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1. INTRODUCTION

A zonotope Z < RF is a linear projection of the unit n-dimensional cube
[0,1]" onto RF when n > k = 2. A generic functional f € (R¥)* distinguishes
the minimum and the maximum vertices, —v and v, in Z.

Consider a projection 7 : R¥ — R? such that 7(Z) is a polygon in R? with
the property that 7(v) and m(—v) are two distinct vertices in 7(Z). For each
such 7, there are two boundary paths in R? from 7(—v) to m(v). Call them
7T and v5. We say that an f-monotone path on Z < RF along the edges
from —v to v is coherent when there exists such a projection 7 : R¥ — R? for
which either 771(7T) or 771(77) coincides with the path on Z. We describe a
zonotope by its corresponding linear projection A : R* — R¥, and think of A
as a matrix in R¥*™ with a certain set of non-degeneracy conditions. When A
generates Z, we write Z = Z(A).

When all the monotone paths in (Z(A), f) are coherent, we say that the
pair (Z(A), f) is all-coherent. If there is no confusion, it is also convenient to
say that (A, f) is all-coherent. This report concerns the classification of all
(A, f) which are all-coherent when the corank n — k is three and when the
Gale dual of A contains a regular tetrahedron subconfiguration.

We thank Rob Edman and Vic Reiner for their contributions to this project. We are
especially grateful to Vic Reiner for introducing us to the problem. This research was
part of the 2015 summer REU program at the University of Minnesota, Twin Cities, and
was supported by RTG grant NSF/DMS-1148634. PJ’s undergraduate studies at Harvard
University are supported by King’s Scholarship (Thailand).
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The analogs of this problem for lower coranks (0, 1, and 2) have been studied
in 2015 by Robert Edman [1]. The main tools he uses in the classification are
deletion and contraction of Gale duals. We adapt the method for one corank
higher. The main result of this report is given in Theorem 2.5.

In the following, we shall introduce a few terminologies used throughout this
work.

Definition 1.1. The matriz

A= a; ay ... a, | eR>"

1s said to be acyclic if for any cq,...,c, = 0, the equality
ca; +---+cpay, =0

holds only if ¢, = --- = ¢, = 0.

Definition 1.2. We shall say that the matriz

A: a; Qg ... Qp Ekan

strongly captures 0, or simply capture 0, if 0 € R¥ is in the interior of the
convexr hull H < R* of a1,...,a,. In other words, there is a k-dimensional
open ball B € R* such that 0 e B < H.

Ezxample 1.3. As an example, the matrix

10 -1 1
01 -1 =2
00 0 1
does not capture 0.
Lemma 1.4. The column vectors ay,...,a, of A€ R¥*" are all on a same

closed half-space in R* if and only if A does not capture 0.

Proof. (=) Suppose a, . .. ,a, are all on a same closed half-space in R¥. Then,
the convex hull H is contained in that closed half-space C' ~ R x R¥~1. The
interior 4° must then be contained in C° ~ R x R¥~! which does not contain
0 e R¥. Thus, 0 ¢ H°.

(<) Suppose that 0 is outside H°. Take a hyperplane P through 0 not
intersecting H°. All points in H° must be on the same side of P. Thus, all
the vectors aq, ..., a, must be on a same closed half-space defined by P. [

Definition 1.5. We shall say that the matriz

A= a; Qg ... Qp Ekan
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weakly captures 0 if 0 € R¥ is in the conver hull H < R* of ai, ..., an.

Lemma 1.6. Let A € R¥*™ be a matriz with column vectors ay,...,a,. The
following statements are equivalent:
(1) A is acyclic.
(2) A does not weakly capture 0.
(3) The vectors ai,...,a, are all on a same open half-space in RE.
(4) There exists a linear functional f € (R*¥)* such that f(a;) > 0 for every
1=1,...,n.

Proof. (1 = 2) Suppose, for sake of contradiction, that A is acyclic but A

weakly captures 0. Having 0 in the convex hull of a4, ..., a, means that there
are ci,...,¢, = 0 with ¢y + --- + ¢, = 1 such that ciay + --- + cpa, = 0.
However, acyclicity implies that ¢; = --- = ¢, = 0. This gives a contradiction.

(2 = 3) Suppose that 0 ¢ H. Take a hyperplane P through 0 not intersecting
H. All points in H must be on the same side of P. Thus, all the points
ai,...,a, must be on a same open half-space determined by P.

