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Abstract. We look at a generalized version of degree sequence of hyper-

graphs, where we consider linear combinations of (hyper)-edges with rational,

integer or positive integer coefficients, and try to describe the algebraic ob-
jects thus defined (QE(G), ZE(G), Z+E(G)) in terms of properties of the

hypergraph.

We find a restrictive definition of connectivity for hypergraphs which en-
sures a description of ZE(G) in terms of partitions of k into positive integers.

We also look at the integral closure of the Z+E(G), which has been fully

described for graphs, and give varied examples of why generalizations to higher
dimensions encounter problems.
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1. Introduction and Case k = 2

We first define k-hypergraphs, with and without degenerate edges. Let N :=

{1, 2, 3...} and [n] := {1, 2, 3, ..., n}. For a set A we denote by
(

A

k

)
the family of

k-element subsets of A.

Definition 1.1. A k-hypergraph G is a pair (V,E), where V ⊂ N and E ⊂
(

V

k

)
.

The elements of E are called the edges of G.

Now consider multisets, where the same element is allowed to appear a finite
number of times; the cardinality of a multiset will count each element with its
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multiplicity, and from now on a sum over the elements of a multiset will take each
element with the corresponding multiplicity, unless otherwise noted. Given a set

A, denote
((

A

k

))
:= {B multiset : |B| = k and if e ∈ B then e ∈ A}.

Definition 1.2. A generalized k-hypergraph G, or for short a k-hygraph, is a pair

(V,E), with V ⊂ N and E ⊂
((

V

k

))
. A multiset e ∈ E is called an edge, and

degenerate edge if at least one element in e has multiplicity greater than one.

Notice that even for a k-hygraph, E is defined as a set, not a multiset, thus each
edge is counted at most once. On a different note, further definitions for generalized
k-hypergraphs will restrict naturally to k-hypergraphs.

Definition 1.3. (characteristic vectors) Given a multiset A ∈
((

[n]
m

))
, for some

n, m ∈ N, define the characteristic vector χA ∈ Rn of the multiset A by χA :=∑
i∈A

ei, where ei, for i = 1, 2, ..., n, are the standard basis vectors of Rn.

The degree sequence d(G) ∈ Rn of a k-hygraph G = ([n], E) can be defined as
d(G) :=

∑
e∈E

χe. A classical question is to determine a condition for a vector in

Zn
≡0(k) := {v ∈ Zn :

n∑
j=1

vj ≡ 0(mod k)}

to be a degree sequence of a k-hygraph, for k and n fixed, k ≤ n.

Branching off from this question, one can look at a generalized form of degree
sequences, where we allow coefficients in front of the χe’s.

Definition 1.4. Given an additive semigroup R ⊂ R and a finite subset M of Rn,
define the semigroup RM ⊂ Rn as

RM =

{∑
v∈M

αvv : αv ∈ R

}
Given a k-hygraph G = (V,E) define RE(G) = R{χe : e ∈ E}.
We will usually use:

R = Z+ := {v ∈ Z : v ≥ 0}
R = Q+ := {v ∈ Q : v ≥ 0}
R = R
R = Q
R = Z .

Notice that Z+E(G) allows non-negative coefficients for each edge, ZE(G) con-
siders all integer coefficients, while Q+E(G) describes the rational points included
in the cone R+E(G).

Remark 1.5. The study of RE(G) is essentially equivalent to the study of QE(G),
in the sense that RE(G) = R⊗Q QE(G), because we have χe ∈ Qn for any e ∈ E,
and R/Q is a field extension. A geometric property that now follows is QE(G) =
RE(G) ∩Qn.
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A similar remark applies for R+E(G) and Q+E(G). From now on, we will focus
on describing QE(G), and Q+E(G).

There is one more object that we will study:

Definition 1.6. (saturation or integral closure) For a k-hygraph G = ([n], E) define
Zsat

+ E(G) := Q+E(G) ∩ ZE(G).

Let’s consider an example to illustrate these notions:

Example 1.7. Let G = ([3], E) with E = {{1, 1}, {1, 2}, {2, 3}, {3, 3}}. Then:
• χ{1,1} = (2, 0, 0), χ{1,2} = (1, 1, 0) etc.

• it is easy to see that ZE(G) = Z3
≡0(2).

• Z+E(G) $ Zsat
+ E(G), because

(1, 0, 1) = 1
2 (2, 0, 0) + 1

2 (0, 0, 2) = 1
2χ{1,1} + 1

2χ{3,3} ∈ Q+E(G) and

(1, 0, 1) = χ{2,3} − χ{1,2} + χ{1,1} ∈ ZE(G)

so (1, 0, 1) ∈ Zsat
+ E(G) but (1, 0, 1) /∈ Z+E(G). Moreover, we will see

that (1, 0, 1) is unique in the sense that together with E(G) it generates
Zsat

+ E(G).

We will focus on describing QE(G), ZE(G), Zsat
+ E(G) in terms of graphical prop-

erties of G. The case k = 2 yields complete characterizations of all these objects.

Remark 1.8. We allow loops, i.e. degenerate edges {i, i}, and we consider a loop to
be an odd cycle.

We start by describing ZE(G) and QE(G):

Proposition 1.9. (ZE(G) for graphs) Assume G = ([n], E) is a graph (a 2-
hygraph) which is connected, then:

• if G does not contain any odd cycles (is bipartite), with V1 t V2 = [n] such
that for any for e ∈ E, e ∩ Vi 6= ∅, i = 1, 2 (that is, every edge in E has
one end in V1 and the other in V2), define

H =

v ∈ Rn :
∑
i∈V1

vi =
∑
j∈V2

vj
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.
Then ZE(G) = Zk

≡0(2) ∩H = Zn ∩H and QE(G) = Qn ∩H;
• if G contains an odd cycle (is not bipartite), then ZE(G) = Zn

≡0(2) and
QE(G) = Qn.

