1 On the Jacobi-Trudi formula for dual stable Grothendieck polynomials

Francisc Bozgan, UCLA

1.1 Review

We will first begin with a review of the facts that we already now about this problem.

Firstly, a semistandard Young tableau T is a Young tableau $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ with positive integer entries which strictly increase in columns and weakly increase in rows.

Secondly, we will define a Schur function : a Schur function is a polynomial s_{λ} is defined as

$$
\begin{equation*}
s_{\lambda}=\sum_{T} x^{T}=\sum_{T} x_{1}^{t_{1}} x_{2}^{t_{2}} \cdots x_{n}^{t_{n}}, \tag{1}
\end{equation*}
$$

where the summation is over all semistandard Young tableau T of shape λ; the exponents t_{1}, \ldots, t_{n} represent the weight of the tableau, in other words the t_{i} counts the number of occurences of i in T.

Thirdly, a reverse plane partition is Young tableau with positive integer entries which increase weakly both in rows and columns.

Forthly, we introduce the dual-stable Grothendieck polynomials, defined as

$$
\begin{equation*}
g_{\lambda}=\sum_{T} x_{T}=\sum_{T} x_{1}^{t_{1}} \cdots x_{n}^{t_{n}}, \tag{2}
\end{equation*}
$$

where the summation is over all reverse plane partitions T of shape λ; the exponents t_{1}, \ldots, t_{n} represent the weight of the reverse plane partition, in other words the t_{i} counts the number of columns containing i in T.

We will note henceforth $\bar{\lambda}=\left(\overline{\lambda_{1}}, \ldots, \overline{\lambda_{n}}\right)$ the conjugate of λ, a tableau with λ_{i} boxes on the $i-t h$ column for all i.

We now introduce the Jacobi-Trudi formulas, or also known as the Giambelli formulas, expressing the schur functions in terms of elementary symmetric polynomials,
e_{i}, by having the formula

$$
\begin{equation*}
s_{\lambda}=\operatorname{det}_{1 \leq i, j \leq n}\left(e_{\overline{\lambda_{i}}-i+j}\right) \tag{3}
\end{equation*}
$$

or

$$
s_{\lambda}=\left|\begin{array}{cccc}
e_{\bar{\lambda}_{1}} & e_{\bar{\lambda}_{1}+1} & \cdot & e_{\bar{\lambda}_{1}+n-1} \tag{4}\\
\cdot & e_{\bar{\lambda}_{2}} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
e_{\bar{\lambda}_{n}-n+1} & \cdot & \cdot & e_{\bar{\lambda}_{n}}
\end{array}\right|
$$

Definition. An elegant filling (EF) of the skew shape λ / μ is a filling of λ / μ with the following conditions:
(1) the numbers weakly increase in rows and strictly increase in columns; and
(2) the numbers in the row i are in $[1, i-1]$. The number of EFs of λ / μ is denoted by f_{λ}^{μ}. In the case where μ is not included in λ we set $f_{\lambda}^{\mu}=0$.

Theorem 1 (Lahm, Pylyavskyy [1]). Let λ be a partition. Then

$$
\begin{equation*}
g_{\lambda}=\sum_{\mu \subseteq \lambda} f_{\lambda}^{\mu} s_{\mu} \tag{5}
\end{equation*}
$$

1.2 Equivalent Relations

Now, we will prove some equivalences using the Jacobi-Trudi formulas.
Note, $\bar{\lambda}=\left(m_{1}, \ldots, m_{r}\right)$ with $m_{1} \geq \ldots \geq m_{r}$ and also the symmetric polynomial $w_{\lambda}=w_{\left(m_{1}, \ldots, m_{r}\right)^{T}}$ defined by

$$
w_{\lambda}=\left|\begin{array}{cccc}
\binom{m_{1}-1}{m 1-1} e_{m_{1}}+\ldots+\left(\begin{array}{c}
m_{1}-1
\end{array}\right) e_{1} & \cdot & \cdot & \binom{m_{1}-1}{m_{1}-1} e_{m_{1}+r-1}+\ldots+\left({ }_{0}^{m_{1}-1}\right) e_{r} \tag{6}\\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\binom{m_{r}-1}{m_{r}-1} e_{m_{r}-r+1}+\ldots+\binom{m_{r}-1}{0} e_{2-r} & \cdot & \cdot & \binom{m_{r}-1}{m_{r}-1} e_{m_{r}}+\ldots+\left({ }_{0}^{m_{r}-1}\right) e_{1}
\end{array}\right|
$$

or by writing the abbreviated formula, we have

$$
\begin{equation*}
w_{\lambda}=\operatorname{det}\left(\left(\binom{m_{i}-1}{m_{i}-1} e_{m_{i}-i+j}+\ldots+\binom{m_{i}-1}{0} e_{j-i+1}\right)_{1 \leq i, j \leq r}\right) . \tag{7}
\end{equation*}
$$

