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1.1 Review

We will first begin with a review of the facts that we already now about this

problem.

Firstly, a semistandard Young tableau T is a Young tableau λ = (λ1, ..., λm)

with positive integer entries which strictly increase in columns and weakly in-

crease in rows.

Secondly, we will define a Schur function : a Schur function is a polynomial

sλ is defined as

sλ =
∑
T

xT =
∑
T

xt11 x
t2
2 · · ·xtnn , (1)

where the summation is over all semistandard Young tableau T of shape λ; the

exponents t1, . . . , tn represent the weight of the tableau, in other words the ti

counts the number of occurences of i in T .

Thirdly, a reverse plane partition is Young tableau with positive integer

entries which increase weakly both in rows and columns.

Forthly,we introduce the dual-stable Grothendieck polynomials, defined as

gλ =
∑
T

xT =
∑
T

xt11 · · ·xtnn , (2)

where the summation is over all reverse plane partitions T of shape λ; the

exponents t1, . . . , tn represent the weight of the reverse plane partition, in other

words the ti counts the number of columns containing i in T .

We will note henceforth λ = (λ1, . . . , λn) the conjugate of λ, a tableau with

λi boxes on the i− th column for all i.

We now introduce the Jacobi-Trudi formulas, or also known as the Giambelli formulas,

expressing the schur functions in terms of elementary symmetric polynomials,

1



ei, by having the formula

sλ = det1≤i,j≤n(eλi−i+j) (3)

or

sλ =

∣∣∣∣∣∣∣∣
eλ1

eλ1+1 · eλ1+n−1
· eλ2

· ·
· · · ·

eλn−n+1 · · eλn

∣∣∣∣∣∣∣∣ (4)

Definition. An elegant filling (EF) of the skew shape λ/µ is a filling of λ/µ

with the following conditions:

(1) the numbers weakly increase in rows and strictly increase in columns;

and

(2) the numbers in the row i are in [1, i − 1]. The number of EFs of λ/µ is

denoted by fµλ . In the case where µ is not included in λ we set fµλ = 0.

Theorem 1 (Lahm, Pylyavskyy [1]). Let λ be a partition. Then

gλ =
∑
µ⊆λ

fµλ sµ. (5)

1.2 Equivalent Relations

Now, we will prove some equivalences using the Jacobi-Trudi formulas.

Note, λ = (m1, . . . ,mr) with m1 ≥ . . . ≥ mr and also the symmetric poly-

nomial wλ = w(m1,...,mr)T defined by

wλ =

∣∣∣∣∣∣∣∣
(m1−1
m1−1)em1

+ . . .+ (m1−1
0 )e1 · · (m1−1

m1−1)em1+r−1 + . . .+ (m1−1
0 )er

· · · ·
· · · ·

(mr−1mr−1)emr−r+1 + . . .+ (mr−10 )e2−r · · (mr−1mr−1)emr + . . .+ (mr−10 )e1

∣∣∣∣∣∣∣∣
(6)

or by writing the abbreviated formula, we have

wλ = det

((
(mi−1mi−1)emi−i+j + . . .+ (mi−10 )ej−i+1

)
1≤i,j≤r

)
. (7)

Note the linear vector Vx = (ex ex+1 . . . ex+r−1) where ex = 0 if x ≤ 0 and

e0 = 1.
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Therefore equation (6) is becoming

wλ =

∣∣∣∣∣∣∣∣
(m1−1
m1−1)Vm1

+ . . .+ (m1−1
0 )V1

·
·

(mr−1mr−1)Vmr−r+1 + . . .+ (mr−10 )V2−r

∣∣∣∣∣∣∣∣ . (8)

We can split the determinant by using the n− linearity of the determinant

like ∣∣∣∣∣∣∣∣∣∣
R1 +R′1
R2

·
·
Rn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
R1

R2

·
·
Rn

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
R′1
R2

·
·
Rn

∣∣∣∣∣∣∣∣∣∣
(9)

therefore we get

gλ =

r∑
i=1

( ∑
2−i≤ki≤mi−i+1

∣∣∣∣∣∣∣∣∣∣
(mi−1k1+1−2)Vk1

·
·
·

(mr−1kr+r−2)Vkr

∣∣∣∣∣∣∣∣∣∣
)

=

r∑
i=1

( ∑
2−i≤ki≤mi−i+1

r∏
i=1

(mi−1ki+i−2)

∣∣∣∣∣∣∣∣
Vk1
·
·
Vkr

∣∣∣∣∣∣∣∣
)
.