(3 = 4) Let P be a hyperplane which defines an open half-space the vectors
ai,...,a, belong to. Let u be a normal vector to P pointing into the same
open half-space as aj, ..., a,. Define a linear functional f € (R*)* by f(z) :=
u -z, where - is the standard inner product in the Euclidean space R*. Since
u,aq,...,a, are all in a same open half-space, f(a;) > 0 for every i =1,... n.

(4 = 1) Suppose there are ¢y, ...,¢, = 0 such that ciaq + - + ¢a, = 0.
Then, by linearity, > .. ¢; f(a;) = 0. Therefore, ¢; = --- = ¢, = 0. O

For convenience, when a linear functional f € (R¥)* satisfies the condition
(4) in the lemma above, we shall say that f is positive on the column vectors
of A. Schematically, we have the following relation for a matrix 4 e R¥*"

(acyclic) =
(not weakly capture 0) =
(all column vectors
on a same open half-space)

(not capture 0) =
= (all column vectors
on a same closed half-space)

Lemma 1.7. If A has full rank and is acyclic, then the Gale dual A* strongly
captures 0.

Proof. Suppose, for sake of contradiction, that A* does not capture 0. Thus,
af,...,a’ are all on a same closed half-space. This means there is a nonzero
linear functional a € (R"*)* such that a(a¥) = 0 for alli. Let f; := a(a}) = 0.
Note that A* - AT = 0. Therefore,

[fioo fa] AT =a-A*- AT = 0.

This shows that fia; + --- + f,a, = 0. Since A is acyclic, f; = --- = f, =
0. Thus, af,...,a* are all on the hyperplane {x : a(x) = 0} which implies
that A* dose not have full rank, so A does not have full rank. This gives a
contradiction. d
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Lemma 1.8. If no two vectors a; and a; in A are parallel, then there is no
hyperplane containing at least n — 2 dual vectors in A*.

Proof. Suppose that there is a hyperplane containing at least n—2 dual vectors
in A* € R®=%)>" Without loss of generality, let the hyperplane be z,_j = 0

and the n — 2 dual vectors are af,...,a; ,. We have
2 = = 3
00 ... 0 ‘ a b
for some a,b e R. Let A = [a;]. Because [ 0 0 ... 0 a b ]|-[ay]}-, =0
for every i, we must have a - aj,—1) + b - a, = 0 for every i. This means that
a,—1 and a,, are parallel. O

Another degeneracy property of the matrix A that can occur is reducibility.
Because we like to study A*, we avoid the case in which A* contains a zero
vector. We know that A* contains a zero vector if and ony if A can be
decomposed as a direct sum Ay@.A;, where A is a 1 x I-matrix. For example,
consider

0 0
A= 01
11

o O
S =IO

In this case,

A*=[0 -1 -1 1].

For any generic function f € (R?)* that is positive on all the column vectors
of A, it is actually a valid question to ask whether (Z(.A), f) is all-coherent.
In fact, the answer for this case is it is not all-coherent by a lemma of Edman’s
[1], which states that if A is reducible, then (A, f) is incoherent. Therefore,
we may only consider irreducible matrices in our classification. In doing so,
we also avoid the cases in which there exist zero vectors in A*.

2. CLASSIFICATION OF CORANK 3

In this section, we shall assume the matrix A to have the following non-
degeneracy properties.

e A has full rank.

e No two a; and a; are parallel.

e A is acyclic.

o A is irreducible.
The conditions above are not surprising. Given a non-degenerate zonotope
Z < R* with a specified minimum and maximum vertices —v and v, we can
always find such a matrix A € R¥*" with Z(A) = Z so that the monotone
paths on Z are compatible with those on Z(A) and so that the first three
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conditions are satisfied. The fourth condition, as described in the previous
section, always an incoherent (A, f).

We shall make extensive use of the dual A* € R(=k)xn  [et €1y Crk
be the standard basis for R"7*. For most of the matrices A arising from
a zonotope Z we shall consider, the vector configuration of the dual matrix
A* has the vector configuration of ey, es,... e, , —(€1 + -+ + €,_1) (called
the (n — k)-simplex vector configuration) as a subconfiguration. Consider the
following example.