Another nice property for k = 2 is that ZE(G) is the set of all integer points
with even sum of coordinates in the cone QE(G). It is obvious that ZE(G) ⊆
QE(G) ∩ Zn

≡0(2), but the equality is proven by:

Proposition 1.10. For a graph G = ([n], E) we have ZE(G) = QE(G) ∩ Zn
≡0(2)

hence Zsat
+ E(G) = Q+E(G) ∩ Zn

≡0(2).

Proof. We distinguish two cases:
• If G contains no odd cycles, then from Proposition 1.9 we deduce ZE(G) =

Zn
≡0(2) ∩H. We have that for any e ∈ E, χe ∈ H, so QE(G) ⊂ H, thus

ZE(G) = QE(G) ∩ (Zn
≡0(2) ∩H) = (QE(G) ∩H) ∩ Zn

≡0(2) = QE(G) ∩ Zn
≡0(2)

.
• If G contains at least one odd cycle, then by Proposition 1.9 we already

have ZE(G) = Zn
≡0(2) ⊂ QE(G).

�

The most important result for k = 2 is the description of Zsat
+ E(G) in the case of

a connected graph G. We will sketch a proof drawn from [5, Th 8.7.9] and especially
from [2]; the idea is to clearly separate the steps of the proof, with the purpose of
adapting them for the later study of Zsat

+ E(G) for k > 2.

Definition 1.11. A vector v ∈ Zn
+ is called a hole of Zsat

+ E(G) if v ∈ Zsat
+ E(G) \

Z+E(G).

Theorem 1.12. For a connected graph G = ([n], E), denote

W = {χw : w ⊂ E, w = O1 t O2, where O1 and O2 are disjoint

chordless odd cycles not connected by one edge }
Then

Zsat
+ E(G) = Z+(E(G) ∪W ).

Proof. (Step 1) Take a hole v ∈ Q+E(G) ∩ ZE(G) \ Z+E(G). We can write
v =

∑
e∈E0

reχe, with E0 ⊆ E and re ∈ Q+ for all e ∈ E0.

A crucial step is that we can assume w.l.og. that the vectors in χE0 := {χe : e ∈ E0}
are linearly independent over R by Caratheodory’s theorem.

Now consider v′ =
∑
e∈E0

(re − brec)χe and we will write v′ =
∑
e∈E1

qeχe, with

qe ∈ (0, 1) ∩Q for all e ∈ E1 ⊂ E0 and χE1 linearly independent. Notice that v′ is
also a hole because v = v′ +

∑
e∈E0

aeχe with ae ∈ Z+ for all e ∈ E0. This ensures

E1 6= ∅. We proceed by proving that v′ ∈ Z+(E(G) ∪W ).
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(Step 2) We look at the graph G′ = (V,E1) formed by the edges in E1 and
their vertices V = {i ∈ [n] : i ∈ e for some e ∈ E1} :

(1) every vertex in G′ has degree at least 2, because v′i =
∑

i∈e qe and 0 < qe < 1
for each e ∈ E1; thus any connected component of G′ contains cycles;

(2) any even cycle gives a linear dependency (the alternate sum of edges is
equal to 0), so G′ contains only odd cycles;

(3) For a connected component T of G′ we cannot have more than one odd
cycle. Assume we have at least two odd cycles and a path that joins them
(if the cycles intersect pick the empty path); this gives rise to a degenerated
even cycle, which gives a linear dependency. It follows that T is exactly an
odd cycle, because all degrees are at least 2. Thus G′ is a union of disjoint
odd cycles.

(4) We find that for each cycle, the weights qe of the edges have to be exactly
1
2 , hence v′’s entries are only 0 and 1, and each odd cycle contributes an
odd number of 1’s. It follows that G′ has an even number of odd cycles,
because v′ ∈ Zk

≡0(2);

(Step 3) It is enough to prove that v′ ∈ Z+(E(G) ∪ W ) when G′ has exactly
two odd cycles, O1 and O2. We can prove this statement by induction on the sum
of lengths of the two cycles.

Firstly, notice that if there is an edge e0 connecting the two cycles, suppose
that the cycles O1 and O2 excluding the edges ending in the vertices of e0 are
{e1, e2, ..., e2t+1} and {f1, f2, ..., f2s+1} respectively, where the edges are taken in
the order they appear in the cycles. Then already v′ ∈ Z+E(G), because v′ =
χe0 + (χe1 + χe3 + ... + χe2t+1) + (χf1 + χf3 + ... + χf2s+1). So suppose there is no
edge connecting O1 and O2.
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If both cycles are chordless, by definition v′ ∈ W . If cycle O1 has a chord e0,
we can write O1 = O′

1 t {e1, ..., e2t+1} where O′
1 is an odd cycle and the edges

e1, ... e2t+1 are part of the original cycle O1, in this order. Then by induction
χO′

1
+ χO2 ∈ Z+(E(G) ∪W ), and v′ = χO′

1
+ χO2 + χv1 + χv3 + ... + χv2k+1 .

�

2. The integer lattice ZE(G)

2.1. Strongly connected k-hygraphs. We will now try to find characterizations
of QE(G) and ZE(G) for the more general case k ≥ 2. We need two concepts: a
connectivity condition to be imposed on the k-hygraphs, and a generalized version
of the restrictions imposed by the bipartite-ness in the case k = 2 in Proposition
1.9.

Definition 2.1. A k-hygraph G = ([n], E) is called strongly connected if for any
two edges a, b ∈ E there exist m ∈ N \ {0} and edges a = e1, e2, . . . , em = b such
that |ei ∩ ei+1| ≥ k − 1 for any i = 1, 2, ...,m− 1.

It is easy to see that this definition reduces to the usual connectivity in the case
of graphs. We present an example to underline the multiset properties used in the
case of degenerate edges:

Example 2.2. The 4-hygraph G = ([4], {{1, 2, 2, 3}, {2, 2, 3, 4}}) is strongly con-
nected because |{1, 2, 2, 3} ∩ {2, 2, 3, 4}| = |{2, 2, 3}| = 3.

