1 On the Jacobi-Trudi formula for dual stable Grothendieck polynomials

Francisc Bozgan, UCLA

1.1 Review

We will first begin with a review of the facts that we already now about this problem.

Firstly, a semistandard Young tableau T is a Young tableau $\lambda = (\lambda_1, ..., \lambda_m)$ with positive integer entries which strictly increase in columns and weakly increase in rows.

Secondly, we will define a Schur function : a Schur function is a polynomial s_{λ} is defined as

$$s_{\lambda} = \sum_{T} x^{T} = \sum_{T} x_{1}^{t_{1}} x_{2}^{t_{2}} \cdots x_{n}^{t_{n}}, \qquad (1)$$

where the summation is over all semistandard Young tableau T of shape λ ; the exponents t_1, \ldots, t_n represent the weight of the tableau, in other words the t_i counts the number of occurences of i in T.

Thirdly, a reverse plane partition is Young tableau with positive integer entries which increase weakly both in rows and columns.

Forthly, we introduce the dual-stable Grothendieck polynomials, defined as

$$g_{\lambda} = \sum_{T} x_T = \sum_{T} x_1^{t_1} \cdots x_n^{t_n}, \qquad (2)$$

where the summation is over all reverse plane partitions T of shape λ ; the exponents t_1, \ldots, t_n represent the weight of the reverse plane partition, in other words the t_i counts the number of columns containing i in T.

We will note henceforth $\overline{\lambda} = (\overline{\lambda_1}, \dots, \overline{\lambda_n})$ the conjugate of λ , a tableau with λ_i boxes on the i - th column for all i.

We now introduce the **Jacobi-Trudi formulas**, or also known as the **Giambelli formulas**, expressing the schur functions in terms of elementary symmetric polynomials,

 e_i , by having the formula

$$s_{\lambda} = det_{1 \le i, j \le n}(e_{\overline{\lambda_i} - i + j}) \tag{3}$$

or

$$s_{\lambda} = \begin{vmatrix} e_{\overline{\lambda}_{1}} & e_{\overline{\lambda}_{1+1}} & \cdot & e_{\overline{\lambda}_{1+n-1}} \\ \cdot & e_{\overline{\lambda}_{2}} & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ e_{\overline{\lambda}_{n-n+1}} & \cdot & \cdot & e_{\overline{\lambda}_{n}} \end{vmatrix}$$
(4)

Definition. An *elegant filling* (EF) of the skew shape λ/μ is a filling of λ/μ with the following conditions:

(1) the numbers weakly increase in rows and strictly increase in columns; and

(2) the numbers in the row *i* are in [1, i - 1]. The number of EFs of λ/μ is denoted by f_{λ}^{μ} . In the case where μ is not included in λ we set $f_{\lambda}^{\mu} = 0$.

Theorem 1 (Lahm, Pylyavskyy [1]). Let λ be a partition. Then

$$g_{\lambda} = \sum_{\mu \subseteq \lambda} f_{\lambda}^{\mu} s_{\mu}.$$
⁽⁵⁾

1.2 Equivalent Relations

Now, we will prove some equivalences using the Jacobi-Trudi formulas.

Note, $\overline{\lambda} = (m_1, \dots, m_r)$ with $m_1 \ge \dots \ge m_r$ and also the symmetric polynomial $w_{\lambda} = w_{(m_1,\dots,m_r)^T}$ defined by

$$w_{\lambda} = \begin{vmatrix} \binom{m_{1}-1}{m_{1}-1}e_{m_{1}} + \dots + \binom{m_{1}-1}{0}e_{1} & \cdot & \cdot & \binom{m_{1}-1}{m_{1}-1}e_{m_{1}+r-1} + \dots + \binom{m_{1}-1}{0}e_{r} \\ \cdot & \cdot & \cdot & \cdot \\ \binom{m_{r}-1}{m_{r}-1}e_{m_{r}-r+1} + \dots + \binom{m_{r}-1}{0}e_{2-r} & \cdot & \cdot & \binom{m_{r}-1}{m_{r}-1}e_{m_{r}} + \dots + \binom{m_{r}-1}{0}e_{1} \\ (6) \end{vmatrix}$$

or by writing the abbreviated formula, we have

$$w_{\lambda} = det \left(\left(\binom{m_i - 1}{m_i - 1} e_{m_i - i + j} + \dots + \binom{m_i - 1}{0} e_{j - i + 1} \right)_{1 \le i, j \le r} \right).$$
(7)