Ezxample 2.1. Consider

[ 5 00 -2 -1 0 2]

-1 00 2 2 10

A=1_4 01 0 0 00

-1 10 0 0 00

and its dual _ ~
0001 0 -2 1

A*=10 0 0 2 =2 0 1

1112 -1 -1 —1

The matrix A satisfies all three conditions listed above. Furthermore, the dual
A* has the following four vectors as a subcollection of vectors

0 0 —2 1
ol,|=2(,10],|1
1 [=1] |-1] |1

which has the 3-simplex (tetrahedron) vector configuration.

Ezxample 2.2. Consider

e RGXQ

and its dual

A* = 1 1 e R3*9,

1 1
The matrix A still satisfies the three conditions. However, the dual A* does

not have the 3-simplex vector configuration as a subconfiguration. This is one
of the special cases, as we note that A* only contains 3 parallelism classes.

The matrix in Example 2.2 is rather special. It only occurs because many
vectors are packed together in 3 parallelism classes. Throughout the rest
of this report, we will additionally impose this extra condition on A*: the
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vector configuration of the dual A* must contain the (n — k)-simplex vector
configuration.
Recall the definition of coherency for a monotone path.

Definition 2.3. A monotone path v in (Z(A), f) is said to be coherent if
there exists a linear functional f € (R¥)* such that

gaw) _ _ 9(aw)
flaywy) f(aymy)

The reason Gale duals A* serve as a convenient tool for classifying by all-
coherency property of (A, f) is because we have the following lemma, proved
in [1]. This lemma says that the geometry of A* is sufficient to decide the
all-coherency property of (A, f), even as f varies.

Lemma 2.4. (R. Edman [1]) Suppose that two pairs (A, f) and (A', f') satisfy
the following properties:

o A and A’ satisfy the three non-degeneracy conditions above,

e f(a;) >0 and f'(a}) > 0 for every i, and

o A* is dual to both A and A’.
Then, (A, f) is all-coherent if and only if (A, f’) is. Moreover, the all-
coherency is determined by the vector configuration of A*.

It therefore makes sense to talk about the all-coherency of the dual A*.
For convenience, we shall say that the dual A* is all-coherent if (A, f) is all-
coherent. Furthermore, this lemma is very useful for doing computations. To
see whether a pair (A, f) is all-coherent, we may just check for a certain pair
(A, f) realizing A*. To do this, Edman has developed a Mathematica code
which has been immensely useful for this project [2].

We now classify the all-coherent duals .A*. We split into cases by the num-
ber of parallelism classes A* has. Recall that in all the following discussion,
A* always has the 3-simplex “tetrahedron” vector configuration as a subcon-
figuration. In our classification, we start with the vertices of a tetrahedron,
and add more vertices to the dual in all possible ways. The main result of this
report is the following.

Theorem 2.5. Let the matriz A € R¥*™ satisfy the non-degeneracy properties
above and let f € (R¥)* be positive on the column vectors of A. In corank n —
k =3, if A contains the 3-simplex vector configuration as a subconfiguration,
then the pair (A, f) is all-coherent if and only if at least one of the following
three conditions on A* is satisfied:

(1) n = 5; in other words, A* contains exactly five vectors.

(2) the Gale diagram of A* belongs to the families Fy or Fa, as shown in
the diagram below. Here, in each diagram, multiple black dots in the
center denote vectors pointing out of the page at the same location with
multiplicities as labeled.
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9 J

& &

—— ——
=1 dots 22 dots
J J J J
(Family F;) (Family F>)

(3) the Gale diagram of A* is g as shown below. (Note the collinearities
in the diagram.)

9

* J J

Theorem 2.5 follows immediately after we finish (i) the casework and (ii)
the proof that the Gale diagrams described above are actually all-coherent.
This report will present the first part consisting of the casework. We hope to
give the second part in later reports. Note that the all-coherent duals in (1)
in the theorem must necessarily contain exactly 5 parallelism classes in order
to satsify the non-degeneracy conditions. A dual in (1) cannot contain a point
in the Gale diagram with multiplicity greater than 1, because Lemma 1.8 tells
that no three column vectors in A* are on the same plane. Indeed, duals in
F1 or F5 also have exactly 5 parallelism classes. In the special case, the dual
in (3) is the only all-coherent dual with 6 parallelism classes. The following
corollary is thus immediate from the theorem.

