THE SPLITTING SUBSPACE CONJECTURE
ERIC CHEN AND DENNIS TSENG

ABSTRACT. We answer a question by Niederreiter concerning the enumeration of a class of
subspaces of finite dimensional vector spaces over finite fields by proving a conjecture by
Ghorpade and Ram.

1. INTRODUCTION

We positively resolve the Splitting Subspace Conjecture, stemming from a question posed
by Niederreiter (1995) [3, p. 11] and stated by Ghorpade and Ram [2]. We first define the
notion of a o-splitting subspace.

Definition. In the vector space Fymn over the finite field F,, given a 0 € Fymn such that
F mn = F,(0), a (m-dimensional) subspace W of F,mn is a o-splitting subspace if

WooWd--®o" "W =Fmn.

For example, {1,0™, 02", ..., 0™} spans a o-splitting subspace. If n = 1, then Fymn
is the only o-splitting subspace; if m = 1, then each 1-dimensional subspace of Fymn is
o-splitting.

Conjecture 1 (Ghorpade-Ram). The number of o-splitting subspaces is

¢ —1 m(m—1)(n—1)

g 17 '
This follows as Corollary from our main result, Theorem [3.3] The next two sections are
devoted to proving this theorem. We first construct a recursion that gives the cardinality of
more general classes of subspaces, including the o-splitting subspaces, and then solve this
recurrence to obtain the result. Finally, we discuss some special cases of our more general
result.

2. RECURSION

For the remainder of this report, unless otherwise noted, consider more generally the vector
space Fov (= F)) over the finite field F,, given a 0 € Fyv such that Fov = Fy(0).
We begin by isolating the key property of the linear transformation v — owv.

Proposition 2.1. The linear endomorphisms of F n that preserve no subspaces other than
{0} and all of F v are exactly those which act as multiplication by a primitive element o
that generates the extension Fy(o) =F,~.

Proof. Operators defined as multiplication by a primitive element o generating the extension
Fy(0) = F,~ cannot preserve any subspaces except {0} and F v, for if W is such a subspace
with nonzero w € W, then ijV;Ol ajct €W, a; € Fy, so W = F,v. Conversely, note that

any linear operator T" together with the vector space IFfIV can be viewed as a finitely generated
1
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F,[z] module M, where x acts as T'. Since F,[z] is a principal ideal domain, we can use the
primary decomposition of M to find M = @F | F,[z]/(pi(x)"), where p; is a polynomial for
each ¢ and r; is a positive integer.

If T preserves no proper subspaces of F v, then k = 1. Also, 71 = 1 unless p,(T)M is
a proper submodule of M. Therefore, we have M is equal to Fy[x]/(p1(x)), where p; is an
irreducible polynomial. This is exactly what it means for x(= T') to act as the primitive
element of the field extension F¢(o) = F,v = FY with minimal polynomial p;(z). O

We next define notation to describe the sets to be counted by the general recursion.

Definition. Suppose that A;, Ay, ..., Aj are sets of subspaces of Fv. Let [A;, As, ..., Al
be the set of all k-tuples (Wy, Ws, ..., W) such that

W; e A; for 1<i<k,
Wi D Wi +oW;y for 1<i<k-—1.
If A; is the set of all subspaces of F,~ with dimension d;, then A; is denoted within the

brackets as d;. For example, [3, Ay] denotes all tuples (W7, W3) such that dim(W;) = 3,
Wy € A2 and Wy D Wy + oWs.

Definition. For nonnegative integers a, b with N >a >bora=0b6=0
(a,b) ;== {W C Fynv : dim(W) = a and dim(W No™'W) =b}.

For example, (1,0) is the set of all 1-dimensional subspaces and (2,1) is the set of all
2-dimensional subspaces W such that dim(W No~'W) = 1.

Definition. Given sets [A;1, A12], [A21, A2al, ..., [Ar1, Ara] as defined above, let
([Ar1, Aral, [Ao, Asgl, ..o, [Ar1, Aral)
denote the set of 2r-tuples of subspaces (Wy 1, Wi 2, Wa 1, Was, ... W,.1, W, o) such that
(Win, Wia) € [Ai1, Aip] for 1< <,
Wia 2 Wipiq for 1<i<r—1.
For example, ([3, 2], [2, 1]) is the set of all 4-tuples of subspaces (W5, Wy, W5, W,) such that
dim(Wy) = 3, dim(Ws) =2, dim(Ws) =2, dim(Wy) =1,
Wi DWy+ oWy, W35 2D Wi+ oWy,
Wy O W,
We use the following proposition extensively in constructing the recursion.

Proposition 2.2. For nonnegative integers N >a >b ora=5b=0

max

70)

[avb] = [(a7i)=b]

0)

U
max(
U a0

(a—1
i=b
b—1,
j=0
Proof. Follows from Proposition and the definitions of [, |, (', ). O
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We next define an ordering on the tuples labelling the sets of subspaces

[(al,b a172), (&2,17 CL2,2), < (ar,l, ar,Z)]-

The recursion in Lemma will give the cardinality of sets of subspaces so labelled in terms
of the cardinality of sets labelled by tuples before it in the ordering. The base case is [(0,0)],
containing one element.