Note the linear vector $V_x = (e_x \ e_{x+1} \dots \ e_{x+r-1})$ where $e_x = 0$ if $x \le 0$ and $e_0 = 1$.

Therefore equation (6) is becoming

$$w_{\lambda} = \begin{vmatrix} \binom{m_{1}-1}{m_{1}-1} V_{m_{1}} + \dots + \binom{m_{1}-1}{0} V_{1} \\ \vdots \\ \binom{m_{r}-1}{m_{r}-1} V_{m_{r}-r+1} + \dots + \binom{m_{r}-1}{0} V_{2-r} \end{vmatrix}.$$
(8)

We can split the determinant by using the n - linearity of the determinant like

therefore we get

$$g_{\lambda} = \sum_{i=1}^{r} \left(\sum_{2-i \le k_{i} \le m_{i} - i + 1} \left| \begin{array}{c} \binom{m_{i} - 1}{k_{1} + 1 - 2} V_{k_{1}} \\ \vdots \\ \vdots \\ \binom{m_{r} - 1}{k_{r} + r - 2} V_{k_{r}} \end{array} \right| \right) = \sum_{i=1}^{r} \left(\sum_{2-i \le k_{i} \le m_{i} - i + 1} \prod_{i=1}^{r} \binom{m_{i} - 1}{k_{i} + i - 2} \left| \begin{array}{c} V_{k_{1}} \\ \vdots \\ V_{k_{r}} \end{array} \right| \right)$$

$$(10)$$

We would like to compute now the coefficient of $\begin{vmatrix} V_{\alpha_1} \\ \vdots \\ V_{\alpha_r} \end{vmatrix}$ where $\alpha_1 \ge \ldots \ge \alpha_r$ 1 also $2 - i < \alpha_i < m_i - i + 1$ $\forall 1 < i < r$

and also $2 - i \le \alpha_i \le m_i - i + 1$, $\forall 1 \le i \le r$.

Actually we can suppose that $\alpha_1 > \ldots > \alpha_r$, because if there are i, j such $\begin{vmatrix} & \cdot & \\ & \cdot & \end{vmatrix}$

that
$$\alpha_{i} = \alpha_{j}$$
 then $\begin{vmatrix} V_{\alpha_{i}} \\ \vdots \\ V_{\alpha_{j}} \end{vmatrix} = 0$, therefore we can do the previous supposition.
Therefore the coefficient of $\begin{vmatrix} V_{\alpha_{1}} \\ \vdots \\ V_{\alpha_{r}} \end{vmatrix}$ will be
$$\sum_{\sigma \in S_{r}} \prod_{i=1}^{r} \binom{m_{i}-1}{\alpha_{\sigma(i)+i-2}} \sum_{\sigma \in S_{r}} \binom{-1}{\alpha_{\sigma(i)+i-2}} \prod_{i=1}^{r} \binom{m_{i}}{\alpha_{\sigma(i)+i-2}} \frac{V_{\alpha_{1}}}{\sum_{i=1}^{r}} (11)$$

$$(-1)^{\epsilon(\sigma)} \begin{vmatrix} V_{\alpha_{1}} \\ \vdots \\ V_{\alpha_{r}} \end{vmatrix}$$