Nevertheless, the 4-hygraph G = ([4], {{1, 2, 2, 3}, {2, 3, 3, 4}}) is not strongly
connected because |{1, 2, 2, 3} ∩ {2, 3, 3, 4}| = |{2, 3}| = 2.

The condition in Proposition 1.9 that a graph has no odd cycles is equivalent to
the existence of a coloring of the vertices of the graph with two colors such that
every edge has an endpoint of each color. We can generalize this concept in the
following way:

Definition 2.3. Given a k-hygraph G = ([n], E) and a partition λ of k as sum
of positive integers k =

∑p
i=1 ki, the k-hygraph G is called λ-partite if there is a

partition [n] =
⊔p

i=1 Ap such that for any edge e ∈ E and i ∈ {1, 2, ..., p} the sum
of e’s multiplicities over all elements of Ai is ki.

Thus a k-hygraph is λ-partite if we can color its vertices with colors 1 though
p and then every edge has exactly ki vertices (counted with multiplicities) colored
with color i. For k = 2, a bipartite graph is λ-partite with λ the partition 2 = 1+1.

Focusing on k = 3, we will give an example where a 3-hygraph G is only (3 =
2 + 1)-partite and one where G is only (3 = 3)-partite.
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Example 2.4. (3=2+1) Consider G = ([4], {{1, 2, 4}, {2, 4, 3}, {3, 4, 1}}). It is
clear that G is not (3 = 1 + 1 + 1)-partite, but G is (3 = 2 + 1)-partite with
B1 = {1, 2, 3} and B2 = {4}.

Example 2.5. (3=3) Consider G = ([7], E) with

E = {{1, 2, 3}, {5, 6, 7}, {1, 4, 5}, {2, 4, 6}, {3, 4, 7}}
It is clear that G does not accept any partition other than the trivial one.

Notice that if a k-hygraph is λ-partite for some λ, we obtain a constraint on
QE(G) given by a linear relation: with the notations in Definition 2.3, for any
v ∈ QE(G) we have

1
k1

∑
j∈A1

vj =
1
k2

∑
j∈A2

vj = ... =
1
kp

∑
j∈Ap

vj

Indeed, the above relation is true by definition when v = χe and e is an edge,
and QE(G) is generated by {χe : e ∈ E}. The main result says that in the case of
strongly connected k-hygraphs, this is the only restriction for QE(G), and the only
restriction for ZE(G) beyond ZE(G) ⊂ Zn

≡0(k).

Definition 2.6. Given a k-hygraph G = ([n], E), call vertices i0, i1 ∈ [n] equiva-
lent, and denote i0 ∼ i1, if ei0 − ei1 ∈ ZE(G), where ej are the standard basis for
Rn, for j = 1, 2, ..., n.

Then ”∼” is an equivalence relation on [n], whom it partitions into equivalence
classes, [n] =

⊔p
j=1 Bj .

Now the main result:

Theorem 2.7. Given a strongly connected k-hygraph G = ([n], E) which has p
equivalence classes B1,...,Bp given by the ”∼” relation, we have that:

i) if p = 1 then ZE(G) = Zn
≡0(k);

ii) if p > 1 then there exists a unique partition λ = {k1, k2, ..., kp} such that G
is λ-partite, and the partition of [n] is given exactly by [n] =

⊔p
j=1 Bj, and

ZE(G) =

v ∈ Zn
≡0(k) :

1
k1

∑
j∈B1

vj =
1
k2

∑
j∈B2

vj = ... =
1
kp

∑
j∈Bp

vj


We will use the following lemma:
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Lemma 2.8. Suppose w ∈ Zn, and for any l = 1, 2, ..., p we have
∑

j∈Bl
wj = 0.

Then w ∈ ZE(G).

Proof. Assume B1 = {i1, i2, ..., ib}, then we can find integers α1, α2,..., αb−1 such
that if w1 = α1(ei1 − ei2) + α2(ei2 − ei3) + ... + αb−1(eib−1 − eib

) then w and w1

have the same entries at indices in B1.
Now consider w − w1 and repeat the procedure for B2 and so on. At the end

we get w = w1 + ... + wp, and all wj ∈ ZE(G) (because ei0 − ei1 ∈ ZE(G) when
i0 ∼ i1), so w ∈ ZE(G). �

Proof. (of Theorem 2.7)
Consider a graph G′([p], E′). Consider a map f : [n] → [p] such that when i ∈ Bl

we have f(i) = l. By an extension of notation we write f(e) = {f(a1), f(a2), ..., f(ak)}
when e = {a1, a2, ..., ak}. Denote

E′ =
{

f(e) ∈
((

[p]
k

))
: e ∈ E

}
.

Notice that G′ is also strongly connected: consider a, b ∈ E′, then take a1, b1 ∈ E
such that f(a1) = a0 and f(b1) = b0. Because G is strongly connected we have
a = e1, e2, ..., em = b ∈ E such that |ei ∩ ei+1| ≥ k − 1 for all i = 1, 2, ....m− 1, so
a1 = f(e1), f(e2), ..., f(em) = b1 ∈ E′ have the property that |f(ei)∩f(ei+1)| ≥ k−1
for all i = 1, 2, ...,m− 1.

Suppose |E′| > 1, then we can find e0, e1 ∈ E′, |e0 ∩ e1| = k − 1, so say
e0 \ e1 = {i} and e1 \ e0 = {j}, obviously with i 6= j. It follows that i ∼ j in G′

because ei−ej = χe0−χe1 ∈ ZE(G′). We will prove that this forces two equivalence
classes in G to be the same, which is a contradiction.

Take any edges d0, d1 ∈ E such that f(d0) = e0 and f(d1) = e1, and i1 ∈ Bi

and j1 ∈ Bj . Then the vector (ei1 − ej1) − (χd0 − χd1) satisfies the condition in
Lemma 2.8, which means that ei1 − ej1 ∈ ZE(G) so we get that equivalence classes
Bi ∩Bj 6= ∅, contradiction.