Definition. First, define an ordering on the ordered pairs of the form (a,b) such that
(a1,b1) = (ag,be) if @y > ay or a; = ag and b; < by. Next, define an ordering on tu-
ples of the form [(ay1,a12), (a21,a22), ..., (ar1,a.2)] such that the order is lexicographic in
terms of the ordered pairs (a;1,a;2) from left to right. Finally, define an ordering on the
same tuples for s > 0 such that

[(al,b a1,2), (a2,1, a272), ceey (flr+s,1, @r+s,2)] ~ [(al,la al,z) (02 1, a2 2), . (ar 1, Qr 2)]
For example, (3,1) > (3,2) > (2,0) and [(6,5), (4,2)] > [(6,5), (4,3)] = [(5,2), (2,0)].
Lemma 2.3. Suppose
N>ag>a122>0a21 > 002> ... 201> 022>20=0 411 =Qg12= ... = Qrys1 = Upps2
and after setting
Qp,1 = Qp,2 = N, Qr41,1 = Ar41,2 = 0, Jry1=Fky1=0,
that (or else [(a11,a12), (a21,a22), .., (ar1,ar2)] is empty)
ai—11 > 2a;1 —a;o for 1<i<r.
Let
={(J1,---,Jr) : max(a;q1,2, 20,2 — ;1) < Ji < max(a;o —1,0),1 <i <r},
D={(k1,.... k) a;2<ki<a;1—1,1<i<r}.

Then
(@11, a12), (a2,1,a22), - -, (Grgs 1, Grss 2]
= [[(a11,a12), (az1,a22), - - ., (a1, ar2)]]
. . r A;—12 — 2@12—]1)
= > M@z @22 02). o (e |H[ ~ (20,2~ ) ]
(J15e-0Jr)EC i=1 i1 — Ji q

r aZ
B Z [(a1,1, k1), (a1, k2), ..., (ar1, k |H [ +1, 1] .
=1

A; 2 — Q41,1
(k1. kr)ED\ (01,2, 7. 2) b i+hllg

Proof. We give an example before the general case. Let r = 2; we compute |[(3,1), (1,0)]|
by counting | ([3,1],[1,0]) | in two different ways. Applying Proposition [2.2] to the terms on
the left within the brackets gives

| (3,1, [1, 0D | = (3, 2), 11, [(1, 0), 0]) | + [ {[(3, 1), 1], [(1, 0), 01) |-
AbOVG, if (W17 Wg, Wg, W4) <[(3, 2) ].] [(1, ), 0]> then WQ W3 and W4 = {0} So
| (1(3,2),1],[(1,0),00) [ = [[(3,2), (1, 0)]].
Likewise for (Wl, Wg, W3, W4) <[( ) ] [(]., 0) ]> then W2 W3 and W4 = {0} So
| (13, 1),1],[(1,0),01) [ = [[(3, 1), (1, 0)]],
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and

[ ([3, 1], [1,01) | = [[(3.2), (1,0)]| + |[(3, 1), (1, 0)]|.
Next, applying Proposition to the terms on the right within the brackets gives

[ (13,1, [1, 01 | = |[3, (1, 0)}, [1, (0, 0)]) |-

If (Wy, Wo, W3, Wy) € ([3,(1,0)],[1,(0,0)]), then W5 = Wy, Wy = {0} and thus W is a
3-dimensional subspace containing the 2-dimensional space Wy 4+ W5, So
‘N o
{13, (1, 0), {1, (0,0))) [ = [[(1,0), (0, 0)][| ]

and therefore

[ (13, (1, 0)], [1, (0,0)]) [ = [[(1,0), (0, 0)]]
We then have, after rearranging, that

[6.0.00) = w0001 ] =12, .0

Note that

(3,2), (1,0)], [(1,0),(0,0)]

come before [(3,1), (1,0)] in the ordering on tuples.
The proof of the Lemma is a generalization of this process. The first equality is clear. The
size of [(a11,a12), (a21,a22),- .., (ar1,a,2)] is computed by applying Proposition

| ([a1,1, a12], [ag1, az2],s - - - [ar1, ar2]) |
= Z | ([(a1,1, k1), a1 2], [(a1, ko), azgl, - - - [(@r1, Kr), ar]) |
(kl ..... k}r)ED
: ki — Q41,1
CED DU (Y ORCISHRRTRSI) ) | M
(k1,...kr)ED i=1 b " g

Expanding in the other way, we get

| <[Cl1,17 01,2]; [@2,1, Cl2,2], ) [ar,la ar,2]> |
= Z | (lar1, (@12, 51)], [az,1, (a2, 32)]5 - -+ [ara, (ar2, Gi)]) |
(.jl """ .]T)EC

(L) _ Z [(a12,71), (ag2,72); - - -, (@r2, 3r)]] H {a;jf—_(ézzg—_jj;)

(J1sendr)€C i=1

Subtracting from @ and the quantity

|[(al,1, a172), (a2,1, 02,2), ceey (%1, ar,2)]|

produces the stated result of the Lemma. O

q

Finally, we relate sets of the form [(a11,a12), (a2, a22), ..., (ar1,ar2)] to o-splitting sub-
spaces.
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Proposition 2.4. Let Fyn = Fgmn. Then
[((n/—-l)Tn,(n/—»Q)Tn),((n/—-2)n@,(n/—-3)ﬂ1),...,(27n,7n),(n1,0ﬂ

n—2 n—3 n—1
:{(@aiw, Bow, ..., WwooW, W) : @afWZqun}.
1=0 =0 =0

In particular |[((n—1)m, (n—2)m), (n—2)m, (n—3)m), ..., (2m,m), (m,0)]| is the number
of o-splitting subspaces.