Corollary 2.6. In the situation of the above theorem, if (A, f) is all-coherent,
then A* has either 5 or 6 parallelism classes.

Let’s begin the casework. We first note that the whole casework will in-
volve only a few set of techniques applied again and again. For incoherence,
we either remove or contract (project) vectors until the diagram becomes an
incoherent diagram of lower dimension. If a special case occurs, we investigate
it separately. For coherence, we prove that the diagrams are all-coherent di-
rectly. From the assumption, we may assume that the dual A* contains the
following subconfiguration.
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9

J J

Currently, the four vertices are symmetric. Without loss of generality, we
may assume throughout this section that the parallelism class of the black dot
in the middle contains the highest number of vectors.

Note that the dual diagram with only four points as shown cannot yet be
a dual of a non-degenerate A, because there is a plane in R?® containing two
vectors (say the black dot and a white dot), which means that it contains
n — 2 = 2 vectors. This would violate Lemma 1.8. We then have to add more
vectors. We begin with the first case.

2.1. Case 1. A* has exactly 4 parallelism classes. If A* contains exactly
4 parallelism classes, then any vector to be added to the diagram must be
added to one of the existing parallelism classes. By assumption, there must be
more vectors to the middle black dot parallelism class. Note that we also need
to add at least a vector to the white dot classes as well, because of Lemma 1.8.
For simplicity, we call the black dot parallelism class “inside” and the white
dot classes “outside”.
Case 1.1 Suppose there is at least one more black dot outside.

9

(A QW

By assumption, there must be at least one more dots inside (labeled with a
question mark). If any of the additional dots at ? is a white dot, then consider
the projection via the vector v, and then at w, as labeled in the diagram. The
resulting Gale diagram in R! has the following diagram as a subconfiguration

“——»

which is an incoherent Gale diagram in R!. By the contraction and deletion
lemma, the resulting Gale diagram when there is at least one white dot to the
center in Case 1.1 is incoherent. Thus, we are left with the following case for
Case 1.1.
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u

9

m

&

—
>2 dots

VD QW

For convenience, call the parallelism class of the middle black dot, m, and
call the other class u, as shown in the diagram. In fact, we note that the
diagram below is not a complete Gale dual of a non-degenerate (A, f) yet,
because there exists a hyperplane generated by v and m which contains n — 2
vectors in A*. This indicates that there must be at least one more vectors
at either v or w. Without loss of generality, suppose that there is another
vector at v. If the vector is black, the projection at w gives the following
2-dimensional Gale diagram.

m U
VN
W
vV 4 >—v
v
—U

This belongs to an incoherent family in 2-dimension. (For example, project
through m to see the inconherence.) On the other hand, if the vector is v is
white, consider the projection via w again. This gives:

m u

which belongs to the incoherent family in two dimension. (For example, project
through u to see the incoherence.) Therefore, every Gale dual A* which occurs
in Case 1.1 is incoherent.

Case 1.2 Suppose all the dots outside are white.
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By the same argument, there must be at least two parallelism classes outside
which have multiplicities at least two. We are in the situation of the following
diagram.

m
ol
VOD Jw

In the diagram, each of u and v has at least two white dots. The middle
parallelism class m has one original dot, and at least one other dot. (The gray
square indicates a dot whose color has not been determined.) We claim that
this is always incoherent. Project via w. We have the following Gale diagram.

m

—Uu

This belongs to the incoherent family. Therefore, all Gale duals in Case
1.2 are incoherent. We have also shown that when the number of parallelism
classes is 4, the Gale dual is incoherent.

2.2. Case 2. A* has exactly 5 parallelism classes. Start with the tetra-
hedron subconfiguration. We still make the assumption that the middle black
dot parallelism class contains the highest number of vectors. The other three
parallelism classes are symmetric. Therefore, we may without loss of gener-

ality assume that the fifth parallelism class occur in one of the ten following
locations:
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Case 2.1 The fifth parallelism class occurs at location 1. We are in the
situation of the following diagram.

9 .
Case 2.1b The fifth dot is black.

o

€=
o~

b JC

Consider the plane through b, m, and d. This shows that either a or ¢ must
have a multiplicity greater than 1. Without loss of generality, suppose that a
has another dot. If the dot is white, projection via b, and then via ¢ shows
that the diagram is incoherent. If the dot is black, protection via ¢, and then
via d shows that the diagram is incoherent. Therefore, in Case 2.1b, all Gale
diagrams that occur are incoherent.