Now we know that G′ has exactly one edge e0, and assume any l = 1, 2, ..., p
appears with multiplicity kl in the multiset e0. It follows that for any edge e ∈ E
and any l = 1, 2, ..., p we have ∣∣∣∣e ∩ ((Bl

k

))∣∣∣∣ = kl,

so G is λ-partite with λ the partition of k as k =
∑p

l=1 kl.
Now take any w ∈ Zn

≡0(k) such that

1
k1

∑
j∈B1

wj =
1
k2

∑
j∈B2

wj = ... =
1
kp

∑
j∈Bp

wj = α

We can prove α ∈ Z because w ∈ Zn
≡0(k) and

n∑
i=1

wi =
p∑

l=1

∑
i∈Bl

wi =
p∑

l=1

α · kl = k · α,

but then choose any edge e ∈ E so (w−α·e) ∈ ZE(G) by Lemma 2.8, so w ∈ ZE(G).
This completes the proof, because it is clear that any w ∈ ZE(G) has to be of the
above form.
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�

Corollary 2.9. In the condition of Theorem 2.7, we have:
i) if p = 1 then QE(G) = Qn;
ii) if p > 1 then

QE(G) =

v ∈ Qn :
1
k1

∑
j∈B1

vj =
1
k2

∑
j∈B2

vj = ... =
1
kp

∑
j∈Bp

vj


As soon as we drop the hypothesis of strongly connected, we find examples where

the coloring given by partitions of k do not encapsulate all information about
QE(G).

Example 2.10. Consider the 3-hygraph G in example 2.5. We have seen that G
is λ-partite only if λ is the trivial partition 3 = 3, which imposes no restriction on
QE(G). Nevertheless, QE(G) 6= Qn, more specifically:

QE(G) = {v ∈ Qn : v1 + v6 = v5 + v2 and v2 + v7 = v6 + v3}

This encourages the search for a more general idea of ”coloring” than the parti-
tions of k. We have obtained the following conjecture:

Conjecture 2.11. Let Gk = ([k], Ek) be the complete k-hygraph on [k].
Given a k-hygraph G([n], E) , (easily connected?), consider any function f :

[n] → [k] and extend it naturally to f : E → Ek, and define Gf := ([k], f(E)).
Define further φ : Qn → Qk by φ(ei) = ef(i). Then:

QE(G) =
⋂

f :[n]→[k]

φ−1(QE(Gf ))

In plain words, the only restrictions on QE(G) are given by colorings where we
use at most k colors, but a certain set of possible edges is permitted (instead of just
one edge, as previously).

Note that only some of these colorings impose restrictions, and some are equiv-
alent to others in terms of equations imposed.

If the conjecture is true, it would mean that we only need to study the QE(G)
for k-hygraphs on at most k vertices to understand the QE(G) in the general case.

2.2. Reduction algorithms and loosely connected k-hygraphs. Is there any
way to use the ideas in Theorem 2.7 for a k-hygraph G which is not strongly con-
nected? Consider the following algorithm:

Consider a subgraph G′ ⊂ G, G = (V,E) and G′ = (V ′, E′) such that V ′ ⊂ V ,
E′ ⊂ E and G′ strongly connected, and uniquely partition V ′ =

⊔p
l=1 Bl as in

Theorem 2.7.
Now create hygraph G1 = ((V \ V ′) ∪ V1, E1), where V1 = {b1, b2, ..., bl} from

G in the following way: for each 1 ≤ l ≤ p replace all vertices in Bl with vertex
bl and replace all edges containing vertices in Bl with edges containing bl with the
respective multiplicity.
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Theorem 2.7 guarantees that if v ∈ ZE(G1) then for any vector

w ∈ Z|V | with
∑
j∈Bl

wj = vbl
, and wi = vi when i ∈ (V \ V ′),

we have w ∈ ZE(G).

We can repeat the process until there are no more strongly connected subgraphs
(one step reduces the number of vertices), which leads us to the following definition,
for the special case k = 3:

Definition 2.12. Consider a 3-hygraph G, and suppose that given any two distinct
edges a, b ∈ E we have

• |a ∩ b| ≤ 1;
• there exist edges a = e1, e2, ..., em = b such that |ei ∩ ei+1| = 1

Then we call G loosely connected.
If G satisfies only the latter condition, we call it weakly connected.

Notice that this is the same as saying that any two multisets that represent
edges are either disjoint or intersect at a multiset with cardinality 1. The previous
procedure says that we only need to understand the QE(G) and ZE(G) for loosely
connected graphs.

2.3. A bound on the dimension of QE(G) for loosely connected 3-hygraphs.
It is natural to ask whether a loosely connected 3-hygraph can be drawn on a certain
two-dimensional surface (sphere, torus, etc).

Definition 2.13. Let’s think of a 3-hygraph as n points on a two-dimensional
surface σ, where edges are subsurfaces of σ which contain exactly three vertices,
and are homeomorphic to solid triangles (moreover, we can take the pre-images
of the vertices of the solid triangle to be the three vertices united by the edge).
Most importantly, we impose that two different edges are either disjoint, intersect
at a vertex, or along a simple curve uniting two vertices. Then we say that G is
embedded on the surface σ.

Notice that a 3-hygraph embedded on σ partitions the surface into edges and
other subsurfaces homeomorphic to solid polygons (again, the pre-images of vertices
of the polygon are exactly the vertices of G contained in the subsurface). We call
such a subsurface which is not an edge an empty cycle (because it contains no edges
inside).

We first analyze the case of a plane (or equivalently, a sphere).