Proof. It W is a o-splitting subspace, then
n—2 n—3
(o'W, Po'Ww,....W oW, W)
=0 i=0

€ [((n—1)m,(n—2)m),((n—2)m,(n—3)m),...,(2m,m), (m,0)].
On the other hand, suppose that
(Whe1,..., W) € [((n—1)m, (n—2)m),((n —2)m, (n — 3)m), ..., (2m,m), (m,0)]
Then for 1 <k <n-2
dim(Wiiq1) = (K + 1)m
=2km —(k—1)m
= dim(Wj, + cWy).
So Wiy1 =Wy + oWy for 1 <k <n—2. Also, Wy = W; & oW; as Wy NnoW; = {0}.

Suppose that W), = @if:ol o'Wi. Then, since dim(Wy11) = dim(W}, + ocWy,) = (k + 1)m,
we obtain

Wig1 = Wi + oWy
=W+ *Wi 4 -+ "W,

k
=
=0

When k& =n — 1, we have that W,,_1 +ocW,,_1 = @?:_01 o'Wy, since W,_1 +oW,,_, = Fymn
is mn-dimensional. So W is indeed a o-splitting subspace. 0

Corollary 2.5. The number of o-splitting subspaces in Fymn over Fy is independent of choice
of primitive element o.

Proof. Neither the base case |[(0, 0]| nor Lemma [2.3] depends on the o chosen. O

Remark. More generally, given an arbitrary invertible linear operator 7" on F m» over I, we
might consider how many “7T-splitting” subspaces exist; that is, the number of m-dimensional
subspaces W such that

WeTW &--- @ T" "W =Fgmn.

We may then redefine (, ),[, |,(, ) by replacing the expressions W + oW with W +TW
and WNo 'W with WnNT'W.

Recall from Proposition and Lemma that when 7'(v) = ov, the nonzero num-
bers |[(a1,1,a12), (a21,a22), ..., (ar1,a,2)]| can be computed from the base case |[0,0]| = 1.
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But if T is any invertible linear operator, there may exist nonempty sets of the form
[(a1,a1), (az,a2), ..., (ar, a,)] where a, # 0. In fact, such sets cannot be computed recur-
sively. For example

| ([4,4],[2,2]) |

=1([(4,4),4],[(2,2),2]) | = [[(4,4), (2,2)]]

= {[4,(4,9)],12,(2,2)]) | = |[(4,4), (2, 2)]].

We may still apply Lemma in the case of general T', however, with the cardinalities of
these sets as additional base cases.

Remark. One might try to apply the method in Lemma to try to count pointed sub-
spaces. Namely, given a fixed vector v, it is not difficult to show that the number of tuples

n [(a11,a12), (a21,a22), ..., (a1, a.2)] whose £ subspace contains v is equal to
qaf,l — 1
WH(GM, a12), (a2,1,a2.2), - - -, (@r1, ar2)ll,

and the number of tuples (Wi 1, Wi, ..., W,1, W, o) in ([a11,a12],[a21,a22],- ., [ar1, ar2])
such that Wy contains v is equal to
qaﬁ,l — 1
qN——1| ([au, al,Q]a [a2,1, a2,2]> cee [ar,h @r,2]> |

COUIltiIlg these tuples (Wl,la WLQ, . 7Wr,17 WT72> iIl <[CL171, (11’2], [G/Q’l, CL272], ceey [ar,l, CLT’QD by
expanding at ajq,a271,...,a,1 as in (R), we get exactly

ag1 1 ; kl aZ
qN——]_ Z |[(a’1,17k1)7(a2,17k2)7 arh |H |: o :|

a a
9 (k1,....kr)ED i=1 1,2 — W11

which is just (R scaled by qaff *11 It is less obvious that expanding at a; o, . . ., a, 2 will result

scaled by “x—*. Considering two cases, one where the subspace W1+ oW, contains
v and the other Where the subspace W, ; + oW, does not contain v, yields the expansion

2.

N
(J1,e-0dr)EC |:1]q

[20%,2*]'2] [a£71,2*(2aé,2*jé)} _‘_([%71,2] _ [264,2*%] )[azfl,zf(%z,z*jz)*l]
1 ql ar1—(2ae2—jo) 1 1 lq 1 q/ L ag1—(2ar2—je) =1 1

. . . d Ai—12 — (2ai,2 - ji)
a 7 ? a 34 AR a’l", ) JT .
[(a1,2, J1), (az,2, j2) (ar2; 3r)]| I I { a1 — (2a;2 — J;)

i=1,i#L
It can be checked that
A ) e M s Pl W T 1 v s g M D P i e
1, A,

211

which means that we again just get the expansion (Lf scaled by Lx—



THE SPLITTING SUBSPACE CONJECTURE 7

3. SOLUTION TO THE RECURSION

The next two lemmas are special cases of the following ¢g-Chu-Vandermonde identity for
N a nonnegative integer [I, p. 354]. Refer to Appendix [A| for proofs of the lemmas.

(17 ) 3 e ()

(c/a;q)n
(ca)n '

Lemma 3.1. [fC < B—-1<D —1< A—1 are non-negative integers, then

a2 [P o o e
[mq{B—f'A—B—ﬂ[D_ﬂ.

- [b-0,l ¢ |,\D-B-1],|B-C

Lemma 3.2. If C < D < B —1< A—1 are non-negative integers, then

B-1

Z A—-B— 1- -B S s—C q(B—S)(B—S—l)
B-s—-1]| |s],C], |D—-C
D - q q q

L e e e

We now give the main theorem of this report.

