1), then ev(T ) is associated to such a function described by
(d0;x′1, . . . , x

′
g) where

x′g+1−i = j − 1 + lj − l1(4)

where ls is the number of cells in the sth column of T whose entries are at most i.

Proof. First, since the dimensions of the tableau do not change under evacuation,
certainly the number of chips on the special vertex remains d0 = r. Hence, all we
need to find are the x′i for 1 ≤ i ≤ g. Explicitly, we will find the formula for x′g+1−i.

Evidently, evacuation takes column j to column r + 2 − j so that if lj is the
number of cells in column j of T whose entries are at most i, then lj is also the
number of cells in column r + 2 − j of ev(T ) whose entries are at least g + 1 − i
(since evacuation also flips the values of the entries).

In terms of the associated lingering lattice path (p′1, . . . , p
′
g) to ev(T ), for j 6= 1

lj counts the number of increases in the r + 2 − jth direction from p′g−i to p′g =
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(r, r − 1, . . . , 1). Similarly, l1 counts the number of decreases along all directions
from p′g−i to p′g = (r, r − 1, . . . , 1). As a sanity check, note that when i = 0, all of
the ls are 0 as they should be since there are no steps from p′g−0 to p′g. Furthermore,
when i = 1, we have l1 = 1 and ls = 0 for s 6= 1 which is consistent with the fact
that the step from p′g−1 to p′g can only be a decrease, since it can neither linger nor
increase as p′g = (r, r − 1, . . . , 1) is the lowest the lingering lattice path can go.

Given that the lj are counting steps in the r+ 2− jth direction from p′g−i to p′g,
we obtain the following analogue of Proposition 4.7:

p′g−i = p′g −


l1 − lr+1

l1 − lr
. . .

l1 − l2

 =


r + lr+1 − l1
r − 1 + lr − l1

. . .
1 + l2 − l1


Next we obtain the analogue of Proposition 4.9 using exactly the same argument.

Suppose that i is in the jth column of T . Then we have that g + 1 − i is in the
r+ 1− jth column of ev(T ). If j ≥ 2, then this means that p′g+1−i− p′g−i = er+2−j
and hence x′g+1−i = p′g−i(r+ 2− j) = j − 1 + lj − l1 where ls is the number of cells

in the sth column of T whose entries are at most i.
Otherwise, if j = 1, we have that g + 1 − i is in the r + 1st column of ev(T ),

which means that p′g+1−i − p′g−i = (−1, . . . ,−1) and x′g+1−i = 0 = 1− 1 + l1 − l1,
so the formula holds in both cases. �

All that is left to do is determine that the sequence related to σ(c) is the same
as the one we obtained above for the G-parking function associated to ev(T ). Since
the rank remains fixed under reflection, as does the degree, we know that we will
still have (g − d + r)(r + 1) = g which guarantees that the number of chips on
the special vertex will remain the same. Hence, we only need to figure out the x′i
of σ(c). This is, however, easy with the following lemma, which relates x′g+1−i to
the xi, whose values we already have in terms of the combinatorics of the standard
Young tableau.

Lemma 4.12. Supposing that c is a rank r degree d G-parking function relative
to v0 on a generic graph Γg such that g = (g + d − r)(r + 1) and described by
(d0;x1, . . . , xg) with d0 = r, then σ(c) on Γ′g is chip-firing equivalent to a G-parking
function relative to v′0 described by (d0;x′1, . . . , x

′
g) where

x′g+1−i = max{pi−1(1)− xi − 1, 0}(5)

Proof. Note that the sequence (d0;x′1, . . . , x
′
g) of the G-parking function relative to

v′0 that is chip-firing equivalent to σ(c) on Γ′g can be interpreted as follows: if c′ is
the G-parking function relative to vg that is chip-firing equivalent to c, then x′g+1−i
is the clockwise distance of the one chip on γi from vi−1 on Γg.

These clockwise distances, however, are determined by successively comput-
ing the equivalent G-parking functions relative to vertices v1, then v2, . . . , vg.
Lemma 3.6 applies and gives us the following.

Suppose that k is the number of chips on vi−1 of the G-parking function relative
to vi−1 that is chip-firing equivalent to c. Then combining Lemma 3.6 with our
notation for xi, we obtain:

(1) if xi is 0, i.e. if there is no chip on γi \ {vi−1}, then there will be one chip
on γi \ {vi} that is a clockwise distance (k − 1)mi away from vi;
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(2) if ximi 6≡ kmi mod (li + mi), then there is one chip on γi \ {vi} that is a
clockwise distance kmi − (xi + 1)mi away from vi;

(3) if ximi ≡ kmi mod (li +mi), then there are no chips left on γi \ {vi}.
Now, k is of course pi−1(1) since the top entries of the lingering lattice path keep

track of exactly the number of chips at vi of the G-parking functions relative to vi
chip-firing equivalent to c. Hence, the formula x′g+1−i = max{pi−1(1) − xi − 1, 0}
holds for all of the three cases above. �

Proof of Theorem 4.3. It is enough to show that the x′g+1−i of the G-parking func-
tion relative to v′0 equivalent to σ(c) satisfy equation (4): x′g+1−i = j − 1 + lj − l1,

where ls is the number of cells of in the sth column of the standard Young tableau
associated to c whose entries are at most i , and j is the column in which i appears.

This is easy, however, since we have established the following equations:

(2) pi−1(1) = r + l′1 − l′r+1;
(3) xi = r + 1− j + l′j − l′r+1;
(5) x′g+1−i = max{pi−1(1)− xi − 1, 0}.

where l′s is the number of cells of in the sth column of the standard Young tableau
associated to c whose entries are at most i − 1, and j is the column in which i
appears. Evidently:

x′g+1−i = max{r+ l′1− l′r+1− (r+ 1− j+ l′j − l′r+1)− 1, 0} = max{j− 2 + l′j − l′1, 0}

If we let ls be the number of cells in the sth column of T whose entries are at
most i, then the fact that i is in the jth column of T implies that ls = l′s for
s 6= j and lj = l′j + 1 . This gives us that if j 6= 1, then the formula in fact
x′g+1−i = max{j−1 + lj − l1, 0}. Since the tableau is standard, we necessarily have
lj ≥ l1. Since also j ≥ 1, we have that in fact j − 1 + lj − l1 ≥ 0, so that the final
formula for j 6= 1 is x′g+1−i = j − 1 + lj − l1.

If j = 1, then x′g+1−i = max{1−2+ l′1− l′1, 0} = max{−1, 0} = 0 = 1−1+ l1− l1,
so the formula is still satisfied. �
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