and by noting $\binom{m_i-1}{\alpha_{\sigma(i)}+i-2} = a_{i\sigma(i)}$, it results that $\sum_{\sigma\in S_r} (-1)^{\epsilon(\sigma)} \prod_{i=1}^r \binom{m_i}{\alpha_{\sigma(i)}+i-2} = \sum_{\sigma\in S_r} (-1)^{\epsilon(\sigma)} \prod_{i=1}^r a_{i\sigma(i)} = det \Big((a_{ij})_{1\leq i,j\leq r} \Big) = det \Big(\binom{m_i-1}{\alpha_j+i-2}_{1\leq i,j\leq r} \Big)$

which yields that

$$(11) = det \left(\begin{pmatrix} m_i - 1\\ \alpha_j + i - 2 \end{pmatrix}_{1 \le i, j \le r} \right) \begin{vmatrix} V_{\alpha_1} \\ \cdot \\ \cdot \\ V_{\alpha_r} \end{vmatrix}$$
(12)

and we will also note $\alpha_{\lambda}^{\mu} = det \left(\begin{pmatrix} m_i - 1 \\ \alpha_j + i - 2 \end{pmatrix}_{1 \leq i, j \leq r} \right)$ where $\mu = (\alpha_1, \dots, \alpha_r + r - 1)^T$.

Also, by using Theorem 1, we get that $\begin{vmatrix} V_{\alpha_1} \\ \vdots \\ V_{\alpha_r} \end{vmatrix}$ can be written as the Schur

polynomial $s_{(\alpha_1,...,\alpha_r+r-1)^T} = s_{\mu}$. Therefore the coefficient of s_{μ} is in fact exactly α_{λ}^{μ} , hence $w_{\lambda} = \sum_{\mu \in B} \alpha_{\lambda}^{\mu} s_{\mu}$ for some set *B* of plane partitions.

We will now prove that $\mu \in B$ if and only if $\mu \subseteq \overline{\lambda}$ or the equivalent $\overline{\mu} \subseteq \lambda$. **Proof.**

" \implies " If $\mu = (\alpha_1, \dots, \alpha_r + r - 1)^T$, with $\alpha_i + i \ge \alpha_{i+1} + i + 1$, thus $\alpha_i \ge \alpha_{i+1} + 1$ and $2 - i \le \alpha_i \le m_i - i + 1$, therefore $1 \le \alpha_i + i - 1 \le m_i = \lambda_i$,

for all $1 \leq i \leq r$, hence $\mu \subseteq \overline{\lambda}$.

" \Leftarrow " If $\overline{\mu} \subseteq \lambda$ then take $\alpha_i = \overline{\mu}_i - i + 1$, $\forall i$, and so $2 - i \leq \alpha_i \leq m_i - i + 1$ and $\alpha_i = \overline{\mu}_i - i + 1 \geq \overline{\mu}_{i-1} - i + 1 = \alpha_{i-1} + 1$, so $\alpha_i > \alpha_{i-1}$, therefore $\mu \in B$.

This proves that

$$w_{\lambda} = \sum_{\mu \subseteq \lambda} \alpha_{\lambda}^{\mu} s_{\mu}. \tag{13}$$

Lemma:

The two following statements are equivalent:

a). For any plane partition λ , we have $w_{\lambda} = g_{\lambda}$;

b). For any $\mu \subseteq \lambda$, we have $f_{\lambda}^{\mu} = det\left((\overline{\lambda_i}^{i-1}_{\mu_j - j + i - 1})_{1 \leq i, j \leq r}\right)$, where $\overline{\lambda} = (\overline{\lambda_1}, \dots, \overline{\lambda_r})$ and $\overline{\mu} = (\overline{\mu}_1, \dots, \overline{\mu}_r)$ (we need that $\overline{\mu}$ has r columns, if not $f_{\lambda}^{\mu} = 0$).

Proof: " \implies " If $g_{\lambda} = \sum_{\mu \subseteq \lambda} f_{\lambda}^{\mu} = \sum_{\mu \subseteq \lambda} \alpha_{\lambda}^{\mu} = w_{\lambda}$, and also knowing that the Schur functions form a basis in the space of symmetric polynomials, therefore it results that $f_{\lambda}^{\mu} = \alpha_{\lambda}^{\mu} = det\left((\frac{\overline{\lambda}_{i}-1}{\overline{\mu}_{j}-j+i-1})_{1 \leq i,j \leq r}\right)$.