Case 2.1w The fifth dot is white.

(3]

€=
o

b Jc
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As above, assume a has another dot. If the dot is black, project via ¢
and then b to see that the diagram is incoherent. If the dot is white, by the
assumption, m must contain another dot as well. If there is another black
dot at m, project via b and then c¢ to see that the diagram is incoherent. If
there is another white dot at m, project via ¢ and then d to see that the
diagram is incoherent. Therefore, all Gale diagrams that occur in Case 2.1w
are incoherent.

Case 2.2 The fifth parallelism class occurs at location 2. We are in the
situation of the following diagram.

J J

As claimed in the theorem, we expect to see an infinite family of all-coherent
Gale diagrams in this case.

Case 2.2b The fifth dot is black.

Case 2.2b.1 There are exactly five vectors in A*. If this happens, the Gale
diagram belongs to (1) in the theorem. We will check later that it is all-
coherent.

Case 2.2b.2 There are more points. That is, there is at least one parallelism
class with multiplicity greater than 1. In this case, by assumption, the class
of the middle black dot must also contain another point.

Case 2.2b.2b There is at least one more black dot at the middle class.

a
J
d
o
m
o

b Jc
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We claim in this case that if either a, b, ¢, or d has multiplicity greater than 1
(regardless of what color the dots are), then the Gale diagram is automatically
incoherent.

First, if b has an additional white dot, then project via a and then via ¢
to obtain a 1-dimensional incoherent diagram. Second, if b has an additional
black dot, then project via a and then via m to obtain an incoherent diagram.
Third, if @ has an additional white dot, then project via b and then c. Fourth,
if a has an additional black dot, then project via b and then d. Fifth, if ¢ has an
additional white dot, then project via a and then b. Sixth, if ¢ has an additional
black dot, then project via b and then m. Seventh, if d has an additional white
dot, then project via a and then c. Finally, eighth, if d has an additional black
dot, then project via a, and we will obtain a 2-dimensional Gale diagram that
was decribed in Edman’s thesis as the exceptional incoherent case of corank
2. Thus, we still have an incoherent diagram.

Similarly, if the middle class m has a white dot, then projection via b and
then via ¢ gives an incoherent diagram as well. Therefore, in this case 2.2b.2b,
all Gale duals are incoherent, except for a family of diagrams shown below.

9

&

——
>1 dots

J J

(Family F;)

This family is Family F; in the theorem. For the converse that this family
is indeed all-coherent, we will give a proof later, after all incoherent cases have
been investigated.

Case 2.2b.2w There is at least one more white dot at the middle class.

In this case, projection via b and then via c gives an incoherent diagram.

Therefore, we finish Case 2.2b.

Case 2.2w The fifth dot is white.

a
J
d
J
m
o

b9 JcC
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Case 2.2w.1 There are exactly five vectors in A*. In other words, the dia-
gram above has all the dots. Then, this belongs to (1) in the theorem. We
will show later that this diagram is indeed all-coherent.

Case 2.2w.2 There are more points. By assumption, there must be more
points to m.

Case 2.2w.2b There is at least one additional black point to m. In this case,
project via b and then via ¢ to obtain an incoherent diagram.

Case 2.2w.2w There is at least one additional white point to m. Then,
project via ¢ and then via d to obtain an incoherent diagram.

Therefore, we finish Case 2.2w, and hence finish Case 2.2.

Case 2.3 The fifth parallelism class occurs at location 3.

a
9

dd
m
o
b Je

There is a plane containing the parallelism classes a, d, and m. To prevent
this plane from containing n — 2 vectors in the diagram, there must be at
least one more vector at b or ¢. Without loss of generality, suppose that b has
multiplicity greater than 1.

Case 2.3b The class b has at least one more black dot. Consider what color
the dot at d is.

Case 2.3bb There is at least one black dot at d. Then, projection via m and
then via c gives an incoherent diagram. Case 2.3bw There is at least one white
dot at d. Then, projection via a and then via c gives an incoherent diagram.

Case 2.3w The class b has at least one more white dot. Then, projection via
d and then via ¢ gives an incoherent 1-dimensional diagram.

Thus, we see that Case 2.3b is an easy case. We quickly see that if a non-
degenerate Gale dual occurs in this case then it is incoherent.