Theorem 3.3. Suppose that

N>a1>a12>a31> 029> 2> ap1 > ar2 >0,
ap1 = app =N, ap111 = arp12 =0.
Then
N Hf“*l [ a;1—a;41,1—1 ] [%4-1,1} [%4-1,2]
[1} 1=0 Llajy1,1—ait1,2—1 ait1,2 ai4+2,1
(1) |[(a171, CLLQ), ceey (ar,la ar,Z)” = [au}q : - — e 4"
q

H'I’—l |: ai,l_l :| q ’
1 =1 laip11-11,

where
T

E = Z(ai,l - ai,2>(ai,1 — Q32 — 1)-

=1

Corollary 3.4 (Splitting Subspace Conjecture). We have, when N > mn, the equality

|Wn—UmAn—@m%”w@mJMKmﬂ”h:hhJV—mn+m—1 R

[T:| q m = 1 q
In particular, when N = mn,
[((n = V)m, (n—2)m), ..., (2m,m), (m, 0)]| = —=Lg™m=DO=1),

1,
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Proof. From plugging into (1

ol P e M R e D (L

q [0] q) S m(m—1)

n—1l)m n—1)m— m— q
R o 1%,
(n—1)m 2m
_ [ﬂq {N —(n—1)m— 1} |:(n72)m}q T [mj|q m(m—1)(n-1)
(", m—1 - [Gma), 6,
i [<*5:ﬁ)1753n]q % 1—g(n—F)m :
Since for each 1 < k <n — 2, [ | = ol T gD this reduces to
(n—k=Dym-1l,  Tmllg[n—k-Dm—1llg
H]q {N —(n—1)m— 1} 1— ¢ m Do)
[(n—ll)m:| m—1 g 1—a"

ﬂq N—-—mn+m—1
B m—1

:| qm(m—l)(n—l) ]
q

Proof of Theorem [3.5. We verify that satisfies the recursion in Lemma [2.3]
Recall that

T

L= Z I[(a12,71), (a2, 72), - - - (@r2, 3r)]| H {%1,2 — (2a;2 — ]z):| 7

a1 — (2a;2 — J;
(G1,dr)EC i Lo — (2052 = 35i)
T

Re Y s s kel b T | 27000 ]

(1) ED i1 L362 — Git1
We first check equality when a,» # 0 so that the expressions obtained for and
using do not contain negative g-binomials.
Substituting and applying Lemma to the resulting independent sums in gives

N HT [ai71,2*ai,2*1:| |:C’«7,‘,2:| [ Ji } [01—1,2—(2%,2—]‘1‘)} (ai,2—ji)(ai,2—7i—1)
[ } i=1§:ji G i1 e ai1—(2ai0—j1) 1 4
1 i,2—Ji Ji i+1,2 i1 3,24
q q q q q
ai,2 r—1 aj2—1 :|
[*], T [

aiy1,2—1 q

|:]¥:|q d [@i2]q a2 — 1| |ai—12 —aip — 1| [a;1 — aigp12 s ajo — 1 !
— g9 H [ H .
q q qi=1

1 1q 541 a1 — ai+1,2]q Ai41,2 Q;1 — Q2 — 1 ;2 — G412 Qjr1,2 — 1

q

Substituting and applying Lemma to the resulting independent sums in gives
3], T S Pt [, L, L] o temsey

q ait1,1d glai2—ait1,1d g

], TR

aiy1,2—1

_ [([jﬁ]q H [ [a;1], [am - 1] | [am T 1] | [aim = am] qﬁ [ a1 — 1 ]—1.

P S N i Uiolg | Git11 i2 = Git1,1 i1 — G2 Giy1g — 1

q
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After simplification (see Appendix

(1 — qN)[N — CL172 — 1]'11 ! [ai,l — ai+1,2 — 1]',1 ! 1

[N — al,l]!q[ar,Q]!q [ai,l — Q2 — 1]!q[ai,1 - (li,z]!q =9 [@i—12 — ai,l]!q'

(2) L=R=
i=1

Finally, we deal with the case a,2 = 0, when the expression obtained by directly apply-
ing to may contain negative g-binomials ( is unaffected). Suppose r > 1. By
definition, we know that

a
’ <[a1,1, G1,2]7 [a2,1, a2,2]7 < [ar,b 0]) ‘ = ’ <[a1,17 a1,2]7 [a2,17 a2,2]7 ce ey [arfl,la ar71,2]> | { ; LQ] .
r,1 q

This means that

» . ~ [ai_12 — (2ai2 — ji)
D S (TSN RNCRA) ) ] }
q

a;1 — (2a;2 —
(.j17"'7j’r’)ec i=1 7,1 12 jl)

Qr 1

)

Ay
= |(la11,a12], .- [ar—11,ar-12]) | { T 1,2] '
q

Since a,_19 > a,1 > 0, we may apply our previous result to obtain

Ay
| <[(I1,1, al,g], cee [ar—1,1, ar_172]> | { r 1,2}
Qr,1 q

r—1 r—1

[ai,l — Q41,2 — 1]!q 1
slain = aip = 1lglain — aiplly =3 [aic12 — ainlly

- [frone] Gl e =t

Qr1 [N - al,l]!q[ar—l,Q]!q e

We wish to show that this is equal to

(1 - qN)[N — Q12 — 1]'q - [a’i71 — Q41,2 — 1]'q - 1
[N — afl,l]!q[ar,Q]!q [%1 — Q2 — 1]!q[ai,1 - ai,Q]!q i [%‘—1,2 - ai,l]!q

i=1
when a, 5 = 0. Take the quotient to find

(1-¢M)[N—a1,2—1]q H l[ai1—ait1,2—1]q H
[N all ar2]' 1= l[azl ag,2— 1]' [azl az?' 1= 2[(12 1,2— azl]

[ar71,2:| (1— qN)[N a12 1]! H [ai1— a7,+12 1]! H
ar,1 q [N all aT 12]' =1 [azl a; 2— 1} azl azQ]' 1=2 [az 1,2—Qq, 1]'