Note the linear vector $V_{x}=\left(e_{x} e_{x+1} \ldots e_{x+r-1}\right)$ where $e_{x}=0$ if $x \leq 0$ and $e_{0}=1$.

Therefore equation (6) is becoming

$$
w_{\lambda}=\left|\begin{array}{c}
\binom{m_{1}-1}{m 1-1} V_{m_{1}}+\ldots+\left(\begin{array}{c}
m_{0}-1
\end{array}\right) V_{1} \tag{8}\\
\cdot \\
\cdot \\
\binom{m_{r}-1}{m_{r}-1} V_{m_{r}-r+1}+\ldots+\left(\begin{array}{c}
m_{r}-1
\end{array}\right) V_{2-r}
\end{array}\right| .
$$

We can split the determinant by using the n-linearity of the determinant like

$$
\left|\begin{array}{c}
R_{1}+R_{1}^{\prime} \tag{9}\\
R_{2} \\
\cdot \\
\cdot \\
R_{n}
\end{array}\right|=\left|\begin{array}{c}
R_{1} \\
R_{2} \\
\cdot \\
\cdot \\
R_{n}
\end{array}\right|+\left|\begin{array}{c}
R_{1}^{\prime} \\
R_{2} \\
\cdot \\
\cdot \\
R_{n}
\end{array}\right|
$$

therefore we get

$$
g_{\lambda}=\sum_{i=1}^{r}\left(\sum_{2-i \leq k_{i} \leq m_{i}-i+1}\left|\begin{array}{c}
\substack{m_{i}-1 \\
k_{1}+1-2 \\
\cdot \\
\hline \\
k_{k_{1}} \\
\cdot \\
\cdot \\
\left(\begin{array}{l}
m_{r}-1 \\
k_{r}+r-2
\end{array}\right) V_{k_{r}}}
\end{array}\right|\right)=\sum_{i=1}^{r}\left(\sum_{2-i \leq k_{i} \leq m_{i}-i+1} \prod_{i=1}^{r}\binom{m_{i}-1}{k_{i}+i-2}\left|\begin{array}{c}
V_{k_{1}} \tag{10}\\
\cdot \\
\cdot \\
V_{k_{r}}
\end{array}\right|\right) .
$$

We would like to compute now the coefficient of $\left|\begin{array}{c}V_{\alpha_{1}} \\ \cdot \\ \cdot \\ V_{\alpha_{r}}\end{array}\right|$ where $\alpha_{1} \geq \ldots \geq \alpha_{r}$ and also $2-i \leq \alpha_{i} \leq m_{i}-i+1, \forall 1 \leq i \leq r$.

Actually we can suppose that $\alpha_{1}>\ldots>\alpha_{r}$, because if there are i, j such that $\alpha_{i}=\alpha_{j}$ then $\left|\begin{array}{c}\cdot \\ V_{\alpha_{i}} \\ \cdot \\ V_{\alpha_{j}}\end{array}\right|=0$, therefore we can do the previous supposition.

Therefore the coefficient of $\left|\begin{array}{c}V_{\alpha_{1}} \\ \cdot \\ \cdot \\ V_{\alpha_{r}}\end{array}\right|$ will be

$$
\left.\begin{array}{rl}
\sum_{\sigma \in S_{r}} \prod_{i=1}^{r}\binom{m_{i}-1}{\alpha_{\sigma(i)+i-2}} & \underbrace{\left|\begin{array}{c}
V_{\alpha_{\sigma(1)}} \\
\cdot \\
\cdot \\
V_{\alpha_{\sigma(r)}}
\end{array}\right|}_{(-1)^{\epsilon(\sigma)}}\left|\begin{array}{c}
V_{\alpha_{1}} \\
\cdot \\
\cdot \\
V_{\alpha_{r}}
\end{array}\right|
\end{array}\right)=\sum_{\sigma \in S_{r}}(-1)^{\epsilon(\sigma)} \prod_{i=1}^{r}\binom{m_{i}}{\alpha_{\sigma(i)+i-2}}\left|\begin{array}{c}
V_{\alpha_{1}} \tag{11}\\
\cdot \\
\cdot \\
V_{\alpha_{r}}
\end{array}\right|
$$