" \Leftarrow " It is clear from (13) and Theorem 1.

We also get a consequence from the lemma: $det\left(\binom{a_i}{b_j-j+i-1}_{1\leq i,j\leq r}\right) \geq 0$, where $a_1, \ldots, a_r, b_1, \ldots b_r$ are integers and $a_1 \geq \ldots \geq a_r \geq 0, b_1 \geq \ldots \geq b_r \geq 0$.

Now we will state the main conjecture of my REU project:

Conjecture. For any plane partition λ we have $w_{\lambda} = g_{\lambda}$.

We will prove this conjecture for some special cases.

1.3 Proof of the conjecture in some special cases

Note (i) = column with *i* boxes and (i, j) = two column plane partition with the first column having *i* boxes and the second one having *j* columns.

1.3.1 One column case

Case I: one column case, $\lambda = (r)$. From Theorem 1, $g_{(r)} = \sum_{i=1}^{r} f_{(r)}^{(i)} s_{(i)}$. We will prove that $f_{(r)}^{(i)} = \binom{r-1}{i-1}$, and by the lemma we get our result.

Let $a_{i+1}, a_{i+2}, \ldots, a_r$ the numbers filled in the elegant filling of the skewshape (r)/(i), the j-th box containing a_{j+i} . By the definition of the elegant filling we have that $1 \le a_{i+1} < a_{i+2} < \cdots < a_r$ (condition 1) and all $a_j \in [1, j-1]$ for all $j = \overline{i+1}, r$ (condition 2). But actually this is equivalent to pick any r-i distinct numbers in the interval [1, r-1], as by simply doing that both conditions will be satisfied. The number of ways of picking r-i numbers from 1 to r is obviously $\binom{r-1}{r-i} = \binom{r-1}{i-1}$, therefore getting that $f_{(r)}^{(i)} = \binom{r-1}{i-1}$, and the conclusion follows.

We can prove this result through other method also:

Note $S_k^{k+m} = \binom{m}{m} e_{k+m} + \ldots + \binom{m}{0} e_k$, where $k, m \ge 0$ and we can easily prove that $S_{k-1}^{k+m} - S_k^{k+m} = S_{k-1}^{k+m-1}$. By induction we get $S_k^{k+m} = \binom{k-1}{k-1} (-1)^{(k-1)-(k-1)} g_{(k+m)} + \ldots + \binom{k-1}{0} (-1)^{k-1-0} g_{(m+1)}$, therefore by plugging in k = 1 we get $S_1^{m+1} = g_{(m+1)} = \binom{m}{m} e_{m+1} + \ldots + \binom{m}{0} e_1$, hence $g_{(r)} = \binom{r-1}{r-1} e_r + \ldots + \binom{r-1}{0} e_1$.

1.3.2 Two columns case

Case $II : \lambda = (r, s)$ with $r \ge s$.

By using the lemma, we need to prove

$$f_{(r,s)}^{(i,j)} = \begin{vmatrix} \binom{r-1}{i-1} & \binom{r-1}{j-2} \\ \binom{s-1}{i} & \binom{s-1}{j-1} \end{vmatrix} = \binom{r-1}{i-1}\binom{s-1}{j-1} - \binom{r-1}{j-2}\binom{s-1}{i}$$
(14)

with $i \ge j, s \ge j, r \ge i$.

We will prove this in multiple steps.

Step1. If j = 0 then obviously $f_{(r,s)}^{(i,j)} = 0$, i.e. there is no *elegant filling*.