Case 2.4 The fifth parallelism class occurs at location 4.

a

9

=
H

b9 JC

Case 2.4b There is at least one black dot at d. Consider the plane passing
through b, m, and d. To prevent this plane from containing n — 2 points, there
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must be more points to a or ¢. Without loss of generality, suppose there are
more points at a. By assumption, m must have multiplicity greater than 1.

Case 2.4bb There is at least one more black dot at m. Now, there is at
least an additional dot at a as well. Project via ¢ to obtain a 2-dimensional
incoherent Gale diagram.

Case 2.4bw There is at least one more white dot at m. Project via b and
then via ¢ to obtain an incoherent Gale diagram.

Case 2.4w There is at least one white dot at d. Again, we know there must
be more points at m. If there is an additional black point at m, then projection
via b and then via ¢ gives an incoherent diagram. Consider when an additional
point at m is white. There must be more points at a or ¢. Without loss of
generality, suppose there are more points at a. Again, if there is at least one
more black point at a, then projection via b and then via ¢ gives an incoherent
diagram. Consider when an addition point at a is white. We are left with the
following diagram.

a
)
d
m 9
"
b e
Projection via b gives the following.
m,d
b
—c
—d =

which can be verified to be an incoherent Gale diagram in two dimension.
Therefore, all Gale diagrams in Case 2.4 are incoherent.

Case 2.5 The fifth parallelism class occurs at location 5. Note that we expect
to see an infinite family of all-coherent Gale diagrams in this case.
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a
9
HdJd

m
o

b9 JC

Case 2.5b There is a black dot at d. To prevent the hyperplane through a,
¢, and d from containing n — 2 points, there must be some other points in the
diagram. Thus, m has multiplicity greater than 1.

Case 2.5bb Suppose that there are at least two black dots at m. Then, we
are in the following situation.

Cs

Qd

b JC

We claim that if any more points are added to a, b, ¢, or d, then the diagram
is incoherent. We analyze each case as follows.

If a black dot is added to a, then project via b and then via d to obtain
a 1-dimensional incoherent Gale diagram. If a white dot is added to a, then
projection via b and then via ¢ gives an incoherent diagram. If a black dot is
added to b, then project via m and then via d. If a white dot is added to b,
then project via a and then via c. If a black dot is added to ¢, then project
via b and then m. If a white dot is addd to ¢, then project via a and then via
c. If a black dot is added to d, then project via b to obtain the exceptional
incoherent diagram of corank 2, described by Edman. If a white dot is added
to d, then project via b and then via c.

Moreover, if a white dot is added to m, then projection via b and then ¢
also gives an incoherent diagram. Therefore, we are only left with the case in
the following diagram, which was labeled in the theorem as Family F;. Note
that we need at least two dots at m so that no plane contains n — 2 vectors in

A*.
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9
o

b

—

=2 dots

J J

(Family F3)

Case 2.5bw Suppose there there is at least a white dot at m. Then, projec-
tion via b and then via ¢ gives an incoherent diagram.

Case 2.5w There is a white dot at d. Again, m must have multiplicity greater
than 1. If there is an additional black dot at m, projection via b and then via
c gives an incoherent diagram. If there is an additional white dot at m, then
projection via b and then via d gives an incoherent diagram.

We finish Case 2.5

Case 2.6 The fifth parallelism class occurs at location 6.

oe

Ad

B

b9 Jc

We claim that all non-degenerate Gale duals that occur in this case is inco-
herent. Because the hyperplane through b, m, and d passes every parallelism
class except a and ¢, we know that there must be more points to the diagram.
Thus, m must have multiplicity greater than 1. If there is an additional black
dot at m, then projection via a and then via d gives an incoherent diagram. If
there is an additional white dot at m, then consider what color a dot at d is.
If a dot at d is black, then projection via a and then via b gives an incoherent
diagram. If a dot at d is white, then projection via a and then via ¢ gives an
incoherent diagram. This finishes Case 2.6.

Case 2.7 The fifth parallelism class occurs at location 7.
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a
Y  Hd

@:

b9 JC

Case 2.7.1 If there are no more points, then the diagram contains exactly
five vectors. This belongs to (1) in the theorem. We will check later that it is
all-coherent.