and by noting $\binom{m_{i}-1}{\alpha_{\sigma(i)}+i-2}=a_{i \sigma(i)}$, it results that $\sum_{\sigma \in S_{r}}(-1)^{\epsilon(\sigma)} \prod_{i=1}^{r}\binom{m_{i}}{\alpha_{\sigma(i)}+i-2}=$ $\sum_{\sigma \in S_{r}}(-1)^{\epsilon(\sigma)} \prod_{i=1}^{r} a_{i \sigma(i)}=\operatorname{det}\left(\left(a_{i j}\right)_{1 \leq i, j \leq r}\right)=\operatorname{det}\left(\binom{m_{i}-1}{\alpha_{j}+i-2}_{1 \leq i, j \leq r}\right)$
which yields that

$$
(11)=\operatorname{det}\left(\binom{m_{i}-1}{\alpha_{j}+i-2}_{1 \leq i, j \leq r}\right)\left|\begin{array}{c}
V_{\alpha_{1}} \tag{12}\\
\cdot \\
\cdot \\
V_{\alpha_{r}}
\end{array}\right|
$$

and we will also note $\alpha_{\lambda}^{\mu}=\operatorname{det}\left(\binom{m_{i}-1}{\alpha_{j}+i-2}_{1 \leq i, j \leq r}\right)$ where $\mu=\left(\alpha_{1}, \ldots, \alpha_{r}+\right.$ $r-1)^{T}$.

Also, by using Theorem 1, we get that $\left|\begin{array}{c}V_{\alpha_{1}} \\ \cdot \\ \cdot \\ V_{\alpha_{r}}\end{array}\right|$ can be written as the Schur polynomial $s_{\left(\alpha_{1}, \ldots, \alpha_{r}+r-1\right)^{T}}=s_{\mu}$. Therefore the coefficient of s_{μ} is in fact exactly α_{λ}^{μ}, hence $w_{\lambda}=\sum_{\mu \in B} \alpha_{\lambda}^{\mu} s_{\mu}$ for some set B of plane partitions.

We will now prove that $\mu \in B$ if and only if $\mu \subseteq \bar{\lambda}$ or the equivalent $\bar{\mu} \subseteq \lambda$.

Proof.

$" \Longrightarrow "$ If $\mu=\left(\alpha_{1}, \ldots, \alpha_{r}+r-1\right)^{T}$, with $\alpha_{i}+i \geq \alpha_{i+1}+i+1$, thus $\alpha_{i} \geq \alpha_{i+1}+1$ and $2-i \leq \alpha_{i} \leq m_{i}-i+1$, therefore $1 \leq \underbrace{\alpha_{i}+i-1}_{\bar{\mu}_{i}} \leq m_{i}=\lambda_{i}$, for all $1 \leq i \leq r$, hence $\mu \subseteq \bar{\lambda}$.
$" \Longleftarrow "$ If $\bar{\mu} \subseteq \lambda$ then take $\alpha_{i}=\bar{\mu}_{i}-i+1, \forall i$, and so $2-i \leq \alpha_{i} \leq m_{i}-i+1$ and $\alpha_{i}=\bar{\mu}_{i}-i+1 \geq \bar{\mu}_{i-1}-i+1=\alpha_{i-1}+1$, so $\alpha_{i}>\alpha_{i-1}$, therefore $\mu \in B$.

This proves that

$$
\begin{equation*}
w_{\lambda}=\sum_{\mu \subseteq \lambda} \alpha_{\lambda}^{\mu} s_{\mu} \tag{13}
\end{equation*}
$$

Lemma:

The two following statements are equivalent:
a).For any plane partition λ, we have $w_{\lambda}=g_{\lambda}$;
b).For any $\mu \subseteq \lambda$, we have $f_{\lambda}^{\mu}=\operatorname{det}\left(\left({\overline{\lambda_{i}}}_{j}-j+i-1\right)_{1 \leq i, j \leq r}\right)$, where $\bar{\lambda}=\left(\overline{\lambda_{1}}, \ldots, \overline{\lambda_{r}}\right)$ and $\bar{\mu}=\left(\bar{\mu}_{1}, \ldots, \bar{\mu}_{r}\right)$ (we need that $\bar{\mu}$ has r columns, if not $f_{\lambda}^{\mu}=0$).