Proposition 2.14. Suppose G, a loosely connected 3-hygraph, is embedded on the
sphere, and we have m > 0 pairwise disjoint empty cycles of lengths k1, k2,..., and
km, then:

⌊n

2

⌋
≤ |E| ≤

⌊
n−

∑m
i=1 ki

3
+ m + 2

⌋
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Proof. We can suppose w.l.o.g. G is embedded in the plane such that the edges
are solid triangles, and the exterior polygon represents one of the m empty cycles
on the sphere, with k1 sides. Triangulate all empty cycles excluding the selected
m− 1, such that we have:

• t is the number of triangles representing edges of G;
• T counts all triangles, including the ones used to triangulate some empty

cycles, but not counting any of the m− 1 empty cycles themselves;
• n is the number of the vertices of G;
• e is the number of segments used in the configuration;

For example, in the image above the edges are colored dark gray, while the other
triangles are dashed gray; the m− 1 empty cycles are left white. We have:

• m = 3, k1 = 9, k2 = 3 and k3 = 4;
• t = 15 and T = 26;
• n = 20, e = 37;

We calculate T by the equation giving the sum of angles around all vertices
confined to the inside of the exterior polygon:

π · T +
m∑

i=2

π · (ki − 2) = π · (k1 − 2) + 2π(n− k1) ⇒ T = 2n−
m∑

i=1

(ki − 2) + 4

Every triangle contains three segments, and all segments are counted twice,
except those on an empty cycle, so:

3T = 2e−
m∑

i=1

ki

Now if a certain vertex v has dv incident segments, the number of incident edges
is at most d

2 , because G is loosely connected. The sum of dv

2 ’s over all vertices is e,
so we get:

3t ≤ e =
1
2

(
3T +

m∑
i=1

ki

)
= 3n−

m∑
i=1

ki + 3m + 6
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The proof for the left inequality is an easy exercise using the fact that G is
connected. Asymptotical equality is achieved in this case, by the graph:

G = ([2n− 1], {1, 2, n + 1}, {2, 3, n + 2}, ..., {n− 1, n, n + n− 1})
�

In the case of a general case of a surface σ of genus g, if σ is partitioned into the
t edges and M other surfaces, a simple application of Euler’s formula gives:

t =
n

2
+ 2g − 2 + M

The effect on QE(G) given by these propositions follows from

dim QE(G) ≤ |E|.

2.4. Another class of particular 3-hygraphs. We also looked at 3-hygraphs
with only degenerated edges (see definition 1.2):

Definition 2.15. If e ∈ E and e = {a, b, b} with a 6= b we call e an arrow from a
to b and denote e = [a, b}. If e = {a, a, a} we call e a simple loop.

Proposition 2.16. The RE(G) of a connected 3-hygraph with only degenerated
edges is a hyperplane if it either contains no cycles or simple loops, or all the
cycles (of arrows) are even and have an equal amount of arrows going clockwise as
counterclockwise. Otherwise RE(G) = Rn.

Proof. :
It is easy to see that if the hygraph is connected and has no cycles, then there

are exactly n−1 edges and that the corresponding vectors are linearly independent.
If there exists a simple loop i , then we will look at ([n], E\{i}) which is still con-
nected. If the remaining graph contains a simple loop, we will continue the same
procedure until we get an irreducible graph G′. If G′ = ([n], E′) contains cycles,
we will fix one of edges (j) in one of the cycles look a the gpaph ([n], E′\{j}) and
continue doing this until again we reach an irreducible graph G′′ without cycles or
simple loops. The dimension of its real lattice is n − 1. It is easy to see that any
vector corresponding to the simple loop that we took out of the graph is linearly
independent with all the edges of A by first numbering the vertices in such a way
that all the diagonal entries of the edge matrix are nonzero and then looking at the
determinant of the vectors in G′′ and the vector of the simple loop. The determi-
nant equals to the product of the diagonal entries and therefore is not equal to zero.

If there are no simple loops in the graph then look at any cycle. We will number
the vertices of the cycle according to their cyclic order. If we look at the matrix
of the obtained cycle (It has nonzero entries only on the main diagonal and the
diagonal on top of it and the bottom left corner, also each row has one 1 and one
2 and the rest are zeros)

A =


a1,1 a1,2 0 . 0 0
0 a2,1 a2,2 . 0 0
. . . . . .
0 0 0 . an−1,1 an−1,2

an,2 0 0 . 0 an,1
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then it is not hard to see that its determinant is zero iff the cycle is even and there
is an equal amount of arrows going in both directions since det(A) =

∏n
1=1 a1,i +

(−1)n−1 ·
∏n

1=1 a2,i. Therefore the the dimension of the real lattice is n− 1 only if
there are no simple loops, odd cycles or even cycles with an equal amount of arrows
going each direction, otherwise it is n.

�

3. The quotient group for ZE(G)

The study of ZE(G) in general conditions poses additional problems, because in
general we do not have ZE(G) = QE(G) ∩ Zn

≡0(k).

Definition 3.1. When referring to a k-hygraph G = ([n], E), we define the quotient
group to be the group (QE(G) ∩ Zn

≡0(k))/ZE(G).

By Theorem 2.7 and Corollary 2.9, we have that:

Proposition 3.2. For a strongly connected k-hygraph G the quotient group is
trivial, so ZE(G) = QE(G) ∩ Zn

≡0(k).

Nevertheless, the case when G is not strongly connected yields a counter-example:

Example 3.3. Take G = ([6], E) where E = {{1, 2, 3}, {1, 5, 6}, {2, 4, 6}, {3, 4, 5}}.
Then v = (1, 1, 1, 1, 1, 1) is a nonzero element of the quotient group, because 2 · v =∑

e∈E χe, but it can be seen that v 6∈ ZE(G).

A few questions to ask are:
• Can the order of the quotient group be arbitrarily large for fixed k?
• Is there any way to describe the quotient group, for k-hygraphs with special

restrictions?