Suppose that j = 1. For the second skew-column (s)/(j) there is only one possibility to have an elegant filling, i.e. starting up to down with 1 till s - 1. Then every *elegant filling* of the first column taken separately, will provide an elegant filling of the skew-shape (r, s)/(i, j), therefore the number of elegant fillings of (r, s)/(i, 1) is equal to the number of elegant fillings of (r)/(i), which we computed in the previous case to be $\binom{r-1}{i-1}$, therefore we proved that $f_{(r,s)}^{(i,1)} = \binom{r-1}{i-1}$. Thus, from now on we can suppose that $j \ge 2$.

Step2. Suppose that $s-1 \leq i$, then $\binom{s-1}{i} = 0$. As there will be no rows with two boxes, any elegant filling of the first skew-column (r)/(i) together with any elegant filling of the skew-column (s)/(j) will make a good elegant filling of (r,s)/(i,j), therefore the number is equal to $f_{(r,s)}^{(i,j)} = f_{(r)}^{(i)}f_{(s)}^{(j)} = \binom{s-1}{j-1}\binom{r-1}{i-1}$. From now on we can suppose that $s-1 \geq i$.

Step3.

Definition. A non – elegant filling (NEF) of a skew-shape (r, s)/(i, j) with two columns such that:

1). strictly increases in columns

2). there exists at least one row containing two boxes which are strictly decreasing in row

3). every number on the i - th row is between 1 and i - 1.

We denote the number of $non-elegant\ fillings\ with\ n_{(r,s)}^{(i,j)}$

Definition. A semi – elegant filling (SEF) of a skew-shape (r, s)/(i, j) with two columns such that:

- 1). the numbers strictly increase in columns
- 2). every number on the i th row is between 1 and i 1.

We denote the number of $semi-elegant\ filling\ with\ s_{(r,s)}^{(i,j)}$. We can see that in fact these conditions means that every column separately is filled in an *elegant* way. Hence, we can actually compute the number of $semi-elegant\ fillings$, this being $s_{(r,s)}^{(i,j)} = \binom{r-1}{i-1}\binom{s-1}{j-1}$.

We can obviously see that a semi – elegant filling can be either a non – elegant filling or an elegant filling, therefore we get that $f_{(r,s)}^{(i,j)} + n_{(r,s)}^{(i,j)} = s_{(r,s)}^{(i,j)}$. If we suppose that $f_{(r,s)}^{(i,j)} = \binom{r-1}{j-1}\binom{s-1}{j-1} - \binom{s-1}{j-2}$ then this will give us that $n_{(r,s)}^{(i,j)} = \binom{s-1}{j-2}\binom{r-1}{j-2}$. This means that we need to prove now that the number of NEFs is $\binom{s-1}{i}\binom{r-1}{j-2}$.

Main Theorem. The number of the *NEFs* of the skew-shape (r,s)/(i,j) is $\binom{s-1}{i-2}$.

Proof:

1). First we prove if s - 1 = i. We consider a *NEF* for the skew-shape (r,s)/(s-1,j), and let $b_s, \ldots, b_r, a_{j+1}, \ldots, a_s$ with b_l being the l - th number on the first skew-column and a_l being the l - th number on the second skew-column. Being a *NEF* gives us that $a_{j+1} < \ldots < a_s, a_m \in [1, m-1]$ for all $m = \overline{j+1,s}, b_s < \ldots < b_r, b_l \in [1, l-1]$ for all $l = \overline{s,r}$, and also $a_s < b_s \leq s - 1$. But the latter condition gives us that in fact $a_s \leq s - 2$, therefore $a_m \leq m - 2$ for all $m = \overline{j+1,s}$, making the numbers $a_{j+1} < \ldots < a_s < b_s < \ldots < b_r$ an elegant filling of a skew-shape (r)/(j-1). Therefore this implies $n_{(r,s)}^{(i,j)} = f_{(r)}^{(j-1)} = {r-1 \choose j-2} = {r-1 \choose j-2} {s-1 \choose i}$, hence the conclusion.

2). Now we suppose that $s \ge i + 2$.