Proof: " \Longrightarrow If $g_{\lambda}=\sum_{\mu \subseteq \lambda} f_{\lambda}^{\mu}=\sum_{\mu \subseteq \lambda} \alpha_{\lambda}^{\mu}=w_{\lambda}$, and also knowing that the Schur functions form a basis in the space of symmetric polynomials, therefore it results that $\left.f_{\lambda}^{\mu}=\alpha_{\lambda}^{\mu}=\operatorname{det}\left(\left(\bar{\lambda}_{i}-1, \bar{\mu}_{j}-j+i-1\right)\right)_{1 \leq i, j \leq r}\right)$.
$" \Longleftarrow "$ It is clear from (13) and Theorem 1.
We also get a consequence from the lemma: $\operatorname{det}\left(\binom{a_{i}}{b_{j}-j+i-1}_{1 \leq i, j \leq r}\right) \geq 0$, where $a_{1}, \ldots, a_{r}, b_{1}, \ldots b_{r}$ are integers and $a_{1} \geq \ldots \geq a_{r} \geq 0, b_{1} \geq \ldots \geq b_{r} \geq 0$.

Now we will state the main conjecture of my REU project:
Conjecture. For any plane partition λ we have $w_{\lambda}=g_{\lambda}$.

We will prove this conjecture for some special cases.

1.3 Proof of the conjecture in some special cases

Note $(i)=$ column with i boxes and $(i, j)=$ two column plane partition with the first column having i boxes and the second one having j columns.

1.3.1 One column case

Case I : one column case, $\lambda=(r)$. From Theorem 1, $g_{(r)}=\sum_{i=1}^{r} f_{(r)}^{(i)} s_{(i)}$. We will prove that $f_{(r)}^{(i)}=\binom{r-1}{i-1}$, and by the lemma we get our result.

Let $a_{i+1}, a_{i+2}, \ldots, a_{r}$ the numbers filled in the elegant filling of the skewshape $(r) /(i)$, the j-th box containing a_{j+i}. By the definition of the elegant filling we have that $1 \leq a_{i+1}<a_{i+2}<\cdots<a_{r}$ (condition 1) and all $a_{j} \in[1, j-1]$ for all $j=\overline{i+1, r}$ (condition 2). But actually this is equivalent to pick any $r-i$ distinct numbers in the interval $[1, r-1]$, as by simply doing that both conditions will be satisfied. The number of ways of picking $r-i$ numbers from 1 to r is obviously $\binom{r-1}{r-i}=\binom{r-1}{i-1}$, therefore getting that $f_{(r)}^{(i)}=\binom{r-1}{i-1}$, and the conclusion follows.

We can prove this result through other method also:
Note $S_{k}^{k+m}=\binom{m}{m} e_{k+m}+\ldots+\binom{m}{0} e_{k}$, where $k, m \geq 0$ and we can easily prove that $S_{k-1}^{k+m}-S_{k}^{k+m}=S_{k-1}^{k+m-1}$. By induction we get $S_{k}^{k+m}=\binom{k-1}{k-1}(-1)^{(k-1)-(k-1)} g_{(k+m)}+$ $\ldots+\left({ }_{0}^{k-1}\right)(-1)^{k-1-0} g_{(m+1)}$, therefore by plugging in $k=1$ we get $S_{1}^{m+1}=$ $g_{(m+1)}=\binom{m}{m} e_{m+1}+\ldots+\binom{m}{0} e_{1}$, hence $g_{(r)}=\binom{r-1}{r-1} e_{r}+\ldots+\binom{r-1}{0} e_{1}$.

1.3.2 Two columns case

Case II : $\lambda=(r, s)$ with $r \geq s$.
By using the lemma, we need to prove

$$
f_{(r, s)}^{(i, j)}=\left|\begin{array}{cc}
\binom{r-1}{i-1} & \binom{r-1}{j-2} \tag{14}\\
\binom{s-1}{i} & \binom{s-1}{j-1}
\end{array}\right|=\binom{r-1}{i-1}\binom{s-1}{j-1}-\binom{r-1}{j-2}\binom{s-1}{i}
$$

with $i \geq j, s \geq j, r \geq i$.
We will prove this in multiple steps.