Example 3.4. The quotient group of

G = ([n], {{1, 2, 2}, {2, 3, 3}, {3, 4, 4}, ..., {n− 1, n, n}, {n, 1, 1}})
is isomorphic to Z|1+(−2)n|, which can be easily seen by looking at the Smith normal
form of the matrix whose rows are the characteristic vectors of the edges in E. A
simple series of row and column operations gives:


1 2 . 0 0
0 1 . 0 0
. . . . .
0 0 . 1 2
2 0 . 0 1

 ∼


1 2 . 0 0
0 1 . 0 0
. . . . .
−4 0 . 1 0
0 0 . 0 1

 ∼ ...
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... ∼


1 2 . 0 0

(−1)n · 2n−1 1 . 0 0
. . . . .
0 0 . 1 0
0 0 . 0 1

 ∼


1 + (−2)n 0 . 0 0

0 1 . 0 0
. . . . .
0 0 . 1 0
0 0 . 0 1



We also look at the quotient group for 3-hygraphs with all edges arrows (See
Definition 2.15). Moreover, let’s restrict our attention to trees, i.e. the simple
graph obtained by transforming all arrows into simple edges is a tree. Clearly any
tree has (n− 1) edges-arrows.

Proposition 3.5. For any 3-hygraph which is a tree of edge-arrows we have

(QE(G) ∩ Zn
3 )/ZE(G) '

k⊕
i=1

Z2li

where k ≤ n− 1 and li ∈ Z+.

Proof. If we look at the n× (n− 1) matrix generated by the vectors that represent
the edges of the tree and find its smith normal form, then the rows will give us the
basis vectors of ZE(G). This shows that k ≤ n− 1.

The elements in the quotient group can also be described as any element x 6∈
ZE(G) such that there exists a number p ∈ N \ {0} : p · x ∈ ZE(G). Proving
the proposition now would be the same as proving that the order of any element
is a power of 2. Suppose that there is a prime q 6= 2 such that an element a is of
order q. This means that q · a =

∑
e∈E aeχe. Let’s look a one of the leaves ej of

the graph: it is the only edge that touches some vertex and therefore in the linear
combination

∑
e∈E aeχe, aej

is divisible by q, because the entries of χe can only be
0,1 or 2 for any e ∈ E. Now let’s look at q · a− aej

χj . All its coordinates are still
divisible by q therefore we can look at any leaf of the graph ([n], E \ ej) and repeat
the procedure. This way we can see that for any e, ae is divisible by q. Therefore∑

e∈E
ae

q χe = a ∈ ZE(G). This contradiction proves that any element has order
power of two, so by the classification theorem for finite abelian groups we get that
the quotient group is of the desired form.

�

We can generalize this proposition in the following way. If we consider k-hygraphs
with edges that have n− 1 of element A and one element B, where A 6= B then for
these kinds of hygraphs the following is true:

Proposition 3.6. (QE(G) ∩ Zn
k )/ZE(G) '

k⊕
i=1

(Z2li2 ⊕ Z3li3 ⊕ ... ⊕ Zslis) where

k ≤ n− 1, li ∈ Z+ and s is the greatest prime such that s < k.

It can be proved using the exact same method as the 3-hygraph case.
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One might ask whether there are any examples where we get orders of elements
which are higher powers of 2, that is, if li can be at least 2. Here is one example:

Example 3.7. Consider the following graph:

G = ([9], {{1, 2, 2}, {2, 3, 3}, {3, 4, 4}, {4, 5, 5}, {3, 6, 6}, {6, 7, 7}, {6, 8, 8}, {9, 8, 8}})
.

The Smith Normal Form of the 9 × 8 matrix generated by the vectors that
correspond to the edges is a matrix with entries 1, 1, 1, 1, 1, 1, 2, 4 on the main
diagonal, which means that the quotient group is isomorphic to Z2 ⊕ Z4.

4. Holes of Zsat
+ E(G)

The study of the saturation Zsat
+ E(G) implies the study of the vectors v called

holes defined as v ∈ Zsat
+ E(G) \ Z+E(G). We will exhibit a few counter-examples

to conjectures of ”desirable” properties of the holes. First, drawing from the proof
of Theorem 1.12 we define:

Definition 4.1. Consider a k-hygraph G = ([n], E), and a vector v ∈ Zsat
+ E(G).

Suppose there exists E0 ⊆ E and numbers qe ∈ (0, 1) ∩Q for all e ∈ E0 such that:
• the set χE0 is linearly independent over Z (thus over R);
• v =

∑
e∈E0

qeχe.

Then we call v an irreducible hole of the saturation Zsat
+ E(G).

We need a few more definitions before we proceed:

Definition 4.2. ([3, Def 1.6])
Consider two sets x, y ⊂ N with |x| = |y| = k and x = {x1 < x2 < ... < xk} and

y = {y1 < y2 < ... < yk}. We define the Gale order on such sets by setting x ≤ y
if xj ≤ yj for all j = 1, 2, ..., k.

Definition 4.3. We call a k-hypergraph G = ([n], E) shifted if its edges form an
order ideal in the Gale order, or, equivalently, if the following statement holds:

for any e ∈ E and f ⊂ N, |f | = k, with f ≤ e, then e ∈ E.
Moreover, we call an edge e in a shifted graph maximal if it there is no edge

f ∈ E with f > e in the Gale order.

We also introduce a refinement of the definition of strongly connected :

Definition 4.4. A k-hygraph G = ([n], E) is called diameter k if for any two edges
a, b ∈ E there exist edges a = e0, e1, . . . , ek = b such that |ei ∩ ei+1| ≥ k − 1 for
any i = 0, 1, ..., k − 1.

4.1. Four false conjectures. Here are four candidates for tempting, yet false,
conjectures:

(1) Given an irreducible hole v (see Definition 4.1) for a k-hygraph G, then
vi < k for each i = 1, 2, ..., n. (True for k = 2)
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(2) Given a strongly connected k-hygraph G which is λ-partite with λ the
partition k = 1 + 1 + .... + 1 (thus ZE(G) = Zn

≡0(k)), then Zsat
+ E(G) =

Z+E(G), i.e. there are no holes. (True for k = 2)
(3) Same as previous, replacing strongly connected by diameter k.
(4) Given a shifted k-hygraph G, Zsat

+ E(G) = Z+E(G). (True for k = 2)

Conjecture (3) and the definition of diameter k are motivated by the following
fact: White proved in [6] that Zsat

+ E(G) = Z+E(G) for a certain class of k-hygraphs,
namely matroids, which happen to be diameter k, thus strongly connected. De
Negri also proved this result for k-hygraphs which are shifted and with exactly one
maximal edge in [4, Cor. 3.5]; these conditions actually imply that the k-hygraph
is a matroid. It is thus natural to ask if either diameter k or shifted, together with
other conditions, force Zsat

+ E(G) = Z+E(G).
Xun Dong already gave a counter-example to conjecture (4) for k = 4 in [1]. We

will start by giving a counter-example with k = 3, followed by a counter-example
to (3) for k = 3, which implies (2) is also false for k = 3.