[a ]| [ar,1—art1,2—1]l4 1
r=1.2100a, 1—a, s—1]'glar1—ar2)'y [ar—12—ar1]'q

[ar—1,2} q[ar,2]!q

ar 1

[a ]] lar,1—1]lq 1
_ Or=L2la e, =1 a1l far—12—ar1]ly

|:ar71,2i|
ar 1

| 1
[&“1’2] lara]lq [ar—1,2—ar1]l

[ar71,2:|
Qr,1

q

q

=1,
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as desired. Therefore, when a,» = 0, the equality

L= Z [lar2, j1), [az;2, j2), - - -, [ar2, )] H [ai—m — (2ai2 _]z):|

a;1 — (2a;2 — Ji
(jl ~~~~~ jr)ec =1 i,1 ( 1,2 -]74)

s s

(1—¢")[N —a1p — 1]}
[N —ay1]l[ar2]!,

lai1 — aip12 — 1] 1
[ain — aip — 1lais — a;]ly 9 [@i—12 — @il

=1

=R

still holds.
Finally, suppose » = 1. Then,

L = [(0,0)] {N] - {N] .

If we plug in ([a;1,0]) into (2)), then we get [aN] , as desired. O
1L1dg
Corollary 3.5. The numbers

’ <[a1,1, a1,2]; [a217 a22], ceey [ar,ly ar,2]> ‘

are given by

T T
1—(] —alg—qu all al+12—1]!q H 1
— aq, 1 ar? i1 az 1 — Q32 — 1] [%1 - am]!q i [%‘—1,2 - ai,l]!q

4. SPECIAL CASE: (K,K-1)
Note that when r =1 and a1 = k,a12 = k — 1, with £ < N — 1, the formula (1f) gives

N

a number independent of k.

Proposition 4.1. There is a bijection between sets of the form (ky, k1 — 1) and (kg, ko — 1)
when ki, ko < N — 1.

Proof. 1t suffices to show that there exists a bijection between (k,k — 1) and (k — 1,k — 2)
for 2 <k < N — 1. Define

¢:(k—1,k—2)— (k,k—1)
Wi—= W 4 oW.
The map ¢ is well defined:
dim(W + oW) = k,
dim((W +oW)N (c7'W +W)) =k — 1.
The second equality follows from the fact that (W + oW) N (o'W + W) contains W and
has dimension strictly less than k by Proposition
Next, ¢IS injective if Wl, W2 S (k—l,k—Q) and W1+0'W1 = W2+JWQ =W'e (k, k—l),
then W' N O'_IW, W1 W2
Finally, ¢ is surjective: if W' € (k,k — 1), then W' Nno™'W’ € (k — 1,k — 2) since
W' No "W +o(W' Ne'W') C W' in fact (W No W)+ oW No'W)=W'". O
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5. A g =1 ANALOGUE

In light of our results, we might ask what counts when we set ¢ = 1. In this section
we will see that the situation translates from enumerating subspaces of vector spaces to
enumerating subsets of sets.

Instead of subspaces of F,~, we consider subsets of {1,...,N}. Rather than multiply-
ing by the element o, we let o cyclically permute the elements of {1,..., N}, so that o
preserves no proper subset, in analogy with Proposition Conversely, it is easy to see
that any permutation of the set {1,..., N} that preserves no proper subset is cyclic, and
we can reorder the elements so that 0 = (12--- N) in cycle notation. For example, we have
0{1,3,4} = {2,4,5} for N > 5. When N = mn, the number of m-element subsets W of
{1,...,N} such that |/~ o'W = {1,..., N} is easily seen to be n. Proposition will
show this in a slightly more general setting. We retain the [, ],(, ), <, > notation as
before with the definitions restated in the setting of subsets of {1,..., N} below.

Definition. Suppose Ay, Ay, ..., Ay are sets of subsets of {1,..., N}. Let [Ay, Ag, ..., Ay
be the set of all k-tuples (Wy, Ws, ..., W) such that

W; e A; for 1<i<k,
WiQWHanWiH for 1§l§/{3—1

If A; is the set of all subsets of {1,..., N} with cardinality d;, then A; is denoted within
the brackets as d;.

Definition. For nonnegative integers a, b with N >a>bora=0=0
(a,b) = {W C Fpv : [W|=a,[Wno 'W|[=b}.
Definition. Given sets [A;1, A12], [A21, A2ol, ..., [Ar1, Ar2] as defined above, let
([Ar1, Arpl, [Ao1, Aool, ..o, [Ar1, Aral)
denote the set of 2r-tuples of subsets (Wy 1, Wi o, Wa 1, Was, ... W, 1, W, ) such that
(Wi1, Wia) € [Ai1, Ain] for 1<i<r,
Wio D Wipq for 1<ie<r—1.
It can be checked that Lemma is still valid in this ¢ = 1 setting, so our formulas are
still valid by just plugging in ¢ = 1. This occurs since the g-binomials counting ways to

extend subspaces become binomial terms counting ways to enlarge subsets. However, we can
directly count some special cases and check that they agree with the general formula.

Proposition 5.1. (Analogue of the Splitting Subspace Conjecture) For ¢ =1 and N > mn
we have

I[((n — D)m, (n —2)m), ((n —2)m, (n — 3)m), ..., (2m,m), (m,0)]|
N{N—-mn+m-—1

h E( m—1 )

In particular, if N = mn, then

[((n = Dym, (n = 2)m), ((n = 2)m, (n = 3)m), ..., (2m, m), (m, 0)] = n.
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Proof. The same argument used in Proposition [2.4] can be used to show that if
(Wn—la SRR Wl) < [((TL - 1)m7 (7’L - Q)m)7 ((n - Q)ma (’I’L - 3)m)7 SRR (Qma m)7 (ma O)]a

then W,y = W; U gW,. Therefore, the problem of counting this set reduces to finding the
number of m-element subsets W such that W U oW --- U o™ 'W has cardinality mn.