Step1. If $j=0$ then obviously $f_{(r, s)}^{(i, j)}=0$, i.e. there is no elegant filling.
Suppose that $j=1$. For the second skew-column $(s) /(j)$ there is only one possibility to have an elegant filling, i.e. starting up to down with 1 till $s-1$. Then every elegant filling of the first column taken separately, will provide an elegant filling of the skew-shape $(r, s) /(i, j)$, therefore the number of elegant fillings of $(r, s) /(i, 1)$ is equal to the number of elegant fillings of $(r) /(i)$, which we computed in the previous case to be $\binom{r-1}{i-1}$, therefore we proved that $f_{(r, s)}^{(i, 1)}=$ $\binom{r-1}{i-1}$. Thus, from now on we can suppose that $j \geq 2$.

Step2. Suppose that $s-1 \leq i$, then $\left({ }_{i}^{s-1}\right)=0$. As there will be no rows with two boxes, any elegant filling of the first skew-column $(r) /(i)$ together with any elegant filling of the skew-column $(s) /(j)$ will make a good elegant filling of $(r, s) /(i, j)$, therefore the number is equal to $f_{(r, s)}^{(i, j)}=f_{(r)}^{(i)} f_{(s)}^{(j)}=\binom{s-1}{j-1}\binom{r-1}{i-1}$. From now on we can suppose that $s-1 \geq i$.

Step3.

Definition. A non - elegant filling (NEF) of a skew-shape $(r, s) /(i, j)$ with two columns such that:
1). strictly increases in columns

2). there exists at least one row containing two boxes which are strictly decreasing in row
$3)$. every number on the $i-t h$ row is between 1 and $i-1$.
We denote the number of non - elegant fillings with $n_{(r, s)}^{(i, j)}$.

Definition. A semi - elegant filling (SEF) of a skew-shape $(r, s) /(i, j)$ with two columns such that:
1). the numbers strictly increase in columns
$2)$. every number on the $i-t h$ row is between 1 and $i-1$.
We denote the number of semi-elegant filling with $s_{(r, s)}^{(i, j)}$. We can see that in fact these conditions means that every column separately is filled in an elegant way. Hence, we can actually compute the number of semi - elegant fillings, this being $s_{(r, s)}^{(i, j)}=\binom{r-1}{i-1}\binom{s-1}{j-1}$.

We can obviously see that a semi - elegant filling can be either a non elegant filling or an elegant filling, therefore we get that $f_{(r, s)}^{(i, j)}+n_{(r, s)}^{(i, j)}=s_{(r, s)}^{(i, j)}$. If we suppose that $f_{(r, s)}^{(i, j)}=\binom{r-1}{i-1}\binom{s-1}{j-1}-\binom{s-1}{j}\binom{r-1}{j-2}$ then this will give us that $n_{(r, s)}^{(i, j)}=\binom{s-1}{i}\binom{r-1}{j-2}$. This means that we need to prove now that the number of NEFs is $\binom{s-1}{i}\binom{r-1}{j-2}$.

Main Theorem. The number of the $N E F s$ of the skew-shape $(r, s) /(i, j)$ is $\left(i_{i}^{s-1}\right)\binom{r-1}{j-2}$.

Proof:

1). First we prove if $s-1=i$. We consider a $N E F$ for the skew-shape $(r, s) /(s-1, j)$, and let $b_{s}, \ldots, b_{r}, a_{j+1}, \ldots, a_{s}$ with b_{l} being the $l-t h$ number on the first skew-column and a_{l} being the $l-t h$ number on the second skewcolumn. Being a $N E F$ gives us that $a_{j+1}<\ldots<a_{s}, a_{m} \in[1, m-1]$ for all $m=\overline{j+1, s}, b_{s}<\ldots<b_{r}, b_{l} \in[1, l-1]$ for all $l=\overline{s, r}$, and also $a_{s}<b_{s} \leq s-1$. But the latter condition gives us that in fact $a_{s} \leq s-2$, therefore $a_{m} \leq m-2$ for all $m=\overline{j+1, s}$, making the numbers $a_{j+1}<\ldots<a_{s}<b_{s}<\ldots<b_{r}$ an elegant filling of a skew-shape $(r) /(j-1)$. Therefore this implies $n_{(r, s)}^{(i, j)}=$ $f_{(r)}^{(j-1)}=\binom{r-1}{j-2}=\binom{r-1}{j-2}\binom{s-1}{i}$, hence the conclusion.
2). Now we suppose that $s \geq i+2$.