Note $N^{\mu}_{\lambda} = \{$ all the *NEFs* of the shape $\lambda/\mu \}$ and $E^{\mu}_{\lambda} = \{$ all the *EFs* of the shape $\lambda/\mu \}$, with $\mu \subseteq \lambda$.

We will construct a bijection between $N_{(r,s)}^{(i,j)}$ and $E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$.

i). We define the bijection h. Take $A \in N_{(r,s)}^{(i,j)}$. Note x_{i+1}, \ldots, x_r the numbers in the first column and y_{j+1}, \ldots, y_s the numbers in the second one. Let $k = min \{l \mid x_l > y_l, i+1 \le l \le s\}$ (k exists because A is a NEF).

We have that $y_k < x_k \le k-1$, hence $y_l \le l-2$ for all $l = \overline{j+1,k}$. Because $x_m \in [1, m-1]$ for all $m \in [i+1,r]$, $y_l \in [1, l-2]$ for all $l \in [j+1,s]$ and also $y_{j+1} < \ldots < y_k < x_k < \ldots < x_r$, we get that $y_{j+1}, \ldots, y_k, x_k, x_{k+1}, \ldots, x_r$ can be an *elegant filling* for a skew-shape (r)/(j-1) which belongs to $E_{(r)}^{(j-1)}$. We note this filling by B_A . Also, because $x_m \in [1, m-1] \subset [1, m]$ for all $m = \overline{i+1, k-1}$ and $y_l \in [1, l-1]$ and also $x_{i+1} < \ldots < x_{k-1} < y_{k+1} < \ldots < y_s$, we get that $x_{i+1}, \ldots, x_{k-1}, y_{k+1}, \ldots, y_s$ can be an *elegant filling* for a skew-shape (s)/(i+1) which belongs to $E_{(s)}^{(i+1)}$. We note this filling with C_A .

Now, we will define the bijection in the following way : $h : N_{(r,s)}^{(i,j)} \rightarrow E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$ and $h(A) = (B_A, C_A) \in E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$.

ii). We will prove that h is well defined. Suppose that there is an A in $N_{(r,s)}^{(i,j)}$ and $h(A) = (B_A, C_A) = (B'_A, C'_A)$ which implies that $x_m = x'_m$ for all $m = \overline{i+1,r}$ and $y_l = y'_l$ for all $l = \overline{j+1,s}$, hence $B_A = B'_A$ and $C_A = C'_A$ which proves that h is well defined.

iii). At this step we will prove that h is indeed a bijection. As it is clear that the sets $N_{(r,s)}^{(i,j)}$ and $E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$ are finite, it is sufficient to prove that h is surjective.

Take any $B \in E_{(r)}^{(j-1)}$ and $C \in E_{(s)}^{(i+1)}$. We note the numbers in B to be β_j, \ldots, β_r with $\beta_l \in [1, l-1]$ for all $l = \overline{j, r}$ and $\beta_j < \ldots < \beta_r$, and we also note the numbers in C to be $\alpha_{i+2}, \ldots, \alpha_s$ with $\alpha_m \in [1, m-1]$ for all $m = \overline{i+2, s}$ and $\alpha_{i+2} < \ldots < \alpha_s$.

Suppose that there exists k such that $k+1 = \min\{l | \beta_{l-2} < \alpha_l, l \in [i+2,s]\}$. We have that $\alpha_k \leq \beta_{k-2} < \beta_k \leq k-1$, hence $\alpha_l \in [1, l-2]$ for all $l = \overline{i+2, k}$. We define two sequences x_{i+1}, \ldots, x_r and y_{j+1}, \ldots, y_s in the following way:

$$x_l = \alpha_{l+1} \text{ for all } l = \overline{i+1, k-1} \text{ and } x_l = \beta_l \text{ for all } l = \overline{k, r}$$
 (15)

and

$$y_l = \beta_{l-1} \text{ for all } l = \overline{j+1,k} \text{ and } y_l = \alpha_l \text{ for all } l = \overline{k+1,s}.$$
 (16)