We count the number of ordered pairs (W, k), where W is an m-element subset satisfying
the desired property and k is an element of W. First, we fix £ and count the number of
sets W that contain k. Without loss of generality, suppose k = N —n + 1. Since W cannot
have any element between N — 2n + 2 and N — n inclusive, choosing the rest of W amounts

to choosing m — 1 elements from {1,..., N — 2n + 1} such that the elements are at least n
apart.

By an elementary counting argument, there is a bijection between choosing m —1 elements
from {1,..., N — 2n + 1} such that the elements are at least n apart and choosing m — 1

elements from an N —2n+1— (m —2)(n — 1) = N —mn + m — 1 element set. This is
exactly (N *%”jlmfl). Therefore, the number of ordered pairs (W, k) is N (N *Tn"jlmfl), since
there are N choices of k.

We can also count the number of ordered pairs (W, k) by choosing W first and then k.
Since there are m possibilities once we fix W, each W appears in m ordered pairs. So as

desired
H((n - 1)m7 (n - 2)m)7 ((n - 2)m7 (77, - 3)m)7 EIR) (2m7 m)7 (m> 0)”
N(N—mn+m— 1>'

m m— 1

In particular, if N = mn then M(

mnfmn+m71) —n. 0
m

m—1

Remark. As ¢ — 1, the formula in Proposition [5.1] agrees with the formula in Corollary

3.4
Proposition 5.2. If ¢ = 1, then |(m, k)| = N%(N_m) (m_l) = M(N_m_l) (7).

m \m—k k m \m—k—1 k

Proof. We count in two ways the ordered pairs (W, a) where W is an m-element set such that
(W NoW| =k and a¢W. First, fix a and count the number of possible W not containing
a. Without loss of generality, suppose a = N.

Then, define a block of W C {1,...,N — 1} to be a subset {b,b+ 1,...,0+ ¢ — 1} of
consecutive numbers contained in W such that b — 1,0+ ¢ ¢ W (if b = 1, then b — 1 is
understood to be N, which is already fixed to not be in W). We know that the sum of the
sizes of the blocks of W is m, since the union of the blocks is m. Also, if By,..., B; are the
blocks of W, then we know that (|By| —1) 4 ---+ (|B;| — 1) = k, since the intersection of
W with oW is precisely the disjoint union of all the blocks of W without the first element
of each block. In particular, the number of blocks must be m — k.

Therefore, to count the number of possibilities of W, we count the number of ways to
space out the blocks of W: the number of ways to choose m — k elements out of (N —1) —k
consecutive numbers such that no two elements are adjacent. This is equivalent to the
number of ways to choose m — k elements out of an N —1—k—(m—k—1) = N —m element
set.

Now that we have fixed the spacing of the blocks, the number of ways to distributing the
remaining k elements of W into the m — k blocks is ((m_kk_ 1)+k). Therefore, the number of
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possible ordered pairs (W, a) is N (]:]n :’;j) (m]; 1), since there are N choices for the initial value
of a.

We can also count the number of ordered pairs (W, a) by fixing W and then finding the
number of possibilities for a. For a fixed W there are N — m possible a. This means that

(m, k)| = 25 o) (") = 225 0 () = S0 () O

Remark. For ¢ a power of a prime, shows that

[(m, k)| = %t {‘ZL__Z: 11] q {ﬂ qq(mkxmkl).

This gives the same answer as Proposition [5.2| when ¢ — 1.

APPENDIX A. PROOF OF LEMMAS 3.1 AND
Proof of Lemma |3.1. First substitute B — 1 — s for s to find that the identity is equivalent

to
BgC{A_SB— 1uB _zi_SHB—é—sué:ij:jqqs(sﬂ)
R e o R
Then
o
_ = P (1= P
el
_ (—1)7qA-B-Ds-(3) (g . q);q)s
and

[B—B;—SL[B_C{_SL

_ (¢;9) (¢ @) B-1-s
(@ D 14505 Q) -1-5(0; Q) (€5 @) B—c—1-5

_ (:9)B

(1= )(¢%a)s(: 0) (4 @) B—c—1-s
_ ; B (l—qB_l)...(l _qB—C’—s)
ST o@a. 1 e

_ 1 g |B-1 _ B-C-1\. (1 _ B-C-s
S e ] e L“ ) =)
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= (17 [B e g,

q

Finally

- 1 sy,

D -B-1], [p51]

D—-B-1
- - (G9A-B-1-s

A-B-1 ($:9)p-B-1-s(;9)A-D
D—-—B-—-1 (©39)a-B-1

9 (¢:9)p-B-1(9:9)A-D
_ qD—B—1> . (1 _ qD—B—s)
) e (1 _ qA—B—s)

A-B (

D-B (

A~ B—1] (=1)5¢P=8-0s=(3) (4B+1-D, ),
D—-B-1 (

Combining these terms

A—B -1 B B—1—s] |[A—B—-1-s s(51)
q
S qB—l—sq C qD—B—l—sq

1-¢% {B - 1} {A - B- 1} (-)s (@ @) (@ q)s (6705 q)s
l1-¢| C | ,|D-B-1], (4:9)s(0% 0)s (¢ =45 q)s
1—¢° {B - 1} {A - B - 1} (0-s (€T 0)s (@5 ),

i—¢| ¢ |,lp-B-1]] (4:9)s(¢% q)s '

The power of ¢ is (D — C')s since

(A—B—1)s—(S)HB—C—US—(;)

S

+(D—B—1)s—<;>—((A—B—l)s—(2>)+s(s+1)
— (D - O)s.