Note $N_{\lambda}^{\mu}=\{$ all the NEFs of the shape $\lambda / \mu\}$ and $E_{\lambda}^{\mu}=\{$ all the EFs of the shape $\lambda / \mu\}$, with $\mu \subseteq \lambda$.

We will construct a bijection between $N_{(r, s)}^{(i, j)}$ and $E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$.
i). We define the bijection h. Take $A \in N_{(r, s)}^{(i, j)}$. Note x_{i+1}, \ldots, x_{r} the numbers in the first column and $y_{j+1}, \ldots y_{s}$ the numbers in the second one. Let $k=$ $\min \left\{l \mid x_{l}>y_{l}, i+1 \leq l \leq s\right\}(k$ exists because A is a NEF $)$.

We have that $y_{k}<x_{k} \leq k-1$, hence $y_{l} \leq l-2$ for all $l=\overline{j+1, k}$. Because $x_{m} \in[1, m-1]$ for all $m \in[i+1, r], y_{l} \in[1, l-2]$ for all $l \in[j+1, s]$ and also $y_{j+1}<\ldots<y_{k}<x_{k}<\ldots<x_{r}$, we get that $y_{j+1}, \ldots, y_{k}, x_{k}, x_{k+1}, \ldots, x_{r}$ can be an elegant filling for a skew-shape $(r) /(j-1)$ which belongs to $E_{(r)}^{(j-1)}$. We note this filling by B_{A}. Also, because $x_{m} \in[1, m-1] \subset[1, m]$ for all $m=\overline{i+1, k-1}$ and $y_{l} \in[1, l-1]$ and also $x_{i+1}<\ldots<x_{k-1}<y_{k+1}<\ldots<y_{s}$, we get that $x_{i+1}, \ldots, x_{k-1}, y_{k+1}, \ldots, y_{s}$ can be an elegant filling for a skewshape $(s) /(i+1)$ which belongs to $E_{(s)}^{(i+1)}$. We note this filling with C_{A}.

Now, we will define the bijection in the following way : $h: N_{(r, s)}^{(i, j)} \rightarrow$ $E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$ and $h(A)=\left(B_{A}, C_{A}\right) \in E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$.
ii). We will prove that h is well defined. Suppose that there is an A in $N_{(r, s)}^{(i, j)}$ and $h(A)=\left(B_{A}, C_{A}\right)=\left(B_{A}^{\prime}, C_{A}^{\prime}\right)$ which implies that $x_{m}=x_{m}^{\prime}$ for all $m=\overline{i+1, r}$ and $y_{l}=y_{l}^{\prime}$ for all $l=\overline{j+1, s}$, hence $B_{A}=B_{A}^{\prime}$ and $C_{A}=C_{A}^{\prime}$ which proves that h is well defined.
iii). At this step we will prove that h is indeed a bijection. As it is clear that the sets $N_{(r, s)}^{(i, j)}$ and $E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$ are finite, it is sufficient to prove that h is surjective.

Take any $B \in E_{(r)}^{(j-1)}$ and $C \in E_{(s)}^{(i+1)}$. We note the numbers in B to be $\beta_{j}, \ldots, \beta_{r}$ with $\beta_{l} \in[1, l-1]$ for all $l=\overline{j, r}$ and $\beta_{j}<\ldots<\beta_{r}$, and we also note the numbers in C to be $\alpha_{i+2}, \ldots, \alpha_{s}$ with $\alpha_{m} \in[1, m-1]$ for all $m=\overline{i+2, s}$ and $\alpha_{i+2}<\ldots<\alpha_{s}$.

Suppose that there exists k such that $k+1=\min \left\{l \mid \beta_{l-2}<\alpha_{l}, l \in[i+2, s]\right\}$. We have that $\alpha_{k} \leq \beta_{k-2}<\beta_{k} \leq k-1$, hence $\alpha_{l} \in[1, l-2]$ for all $l=\overline{i+2, k}$. We define two sequences x_{i+1}, \ldots, x_{r} and y_{j+1}, \ldots, y_{s} in the following way:

$$
\begin{equation*}
x_{l}=\alpha_{l+1} \text { for all } l=\overline{i+1, k-1} \text { and } x_{l}=\beta_{l} \text { for all } l=\overline{k, r} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{l}=\beta_{l-1} \text { for all } l=\overline{j+1, k} \text { and } y_{l}=\alpha_{l} \text { for all } l=\overline{k+1, s} . \tag{16}
\end{equation*}
$$