(10)

We would like to compute now the coefficient of

∣∣∣∣∣∣∣∣
Vα1

·
·
Vαr

∣∣∣∣∣∣∣∣ where α1 ≥ . . . ≥ αr

and also 2− i ≤ αi ≤ mi − i+ 1, ∀1 ≤ i ≤ r.

Actually we can suppose that α1 > . . . > αr, because if there are i, j such

that αi = αj then

∣∣∣∣∣∣∣∣∣∣
·
Vαi
·
Vαj
·

∣∣∣∣∣∣∣∣∣∣
= 0, therefore we can do the previous supposition.

Therefore the coefficient of

∣∣∣∣∣∣∣∣
Vα1

·
·
Vαr

∣∣∣∣∣∣∣∣ will be

∑
σ∈Sr

r∏
i=1

(mi−1ασ(i)+i−2
)

∣∣∣∣∣∣∣∣
Vασ(1)
·
·

Vασ(r)

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(−1)ε(σ)

∣∣∣∣∣∣∣∣
Vα1

·
·
Vαr

∣∣∣∣∣∣∣∣

=
∑
σ∈Sr

(−1)ε(σ)
r∏
i=1

(miασ(i)+i−2
)

∣∣∣∣∣∣∣∣
Vα1

·
·
Vαr

∣∣∣∣∣∣∣∣ (11)
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and by noting (mi−1ασ(i)+i−2) = aiσ(i), it results that
∑
σ∈Sr (−1)ε(σ)

∏r
i=1(miασ(i)+i−2) =∑

σ∈Sr (−1)ε(σ)
∏r
i=1 aiσ(i) = det

(
(aij)1≤i,j≤r

)
= det

(
(mi−1αj+i−2)1≤i,j≤r

)
which yields that

(11) = det
(

(mi−1αj+i−2)1≤i,j≤r

) ∣∣∣∣∣∣∣∣
Vα1

·
·
Vαr

∣∣∣∣∣∣∣∣ (12)

and we will also note αµλ = det
(

(mi−1αj+i−2)1≤i,j≤r

)
where µ = (α1, . . . , αr +

r − 1)T .

Also, by using Theorem 1, we get that

∣∣∣∣∣∣∣∣
Vα1

·
·
Vαr

∣∣∣∣∣∣∣∣ can be written as the Schur

polynomial s(α1,...,αr+r−1)T = sµ. Therefore the coefficient of sµ is in fact exactly

αµλ, hence wλ =
∑
µ∈B α

µ
λsµ for some set B of plane partitions.

We will now prove that µ ∈ B if and only if µ ⊆ λ or the equivalent µ ⊆ λ.

Proof.

” =⇒ ” If µ = (α1, . . . , αr + r − 1)T , with αi + i ≥ αi+1 + i + 1, thus

αi ≥ αi+1 + 1 and 2− i ≤ αi ≤ mi − i+ 1, therefore 1 ≤ αi + i− 1︸ ︷︷ ︸
µi

≤ mi = λi,

for all 1 ≤ i ≤ r, hence µ ⊆ λ.

”⇐= ” If µ ⊆ λ then take αi = µi− i+ 1, ∀i, and so 2− i ≤ αi ≤ mi− i+ 1

and αi = µi − i+ 1 ≥ µi−1 − i+ 1 = αi−1 + 1, so αi > αi−1, therefore µ ∈ B.

This proves that

wλ =
∑
µ⊆λ

αµλsµ. (13)

Lemma:

The two following statements are equivalent:

a).For any plane partition λ, we have wλ = gλ;

b).For any µ ⊆ λ, we have fµλ = det
(

(λi−1µj−j+i−1
)1≤i,j≤r

)
, where λ = (λ1, . . . , λr)

and µ = (µ1, . . . , µr) (we need that µ has r columns, if not fµλ = 0).