Example 4.5. Consider a 3-hypergraph G = ([46], E).

Denote E0 = {{1, 36, 46}, {9, 28, 46}, {9, 36, 38}, {26, 28, 29}, {16, 29, 38}, {16, 26, 41},
{1, 40, 42}, {4, 37, 42}, {4, 39, 40}, {22, 24, 37}, {20, 24, 39}, {20, 22, 41}}.

Let E = E0

⊔
{{a, b, c} ⊂ [46] : a < b < c and a + b + c ≤ 82}.

Now consider the vector w ∈ Z46, wi =
{

1, i ∈ e, for some e ∈ E0;
0, otherwise.

Then G is shifted, and w is a hole in the saturation, w ∈ Zsat
+ E(G) \ Z+E(G).

Proof. For e ∈ E, e = {a1, a2, a3}, consider e′ ∈ [46], e′ = {b1, b2, b3} with e′ < e,
then b1 + b2 + b3 < a1 + a2 + a3 ≤ 83 thus e′ ∈ E. Thus G is shifted.

We start by proving that w ∈ Zsat
+ E(G) = Q+E(G) ∩ ZE(G). We can first write

w =
∑
e∈E0

1
2
χe ∈ Q+E(G), then notice that G is strongly connected and it contains

the edges {1, 2, 3}, {1, 2, 4}, {1, 3, 4} and {2, 3, 4}. This forces 1 ∼ 4 ∼ 2 ∼ 3,
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thus G has only one equivalence class given by ”∼”, thus by Theorem 2.7 we have
ZE(G) = Z46

≡0(3). It follows that w ∈ ZE(G), because
∑46

i=1 wi = 18.

Consider the set A = {j ∈ [46] : j ∈ e for some e ∈ E0}. Because for each j ∈ A
we have |{e ∈ E0 : j ∈ e}| = 2 we can write

(4.1)
46∑

i=1

wi · i =
∑
j∈A

j =
∑
e∈E0

1
2

∑
j∈e

j = 12 · 1
2
· 83 = 6 · 83

Now assume by contradiction that w ∈ Z+E(G), then there is a set E1 ∈ E and we
can write w =

∑
e∈E1

aeχe with ae ∈ Z+ \ {0} for all e ∈ E1. Because
∑46

i=1 wi = 18

we obtain
∑

e∈E1
ae = 6, and by evaluating the sum in (4.1) again we obtain:

46∑
i=1

wi · i =
∑
e∈E1

ae

∑
j∈e

j ≤
∑
e∈E1

ae · 83 = 6 · 83

But we know equality holds, which happens only if
∑

j∈e j = 83 for each e ∈ E1,
thus E1 ⊆ E0. This leads to a contradiction: we know w9 = w36 = w46 = 1, and
the only edges in E0 incident to vertices 9, 36 and 46 are {1, 36, 46}, {9, 36, 38} and
{9, 28, 46}. Either two edges cannot both be in E1, and one edge does not satisfy
all three vertices.

�

To construct the counter-example to (3) we will modify the base set of edges E0

in example 4.5:
Consider the (3=1+1+1)-partition given by B1 = {1, 4, 9, 24, 29, 41}, B2 =

{16, 22, 28, 36, 39, 42} and B3 = {20, 26, 37, 38, 40, 46}. Then:
then:
• if m ∈ B1, replace the number m with 3m
• if m ∈ B2, replace the number m with 3m + 1
• if m ∈ B3, replace the number m with 3m + 2

We obtain the following (3=1+1+1)-partite 3-hypergraph, where the partitions
are given by the residue classes, modulo 3, of the vertices:

Example 4.6. Consider a 3-hypergraph G = ([140], E).

Denote E0 = {{3, 109, 140}, {27, 85, 140}, {27, 109, 116}, {80, 85, 87}, {49, 87, 116},
{49, 80, 123}, {1, 122, 127}, {12, 113, 127}, {12, 118, 122}, {67, 72, 113}, {62, 72, 118},
{62, 67, 123}}.

Let E = E0

⊔
{{a, b, c} ⊂ [140] : a 6≡ b 6≡ c 6≡ a(mod 3) and a + b + c ≤ 251}.

Now consider the vector w ∈ Z140, wi =
{

1, i ∈ e, for some e ∈ E0;
0, otherwise.

Then G is (3 = 1+1+1)-partite, G is diameter 3 and w is a hole in the saturation,
w ∈ Zsat

+ E(G) \ Z+E(G).

Proof. Because ”diameter 3” implies ”strongly connected”, a similar argument as
in proof of example 4.5 shows that v is a hole. Thus we only need to show that G
is diameter 3.
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W.l.o.g. we only have to study a generic situation:

Consider two distinct, disjoint edges e0 = {a, b, c} and e3 = {A,B, C} such that
a + b + c ≤ A + B + C ≤ 252, a ≡ A(mod 3), b ≡ B(mod 3) and c ≡ C(mod 3).
We can also assume w.l.o.g. that a < A, then we have two cases:

• we have b ≤ B or c ≤ C. Again assume w.l.o.g. the former takes place,
then take e1 = {a, b, C} and e2 = {a,B,C} then we see that

a + b + C ≤ a + B + C < A + B + C ≤ 252

so e1, e2 ∈ E .Thus e0, e1, e2, e3 satisfy the condition in Definition 4.4;

• we have b ≥ B and c ≥ C. Then take e1 = {a,B, c} and e2 = {a,B,C}, so
for both j = 1, 2 we have that either ej = e0 or∑

i∈ej

i < a + b + c ≤ 252,

so we have that e1, e2 ∈ E. Thus e0, e1, e2, e3 satisfy the condition in
Definition 4.4.