This means that

B—Zl—CA_B_l B B—1—s A-B—-1-s s(s+1)
q
s JB-1-=s| | C | |D-B-1-s],

s=0
1 ¢P {B _ 1} [A —B-— 1] PSR (491158, 9)u(¢BH P ), (D—C)s
l-q | C |,ID-B-1], < (43 0)s(a% q)s

_ B B_1 A_B_l 2¢1 qc+1*B7 qB+17D; quC
1, ¢ J,Ip-B-1], q°
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[B] [B—1] [A-B—-1] (¢""""%;q)p-c—
C D-B-1 (4% @) p—c—1

dqtl dgl dq

B
1
Bl [B-1] [A-B—-1] (1 —=¢P*'=B)...(1 —¢P~¢ Y
1
B
1

l,L ¢ |, D-B-1], (1-¢)--(1-¢°°)
1[B-1] [A—B-1] [D—C] 1—gq

1], L C 1, D—B—-1], B-C ‘

_1-¢” [B-1] [A-B-1] [D-C
1-¢>¢| C [|,|D-B-1],|B-C],

as desired. 0

1 — qD—C

Proof of Lemma (3.9 The proof is identical to that of Lemma [3.1} Substitute B — 1 — s for
s to find that the lemma is equivalent to

B_Zl_DA—B—l B B—1-s] [B=1-C—s]
s | B-1-s)| ¢ || bp-c ]}

s=0

e P e

We see that
B-1-C-s
"o,
_[B—l—C’} [°5¢ S]q
LD f B

($:9)B-1-C—s
_ (:9)p-c(6:9)B—1-D—s

(9)B—1-C
(¢;9)p-c(49)B—D-1
_{B—I—C} (1 BDl) ( BDs)
D—C q(l BCl) ( BCS)
_{B—l—cquDl ~(2) (g 1B ),
D=C ] 4o <><C+1Bq>'

Combining this with the expressions for [A_f —1}(1 and [ B
Lemma [B.1]

{A—B—l} { B } {B—l—s] [B—l—C—s} s(5+1)
q
s qB—l—sq C . D-C .

_1-4° [B - 1] [B ~1- C] RUSON Uit ) HC T ) U ST )
¢ L b=C 1, (¢% )54+ q),

1—¢® [B - 1} [B —1- C] SA-D)s (@™ )s(¢" ")
q q

N ]q[B_les]q from the proof of

1-¢q| C D-C (¢ 9)s(q% a)s
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The power of ¢ is (A — D)s because

(A—B—1)s—(;>+(3—c—1)s—(;)

+(D+1—B)s—(g)—((B—C—l)s—(;>)+s(s+1)
—(A—D)s.

This means that

BlD[A—B—l] [ B } {3_1_5] {3_1—0—5} o(o41)
> q
s JB—1=s], C . D-C q

s=0

1-¢%[B-1] [B-1-0] "7 (@04 B 0)s 4

- 1-ql C || D-C |, & (4:9)s(¢% a)s
1-¢®[B—-1] [B—1-C] gBti-A  gP+1-B. A-D

s e N e s )

_1-4¢"[B-1] [B=1-C] (¢"""";9)ap

S l-q| C |l D=-C |, (&*9a B

1-¢?[B-1] [B=1-C] 1—¢?" D). (1 —¢* P

S l-q| C |l D-C |, (1-¢)---(1—-¢"P)
1-¢°[B—-11 [B-1-C] [A-D 1—gq

" 1-q| C ]| D-C q{A—BLm

 1-¢® [B—1] [B—1-C] [A-D
C1—gA P C L D=C | |B-D],

as desired.

APPENDIX B. PROOF OF THEOREM [3.3] [[HR]
Proof.

[]Y] d [&'2] a;o — 1 Ai—12 — a;o — 1 ;1 — Giy1,2 — a2 — 1 -
m: q 1,219 { 1, } { i—1, i, } { i, i+1, } { i, }
[al,z} H [ q a;1 — Q2 — 1 q q ];Il: Ait1,2 — 1

@i — Giv12)q | Git12 Qi — Qit12

1 1qi=1 q
[N]lq [ar,2]lq |
IN-1]1g[1]!  [ar2—1]1g[1]lg |@r—1,2 — Qp2 — 1 [ar,l]-q
[a1,2]'q [ara]lq Ap1 — Qry — 1 aroll la, 1 — a,s]!
fare—14 [0 fara—1Lmy, - o 02 olorallglar = aral'y
r—1 [ai,2]q | [ai1—ait1,2]lq
H [ai 2= 1)1 (1)1 laiz — 1], {ai—l,z — Q2 — 1] [ai,2—ait1,2]lg[ai,1 —ai 2]l
- ] a—1!
o —aivialle a5y [ai2 — @iz — 1l [ i — a2 — 1 la:.2—1]'q