Case 2.7.2 Suppose there are more points. We claim that all non-degenerate
Gale diagrams in Case 2.7.2 are incoherent. Then, m must have multiplicity
greater than 1. If there is an additional black dot at m, then projection via
a and then via d gives an incoherent diagram. If there is an additional white
dot at m, then consider what color a dot at d is. If a dot at d is black, then
projection via a and then via b gives an incoherent diagram. If a dot at d is
white, then projection via b and then via d gives an incoherent diagram.

Next, we will treat Cases 2.8, 2.9. and 2.10 together with the same argument.

Cases 2.8, 2.9, 2.10 The fifth parallelism class occurs at location 8, 9, or 10.

dd

O

B

b9 JC

If there are no other points to the diagram, then we must be in Case 2.9
(because in 2.8 and 2.10 there is a hyperplane containing three parallelism
classes). In that case, the diagram belongs to (1) in the theorem.

Suppose that there are more points to the diagram. Then, m must be
multiplicity greater than 1. If there is an additional black dot at m, then
projection via ¢ and then via d gives an incoherent diagram. Suppose there is
a white dot at m. If there is a white dot at d, then projection via a and then
via ¢ gives an incoherent diagram. Suppose there is a black dot at d. Then,
projection via b and then via ¢ gives an incoherent diagram. This shows that
unless there are exactly five vectors, all non-degenerate Gale diagrams in these
three cases are incoherent.
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2.3. Case 3. A* has exactly 6 parallelism classes. For this case, we use
the online catalog of isomorphism classes of oriented matroids by Lukas Finschi
[3]. The Gale diagram A* consists of six different points on the plane. Suppose
we ignore the colors of the points. Then, the six points, up to isomorphism,
belong to one of the seventeen types, labeled 1C(6,3,i), for i = 1,2,...,17.

Recall from corank 2 classification of all-coherent Gale diagrams in [1] that
if a Gale diagram is all-coherent then it has at most four parallelism classes.
Therefore, if a non-degenerate 2-dimensional Gale diagram has at least 5 par-
allelism classes, it is incoherent. With 6 parallelism classes in A*, suppose
there is a class which is not on any line joining any two of the other five par-
allelism classes. Then, if we project via that parallelism class, the resulting
Gale diagram in two dimension must contain at least five parallelism classes,
in which case A* is immediately incoherent.

Using the argument above with Finschi’s catalog, we conclude that for the
case i = 1,2,3,4,5,6,7,9,10,11,15,17, any Gale diagram corresponding to
IC(6,3,i) is incoherent. Thus, we only need to consider the cases in which
1= 8,12,13,14, 16.

Case 3.8 The six parallelism classes follow 1C(6,3,8).

a b C
[ | [+ | * |
d e

[* | [* | i&

We claim that all non-degenerate Gale diagrams in Case 3.8 are incoherent.
Without loss of generality, suppose there is a black dot at a. Consider the
projection via b and then via d. If among c, e, f, there are two black dots and
a white dot, then the diagram is incoherent. Otherwise, there are 5 cases. For
convenience, let —1 denote the color white, and +1 denote the color black.

Case 3.8.1 (¢, e, f) has color (—1,—1,—1).

a b c
o [+ | )
d e

4 S 5

If there is a white dot at d, then projection via b and then via f gives an
incoherent diagram. Thus, suppose there is a black dot at d. If there is a black
dot at b, then projection via a and then via f gives an incoherent diagram.
Thus, suppose there is a white dot at b. Now, the projection via ¢ and then
via f gives an incoherent diagram. Therefore, in Case 3.8.1, all non-degerate
Gal diagrams are incoherent.

Case 3.8.2 (¢, e, f) has color (—1,—1,1).
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a b C
o [+ | )
d e

4 S é

If there is a white dot at d, then projection via b and then e gives incoherence.
Suppose there is a black dot at d. If there is a white dot at b, then projection
via ¢ and then via d gives incoherence. Suppose there is a black dot at b.

Then, projection via a and then via f gives incoherence.
Case 3.8.3 (¢, e, f) has color (—1,1,—1).

a b c
o [+ | Jd
d e

* | o 5

If there is a white dot at b, projection via ¢ and then via d gives incoherence.
Suppose there is a black dot at b. If there is a white dot at d, then projection
via a and then via e gives incoherence. Thus, suppose there is a black dot at
d. Then, projection via a and then via d gives incoherence.