We take a skew-shape $(r, s) /(i, j)$ and we fill it out with x_{i+1}, \ldots, x_{l} on the first column and with y_{j+1}, \ldots, y_{s} on the second column and we note this filling $A_{B, C}$. We have that $x_{i+1}<\ldots<x_{r}$ and $y_{j+1}<\ldots<y_{s}, x_{m} \in[1, m-1]$ for all $m \in[i+1, r], y_{l} \in[1, l-1]$ for all $l \in[j+1, s]$ and on the $k-t h$ row we have $x_{k}>y_{k}$, all these conditions prove that $A_{B, C}$ is a $N_{(r, s)}^{(i, j)}$. Now, we can immediately observe that (B, C) is the image through h of $A_{B, C}$ (just apply the algorithm defined in i).).

Now, suppose that there is no k such that $k+1=\min \left\{l \mid \beta_{l-2}<\alpha_{l}, l \in[i+\right.$ $2, s]\}$. Hence $\beta_{l-2} \geq \alpha_{l}, \forall i+2 \leq l \leq s$. This implies that $\alpha_{l} \in[1, l-3] \subset[1, l-2]$ for all $l=\overline{i+2, s}$. We define two sequences x_{i+1}, \ldots, x_{r} and y_{j+1}, \ldots, y_{s} in the following way:

$$
\begin{equation*}
x_{l}=\alpha_{l+1} \text { for all } l=\overline{i+1, s-1} \text { and } x_{l}=\beta_{l} \text { for all } l=\overline{s, r} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{l}=\beta_{l-1} \text { for all } l=\overline{j+1, s} . \tag{18}
\end{equation*}
$$

we take the skew-shape $(r, s) /(i, j)$ and we fill it out with x_{i+1}, \ldots, x_{r} on the first column and with y_{j+1}, \ldots, y_{s} on the second one and we note this filing $A_{B, C}^{\prime}$. We have that $x_{i+1}<\ldots<x_{r}$ and $y_{j+1}<\ldots<y_{s}, x_{l} \in[1, l-2] \subset[1, l-1]$ for all $l \in[i+1, r], y_{l} \in[1, l-2] \subset[1, l-1]$ for all $l \in[j+1, s]$ and on the $k-t h$ row we have $x_{k}>y_{k}$, all these conditions prove that $A_{B, C}^{\prime}$ is a $N_{(r, s)}^{(i, j)}$. Again, we see immediately that, in this case also, (B, C) is the image through h of $A_{B, C}^{\prime}$.

Hence, the conclusion. Therefore, h is surjective, thus also bijective. h is indeed a bijection between $N_{(r, s)}^{(i, j)}$ and $E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$, which implies that the cardinals of $N_{(r, s)}^{(i, j)}$ and $E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$ are equal, so $\left|N_{(r, s)}^{(i, j)}\right|=\left|E_{(r)}^{(j-1)}\right| \times\left|E_{(s)}^{(i+1)}\right|=$ $f_{(r)}^{(j-1)} f_{(s)}^{(i+1)}=\binom{r-1}{j-2}\binom{s-1}{i}$, hence $n_{(r, s)}^{(i, j)}=\binom{r-1}{j-2}\binom{s-1}{i}$, therefore $f_{(r, s)}^{(i, j)}=\binom{r-1}{i-1}\binom{s-1}{j-1}-$ $\left({ }_{j}^{s-1}\right)\binom{r-1}{j-2}$.

REFERENCES

[1] T. Lam, P. Pylyavskyy: Combinatorial Hopf Algebras and K-Homology of Grassmanians,arXiv: math.CO/0705.2189v1
[2] C. Lenart: Combinatorial Aspects of the K-Theory of Grassmannians, Annals of Combinatorics 4 (2000), 67-8
[3] H. Bidkhori, S. Kim: On dual stable Grothendieck polynomials
[4] A. S. Buch: A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Mathematica, Volume 189, Number 1,37-78
[5] R. Stanley: Enumerative Combinatorics, vol. 1, Cambridge University Press, New York/Cambridge, 1999.
[6] R. Stanley: Enumerative Combinatorics, vol. 2, Cambridge University Press, New York/Cambridge, 1999