We take a skew-shape (r, s)/(i, j) and we fill it out with x_{i+1}, \ldots, x_l on the first column and with y_{j+1}, \ldots, y_s on the second column and we note this filling $A_{B,C}$. We have that $x_{i+1} < \ldots < x_r$ and $y_{j+1} < \ldots < y_s$, $x_m \in [1, m-1]$ for all $m \in [i+1,r]$, $y_l \in [1, l-1]$ for all $l \in [j+1,s]$ and on the k-th row we have $x_k > y_k$, all these conditions prove that $A_{B,C}$ is a $N_{(r,s)}^{(i,j)}$. Now, we can immediately observe that (B,C) is the image through h of $A_{B,C}$ (just apply the algorithm defined in **i**).

Now, suppose that there is no k such that $k+1 = \min\{l | \beta_{l-2} < \alpha_l, l \in [i+2,s]\}$. Hence $\beta_{l-2} \ge \alpha_l, \forall i+2 \le l \le s$. This implies that $\alpha_l \in [1, l-3] \subset [1, l-2]$ for all $l = \overline{i+2, s}$. We define two sequences x_{i+1}, \ldots, x_r and y_{j+1}, \ldots, y_s in the following way:

$$x_l = \alpha_{l+1} \text{ for all } l = \overline{i+1, s-1} \text{ and } x_l = \beta_l \text{ for all } l = \overline{s, r}$$
(17)

and

$$y_l = \beta_{l-1} \text{ for all } l = \overline{j+1,s}.$$
(18)

we take the skew-shape (r, s)/(i, j) and we fill it out with x_{i+1}, \ldots, x_r on the first column and with y_{j+1}, \ldots, y_s on the second one and we note this filing $A'_{B,C}$. We have that $x_{i+1} < \ldots < x_r$ and $y_{j+1} < \ldots < y_s$, $x_l \in [1, l-2] \subset [1, l-1]$ for all $l \in [i+1,r]$, $y_l \in [1, l-2] \subset [1, l-1]$ for all $l \in [j+1,s]$ and on the k-throw we have $x_k > y_k$, all these conditions prove that $A'_{B,C}$ is a $N^{(i,j)}_{(r,s)}$. Again, we see immediately that, in this case also, (B, C) is the image through h of $A'_{B,C}$.

Hence, the conclusion. Therefore, h is surjective, thus also bijective. h is indeed a bijection between $N_{(r,s)}^{(i,j)}$ and $E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$, which implies that the cardinals of $N_{(r,s)}^{(i,j)}$ and $E_{(r)}^{(j-1)} \times E_{(s)}^{(i+1)}$ are equal, so $|N_{(r,s)}^{(i,j)}| = |E_{(r)}^{(j-1)}| \times |E_{(s)}^{(i+1)}| = f_{(r)}^{(j-1)} f_{(s)}^{(i+1)} = (r-1)_{j-2}^{(s-1)}$, hence $n_{(r,s)}^{(i,j)} = (r-1)_{j-2}^{(s-1)}$, therefore $f_{(r,s)}^{(i,j)} = (r-1)_{j-1}^{(s-1)} - (r-1)_{j-2}^{(s-1)}$.

REFERENCES

[1] T. Lam, P. Pylyavskyy: Combinatorial Hopf Algebras and K-Homology of Grassmanians,arXiv: math.CO/0705.2189v1

[2] C. Lenart: Combinatorial Aspects of the K-Theory of Grassmannians, Annals of Combinatorics 4 (2000), 67-8 [3] H. Bidkhori, S. Kim: On dual stable Grothendieck polynomials

[4] A. S. Buch: A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Mathematica, Volume 189, Number 1,37-78

[5] R. Stanley: Enumerative Combinatorics, vol. 1, Cambridge University Press, New York/Cambridge, 1999.

[6] R. Stanley: Enumerative Combinatorics, vol. 2, Cambridge University Press, New York/Cambridge, 1999