Proof: ” =⇒ ” If gλ =
∑
µ⊆λ f

µ
λ =

∑
µ⊆λ α

µ
λ = wλ, and also knowing

that the Schur functions form a basis in the space of symmetric polynomials,

therefore it results that fµλ = αµλ = det
(

(λi−1µj−j+i−1
)1≤i,j≤r

)
.
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”⇐= ” It is clear from (13) and Theorem 1.

We also get a consequence from the lemma: det
(

(aibj−j+i−1)1≤i,j≤r

)
≥ 0,

where a1, . . . , ar, b1, . . . br are integers and a1 ≥ . . . ≥ ar ≥ 0, b1 ≥ . . . ≥ br ≥ 0.

Now we will state the main conjecture of my REU project:

Conjecture. For any plane partition λ we have wλ = gλ.

We will prove this conjecture for some special cases.

1.3 Proof of the conjecture in some special cases

Note (i) = column with i boxes and (i, j) = two column plane partition with

the first column having i boxes and the second one having j columns.

1.3.1 One column case

Case I : one column case, λ = (r). From Theorem 1, g(r) =
∑r
i=1 f

(i)
(r)s(i). We

will prove that f
(i)
(r) = (r−1i−1 ), and by the lemma we get our result.

Let ai+1, ai+2, . . . , ar the numbers filled in the elegant filling of the skew-

shape (r)/(i), the j-th box containing aj+i. By the definition of the elegant filling

we have that 1 ≤ ai+1 < ai+2 < · · · < ar (condition 1) and all aj ∈ [1, j − 1]

for all j = i+ 1, r (condition 2). But actually this is equivalent to pick any

r − i distinct numbers in the interval [1, r − 1], as by simply doing that both

conditions will be satisfied. The number of ways of picking r − i numbers from

1 to r is obviously (r−1r−i ) = (r−1i−1 ), therefore getting that f
(i)
(r) = (r−1i−1 ), and the

conclusion follows.

We can prove this result through other method also:

Note Sk+mk = (mm)ek+m+ . . .+(m0 )ek, where k,m ≥ 0 and we can easily prove

that Sk+mk−1 −S
k+m
k = Sk+m−1k−1 . By induction we get Sk+mk = (k−1k−1)(−1)(k−1)−(k−1)g(k+m)+

. . . + (k−10 )(−1)k−1−0g(m+1), therefore by plugging in k = 1 we get Sm+1
1 =

g(m+1) = (mm)em+1 + . . .+ (m0 )e1, hence g(r) = (r−1r−1)er + . . .+ (r−10 )e1.
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1.3.2 Two columns case

Case II : λ = (r, s) with r ≥ s.

By using the lemma, we need to prove

f
(i,j)
(r,s) =

∣∣∣∣ (r−1i−1 ) (r−1j−2)

(s−1i ) (s−1j−1)

∣∣∣∣ = (r−1i−1 )(s−1j−1)− (r−1j−2)(s−1i ) (14)

with i ≥ j, s ≥ j, r ≥ i.

We will prove this in multiple steps.

Step1. If j = 0 then obviously f
(i,j)
(r,s) = 0, i.e. there is no elegant filling.

Suppose that j = 1. For the second skew-column (s)/(j) there is only one

possibility to have an elegant filling, i.e. starting up to down with 1 till s − 1.

Then every elegant filling of the first column taken separately, will provide

an elegant filling of the skew-shape (r, s)/(i, j), therefore the number of elegant

fillings of (r, s)/(i, 1) is equal to the number of elegant fillings of (r)/(i), which

we computed in the previous case to be (r−1i−1 ), therefore we proved that f
(i,1)
(r,s) =

(r−1i−1 ). Thus, from now on we can suppose that j ≥ 2.

Step2. Suppose that s− 1 ≤ i, then (s−1i ) = 0. As there will be no rows with

two boxes, any elegant filling of the first skew-column (r)/(i) together with

any elegant filling of the skew-column (s)/(j) will make a good elegant filling

of (r, s)/(i, j), therefore the number is equal to f
(i,j)
(r,s) = f

(i)
(r)f

(j)
(s) = (s−1j−1)(r−1i−1 ).