=1 [a;1—ait1,2—1]1g[1])lq 9 ai+1,2—1]lqlai2—ait1,2]q
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[Nl
 INCIg 1 (g — 1]! ar_12 — Gpz — 1 1
C dmall g, — 11,0 oarg —arz =1 | [a,1 — ap2)!
[a1,2—1}!q s q T, T, q %7 T, q
—l N P o — e — 1] o — 1
1, 5 ) ) ) )
7 laiall [ain — ait12 — 1] [aic12 — aiz — 1]y [ait12 — 1]l
i1 [aio — 1)q [air12)lglas2 — aipr2 — 11y [ain — a2 — 1)glai—12 — aially [ain — aiz2]ly
[Nl
_ [N—1]lq 1 [CL L — 1]' |:a7’—1,2 — Qr2 — 1] 1
% [ar,2 - 1]'(1 " Qr1 — Qr2 — 1 q [ar,l - ar,2]!q
27 Hg
-1
11 laolly laie — 1Y [aise —aip — 1) [ain — aip1p — 1]l
i1 [ait12)ly [aiz =1y [aiz — aiyio — g [ain — aia — 1)glai-12 — ainllylain — aially
[N]!
=1L, 1 [ar—12 — ar2 — 1]l 1

- —1]!
[aralls BTG
m [ar,2 1]'(1 [
r—1

[a10)'g [ar2 —1]lg [N — a1 — 1]l 11 [aiy — aiz12 — 1]
[ara]lq lare — 1)1 [ar—12 — aro — 1]l i1 [ain — aig — 1)lg[ai—12 — aia]ly[ain — aiz)ly
_ (1 =d")N—ap—1]4 [aig — aip12 — 1]
[ar2]lq i1 [aig — aig — 1)lglai—12 — aia]lylain — aiz)l
_(1=d")N—ap—1]4 ﬁ [ai1 — a2 — 1Y - 1
[N = a1]lq[ars]!y i1 [ain — aiz — 1)gai) — ais]!y o [@i12 — ai,l]!q.

ar,l - ar,2 - 1]!q[ar71,2 - ar,l]!q [ar,l - ar,Q]!q

r

[N] r r—1 -1
= 1lq H [ai,l]q {%1 - 1] {%1 — Q41,1 — 1] [%‘—1,1 - ai,2:| H [ Qi1 — 1 }

a

[ 1’1} [ai—l,l - ai,?]q Qi+1,1 q A2 — Gi41,1 q ai1 — G2 g3 Q41,1 — 1 q

1 1qg i=1 i=1
[N]! [ar1]!
_ [N_l]!qq[l]!q [ar,l_ll]!qq[l]!q [ar,l — 1]'4 [CLT*Ll — CLT,Q]!Q
[01,1]!q [ar_l’l_aT’z]!q [ar,Z]!q[ar,l - ar,2 - 1]'(1 [ar,l - ar,Q]!q[arfl,l - ar,l]!q

la1,1—1]1g[1)lg [ar—1,1—ar2—1]l4[1]lq
r—1 [a;a]! a;—1,1—04,2
H lai, 1 —1]1q[1]'q [ai,l - 1]!q [ai,l — Q41,1 — 1]!q [ ai,1—0i,2 ]q
[ai—1,1—a;2]lq Q; | a1+ — a; — 11 1a: 5 — a. Vai s —aio — 11 a;1—1
i e [oiaallloin — g = 1l oy — aiaallloin —aip =10t [0 ]

[N]!q [al,l - 1]!q [ar,l]!q [ar—l,l — Qpr2 — 1]!q

n [N — ]_]' [al’l]!q [GT’Q]!(] [CLT,l — CLT’Q — 1]!(1[@7«’1 — ar’g]!q[CLT_Ll — ar,l]!q
[ai—1,1—ai2]lq

1
- @z 1 [aifl,l — Q2 — 1]!q 1 lai,1—a;2]lqlai—1,1—ai1]lq
Pl l[ai—11 — a; 2]' [ait11]l [ai2 — aiv11)lg[ain —aia — 1)1, e [ﬁ} 1[%11} T
(Nl fara = 1] [arally [ar11 — ar2 — 1]

[N — 1]!q [al,l]!q [ar,2]!q [a'r,l — Qr2 — 1]!11[“711 - ar,2]!q[ar—1,1 - anl]!q
-1
1 [&i,l]!q [aerl 1~ ]'q [az,l - ai+1,1]!q [Gzel,l — Q32 — 1]!(1

[ai—i-l,l]!q [az,l ] q [az 1,1 — ai,l]!q [%2 - ai—i—l,l]!q[ai,l — Q2 — 1]!(1[@2',1 - ai,Z]!q

=1
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[Ny [ars — 1]l [ara]!y [ar—11 —ars — 1]}
[N =11y [ara]ly  [ara]lq[ary — ara — 1)lglary — aro)lglar—11 — ani]ly
~1
[a1,1]!q [ar,l - ]-]!q [%—1,1 - ar,ﬂ!q ] [%‘—1,1 — Q32 — ]-]!q
[ara)lq [ary =1y [N —ana]ly 7 [ai2 — aipia]loain — aiz = 1)lg[ain — aizlly
N]'q 1 [ar,l,l — Qr2 — 1]'11

[
[N — 1]'q [aw]!q [ar,l — a,ﬂ,g — 1]!q[ar71 — ang]!q

T

H [%’—1,1 — Q32 — ]-]!q 1

a [aig — a2 — 1)lglain — aizlly o (@12 — aially
T

. (1 — qN) [ar’l — 1]'(1 H [ai,m — CLLQ — 1]|q 1

[ara]ly [N —aiq]ly 1 [ain — aig — 1)lglai1 — aip]ly 9 (@12 — aially

T

. (1 — qN)[N — GLQ — 1]|q ﬁ [a'i,l — G,Z'JFLQ — 1]'q - 1

[N = ay1]lq[ar2]!y el [aig — aiz — 1)glaiy — ais]ly o [ai12 — ai,l]!q.
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