�

To give a counter-example to (1) we need a proposition regarding the existence
of holes. The problem arises from the fact that just the condition v ∈ Q+E(G) \
Z+E(G) and v ∈ Zn

≡0(k) does not assure that v is a hole. Naturally, the missing
ingredient is the condition v ∈ ZE(G)! Indeed, together with this hypothesis we
have that v ∈ Zsat

+ E(G) \ Z+E(G); moreover, we have a counter-example for when
v 6∈ ZE(G): the vector v in Example 3.3 is not a hole in the saturation, because v 6∈
ZE(G). Nevertheless, we are assured by the following proposition that ZE(G) does
not pose an insurmountable obstruction, and that v ∈ (Q+E(G)\Z+E(G))∩Zn

≡0(k)

is essentially all we need in order to engineer a hole:

Proposition 4.7. Consider a k-hygraph G = ([n], E) and a vector v ∈ Zn
≡0(k)

such that v ∈ Q+E(G) \ Z+E(G) and we can write v =
∑
e∈E0

qeχe with E0 linearly

independent over Z and qe ∈ (0, 1)∩Q for all e ∈ E0. Moreover, assume v 6∈ ZE(G).

Then there exists a k-hygraph G′ = ([n′], E′) with the following properties:
• n < n′ and E ⊂ E′;
• for any e ∈ E′ \ E we have that e 6⊆ [n];
• G′ is strongly connected;

In these condition, the vector v′ ∈ Zn′

≡0(k) given by v′ =
∑
e∈E0

qeχe is an irreducible

hole for Zsat
+ E(G′).

Proof. After proving the existence of G′, we only need to prove that v′ 6∈ Z+E(G′)
and v′ ∈ ZE(G′).

Suppose we can write

v′ =
∑
e∈E′

αeχe
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with αe non-negative integers. It follows that αe = 0 if e ∈ E′ \E, but this leads
to v ∈ Z+E(G), contradiction.

The second statement follows from Proposition 3.2, because if M is the l.c.m of
the denominators of the qe’s, then M · v′ ∈ ZE(G), thus v′ ∈ ZE(G) because G′,
being strongly connected, has trivial quotient group.

To construct G′ we will add vertices and edges to strongly connect the k-hygraph.
It is enough to exhibit the procedure for two edges a, b ∈ E such that 0 < |a ∩
b| < k − 1; assume a ∩ b = {c1, c2, ...cl} and that a \ (a ∩ b) = {a1, a2, ..., ak−l},
b \ (a ∩ b) = {b1, b2, ..., bk−l}, then consider graph G1 = ([n + 1], E ∪ E′), where

E′ = {{c1, ..., cl, a1, ..., aj , n + 1, bj+2, ..., bk−l} : for j = 0, 1, ..., (k − l − 1)}

The edges in E′ strongly connect the edges a and b, thus the number of strongly
connected components (partition of E) decreases. By repeating the procedure a
finite number of times we obtain G′.

�

And now the counter-example to property (1), which will actually exhibit irre-
ducible holes in k-hypergraphs having arbitrarily large coordinates:

Example 4.8. Let’s look at a 3-hypergraph ([8n + 1], E), where E = E1 ∪ E2 ∪
E3 ∪ E4 is given by:

E1 = {{1, 2, 4n}, {3, 4, 4n}, ...{4n− 3, 4n− 2, 4n}, {4n− 1, 1, 4n}};

E2 = {{2, 3, 8n + 1}, {4, 5, 8n + 1}, ..., {4n− 2, 4n− 1, 8n + 1}};

E3 = {{4n+1, 4n+2, 8n}, {4n+3, 4n+4, 8n}, ...{8n−3, 8n−2, 8n}, {8n−1, 4n+1, 8n}};

E4 = {{4n + 2, 4n + 3, 8n + 1}, {4n + 4, 4n + 5, 8n + 1}, ..., {8n− 2, 8n− 1, 8n + 1}}
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We will show that G and the vector

v = (1, 1, ..., 1︸ ︷︷ ︸
4n−1

, n, 1, 1..., 1︸ ︷︷ ︸
4n−1

, n, 2n− 1)

satisfies the hypothesis of Proposition 4.7. We can write

v =
∑
e∈E

1
2
χe ∈ Q+E(G)

We also need to show that v 6∈ Z+E(G); given the above way of writing v, it is
enough to show that χE is linearly independent. Assume the contrary: consider a
linear dependency

(4.2)
∑
e∈E

ae · χe = 0

Each one of the vertices 1, 2, ..., 4n − 1 is included in exactly two edges. If the
coefficient a{1,2,4n} = a then for relation 4.2 to hold we need a{2,3,8n+1} = −a,
a{3,4,4n} = a and in general a{2k+1,2k+2,4n} = −a{2k+2,2k+3,8n+1} = a for any
k = 1...2n− 2. This means that a{4n−1,1,4n} = a but then the first coordinate of
the sum in 4.2 will be 2a. This means that a = 0.

The same procedure can be done with E3∪E4. This shows that all the coefficients
in 4.2 are zero, so χE is linearly independent, thus by Proposition 4.7 we have
produced irreducible holes with arbitrarily large entries.

The next question that can be asked is:

Question 4.9. Given a shifted k-hygraph G, with k > 2, what is the minimum
integer m(k) of maximal elements in E such that Zsat

+ E(G) = Z+E(G) does not
necessarily take place?

To recapitulate, we know that:
• for k = 2 any shifted graph has no holes (the simple proof is based on the

fact that any two odd cycles will be connected by one edge);
• for k > 2 and m(k) = 1 there are no holes ([6], [4]);

The search for a hole in the case k = 3, m(3) = 2 has been, to date, inconclusive,
and we have not found a proof that m(3) = 2 guarantees no holes, either.
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