From now on we can suppose that s− 1 ≥ i.

Step3.

Definition. A non − elegant filling (NEF) of a skew-shape (r, s)/(i, j)

with two columns such that:

1). strictly increases in columns

2). there exists at least one row containing two boxes which are strictly

decreasing in row

3). every number on the i− th row is between 1 and i− 1.

We denote the number of non− elegant fillings with n
(i,j)
(r,s).
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Definition. A semi − elegant filling (SEF) of a skew-shape (r, s)/(i, j)

with two columns such that:

1). the numbers strictly increase in columns

2). every number on the i− th row is between 1 and i− 1.

We denote the number of semi−elegant filling with s
(i,j)
(r,s). We can see that

in fact these conditions means that every column separately is filled in an elegant

way. Hence, we can actually compute the number of semi − elegant fillings,

this being s
(i,j)
(r,s) = (r−1i−1 )(s−1j−1).

We can obviously see that a semi − elegant filling can be either a non −

elegant filling or an elegant filling, therefore we get that f
(i,j)
(r,s)+n

(i,j)
(r,s) = s

(i,j)
(r,s).

If we suppose that f
(i,j)
(r,s) = (r−1i−1 )(s−1j−1) − (s−1j )(r−1j−2) then this will give us that

n
(i,j)
(r,s) = (s−1i )(r−1j−2). This means that we need to prove now that the number of

NEFs is (s−1i )(r−1j−2).

Main Theorem. The number of the NEFs of the skew-shape (r, s)/(i, j) is

(s−1i )(r−1j−2).

Proof:

1). First we prove if s − 1 = i. We consider a NEF for the skew-shape

(r, s)/(s − 1, j), and let bs, . . . , br, aj+1, . . . , as with bl being the l − th number

on the first skew-column and al being the l − th number on the second skew-

column. Being a NEF gives us that aj+1 < . . . < as, am ∈ [1, m − 1] for all

m = j + 1, s, bs < . . . < br, bl ∈ [1, l−1] for all l = s, r, and also as < bs ≤ s−1.

But the latter condition gives us that in fact as ≤ s− 2, therefore am ≤ m− 2

for all m = j + 1, s, making the numbers aj+1 < . . . < as < bs < . . . < br

an elegant filling of a skew-shape (r)/(j − 1). Therefore this implies n
(i,j)
(r,s) =

f
(j−1)
(r) = (r−1j−2) = (r−1j−2)(s−1i ), hence the conclusion.

2). Now we suppose that s ≥ i+ 2.

Note Nµ
λ = { all the NEFs of the shape λ/µ } and Eµλ = { all the EFs of

the shape λ/µ } , with µ ⊆ λ.

We will construct a bijection between N
(i,j)
(r,s) and E

(j−1)
(r) × E(i+1)

(s) .
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i). We define the bijection h. Take A ∈ N (i,j)
(r,s) . Note xi+1, . . . , xr the numbers

in the first column and yj+1, . . . ys the numbers in the second one. Let k =

min {l | xl > yl, i+ 1 ≤ l ≤ s } (k exists because A is a NEF).

We have that yk < xk ≤ k − 1, hence yl ≤ l − 2 for all l = j + 1, k. Because

xm ∈ [1,m − 1] for all m ∈ [i + 1, r], yl ∈ [1, l − 2] for all l ∈ [j + 1, s] and

also yj+1 < . . . < yk < xk < . . . < xr, we get that yj+1, . . . , yk, xk, xk+1, . . . , xr

can be an elegant filling for a skew-shape (r)/(j− 1) which belongs to E
(j−1)
(r) .

We note this filling by BA. Also, because xm ∈ [1,m − 1] ⊂ [1,m] for all

m = i+ 1, k − 1 and yl ∈ [1, l−1] and also xi+1 < . . . < xk−1 < yk+1 < . . . < ys,

we get that xi+1, . . . , xk−1, yk+1, . . . , ys can be an elegant filling for a skew-

shape (s)/(i+ 1) which belongs to E
(i+1)
(s) . We note this filling with CA.

Now, we will define the bijection in the following way : h : N
(i,j)
(r,s) →

E
(j−1)
(r) × E(i+1)

(s) and h(A) = (BA, CA) ∈ E(j−1)
(r) × E(i+1)

(s) .

ii). We will prove that h is well defined. Suppose that there is an A in

N
(i,j)
(r,s) and h(A) = (BA, CA) = (B′A, C

′
A) which implies that xm = x′m for all

m = i+ 1, r and yl = y′l for all l = j + 1, s, hence BA = B′A and CA = C ′A

which proves that h is well defined.

iii). At this step we will prove that h is indeed a bijection. As it is clear

that the sets N
(i,j)
(r,s) and E

(j−1)
(r) × E(i+1)

(s) are finite, it is sufficient to prove that

h is surjective.

Take any B ∈ E
(j−1)
(r) and C ∈ E

(i+1)
(s) . We note the numbers in B to be

βj , . . . , βr with βl ∈ [1, l− 1] for all l = j, r and βj < . . . < βr, and we also note

the numbers in C to be αi+2, . . . , αs with αm ∈ [1,m − 1] for all m = i+ 2, s

and αi+2 < . . . < αs.

Suppose that there exists k such that k+1 = min{l| βl−2 < αl, l ∈ [i+2, s]}.

We have that αk ≤ βk−2 < βk ≤ k − 1, hence αl ∈ [1, l − 2] for all l = i+ 2, k.

We define two sequences xi+1, . . . , xr and yj+1, . . . , ys in the following way:

xl = αl+1 for all l = i+ 1, k − 1 and xl = βl for all l = k, r (15)

and

yl = βl−1 for all l = j + 1, k and yl = αl for all l = k + 1, s. (16)
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We take a skew-shape (r, s)/(i, j) and we fill it out with xi+1, . . . , xl on the

first column and with yj+1, . . . , ys on the second column and we note this filling

AB,C . We have that xi+1 < . . . < xr and yj+1 < . . . < ys, xm ∈ [1,m − 1]

for all m ∈ [i + 1, r], yl ∈ [1, l − 1] for all l ∈ [j + 1, s] and on the k − th row

we have xk > yk, all these conditions prove that AB,C is a N
(i,j)
(r,s) . Now, we can

immediately observe that (B,C) is the image through h of AB,C (just apply the

algorithm defined in i). ).

Now, suppose that there is no k such that k+1 = min{l| βl−2 < αl, l ∈ [i+

2, s]}. Hence βl−2 ≥ αl, ∀ i+2 ≤ l ≤ s. This implies that αl ∈ [1, l−3] ⊂ [1, l−2]

for all l = i+ 2, s. We define two sequences xi+1, . . . , xr and yj+1, . . . , ys in the

following way:

xl = αl+1 for all l = i+ 1, s− 1 and xl = βl for all l = s, r (17)

and

yl = βl−1 for all l = j + 1, s. (18)

we take the skew-shape (r, s)/(i, j) and we fill it out with xi+1, . . . , xr on the first

column and with yj+1, . . . , ys on the second one and we note this filing A′B,C .

We have that xi+1 < . . . < xr and yj+1 < . . . < ys, xl ∈ [1, l− 2] ⊂ [1, l− 1] for

all l ∈ [i+ 1, r], yl ∈ [1, l − 2] ⊂ [1, l − 1] for all l ∈ [j + 1, s] and on the k − th

row we have xk > yk, all these conditions prove that A′B,C is a N
(i,j)
(r,s) . Again, we

see immediately that, in this case also, (B,C) is the image through h of A′B,C .

Hence, the conclusion. Therefore, h is surjective, thus also bijective. h is

indeed a bijection between N
(i,j)
(r,s) and E

(j−1)
(r) ×E(i+1)

(s) , which implies that the car-

dinals of N
(i,j)
(r,s) and E

(j−1)
(r) ×E(i+1)

(s) are equal, so |N (i,j)
(r,s) | = |E

(j−1)
(r) |× |E(i+1)

(s) | =

f
(j−1)
(r) f

(i+1)
(s) = (r−1j−2)(s−1i ), hence n

(i,j)
(r,s) = (r−1j−2)(s−1i ), therefore f

(i,j)
(r,s) = (r−1i−1 )(s−1j−1)−

(s−1j )(r−1j−2).
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