Case 3.8.4 (¢, e, f) has color (1,—1,—1).

a b c
o [+ | o
d e

4 S 5

If there is a white dot at d, then projection via b and then via e gives
incoherence. Thus, suppose there is a black dot at d. Then, projection via b
and then via f gives incoherence.

Case 3.8.5 (¢, e, f) has color (1,1, 1).

a b c
o [+ | o
d e

* | o ‘

If d has a black dot, then projection via b and then via e gives incoherence.
Thus, suppose d has a white dot. Then, projection via b and then via f gives
incoherence.

Therefore, we have shown that all non-degenerate Gale diagrams in Case
3.8 are incoherent.
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Case 3.12 The six parallelism classes follow 1C(6,3,12).

c
*

Ho
EH<

& a
* | [+ |
Without loss of generality, assume that there is a black dot at a. Like in the
previous case, consider the projection via b and then via d. If among c, e, f,
there are two black dots and a white dot, then the diagram is incoherent.

Otherwise, there are 5 cases depending on the colors of dots at ¢, e, and f.
Case 3.12.1 (¢, e, f) has color (-1, -1, —1).

c
9
b
e [+ |
D
d a
5 [+ | o

If b has a white dot, then projection via ¢ and then via d gives incoherence.
Suppose b has a black dot. If d also has a black dot, then projection via a and
then via e gives incoherence. Suppose d has a white dot. Then, projection via
¢ and then via f gives incoherence.

Case 3.12.2 (¢, e, f) has color (=1, -1, +1).

c
9
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If b has a white dot, then projection via d and then via e gives incoher-
ence. Suppose b has a black dot. Then, projection via d and then via ¢ gives
incoherence.

Case 3.12.3 (¢, e, f) has color (—1,+1, —1).

c
I
b
e [+ |
o
f d a
J [+ | o

If b and d have dots of the same color, then projection via a and then via e
gives incoherence. Otherwise, we have two cases.

Case 3.12.3.1 b has a black dot and d has a white dot. In this case, we
notice that a, b, and e all have black dots, and ¢, d, and f all have white dots.
Currently, the six vectors in the diagram are all in the same open half-space.
Therefore, they cannot form a non-degenerate Gale diagram for A*. Thus,
we have multiplicity. If we project the current diagram via b, the resulting
Gale diagram in two dimension has two vectors in the direction +a, one in the
direction +e, one in —e, one in —d. For this to be a coherent Gale diagram, it
must belong to Type II all-coherent family, described in [1]. This means that
multiplicity in the three-dimensional Gale diagram can only occur at a or c.
If it occurs at a, the additional points must be black. If it occurs at ¢, the
additional points must be white. We see that this does not solve the problem
of all vectors being in the same open half-space. Therefore, there cannot be
all-coherent Gale diagrams in this case.

Case 3.12.3.2 Suppose b has a white dot and d has a black dot. Consider
projection via b. The resulting Gale diagram is as follows.

—a,c —d

Indeed all the six vectors are still in the same open half-space, and therefore,
there must be some multiplicities in the 3-dimensional Gale diagram. In par-
ticular, there must be multiplicities in the direction —a, ¢, or —d. However, we
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see that if any of the vectors —a, ¢, or —d in two dimension is added, the Gale
diagram is immediately incoherent. That is, the current diagram cannot be
extended to a coherent diagram. Therefore, if a non-degenerate Gale diagram
is in Case 3.12.3.2, it must be incoherent.

This finishes Case 3.12.3.

Case 3.12.4 (c,e, f) has color (+1,—1,—1).

c
o
b
e M
J
d a
5 [* | o

If there is a white dot at b, then projection via d and then via e gives
incoherence. Thus, suppose there is a black dot at b. If there is a white dot
at d, then projection via ¢ and then via f gives incoherence. Thus, suppose
there is a black dot at d. Now, we are in the following situation.

c
o
b
e [ )
)
d a
\]3 o o

This is actually an equivalent Gale diagram to type g described in the theo-
rem. We claim that if any additional point is added to the diagram, then the
diagram will be incoherent.

If a black dot is added at a, then projection via b gives incoherence. If a
black dot is added at b, then projection via f gives incoherence. If a black
dot is added at d, then projection via a and then via e gives incoherence. If
a black dot is added at ¢, e, or f, then projection via b and then via d gives
incoherence. If a white dot is added at a, b, d, or e, then projection via ¢ and
then f gives incoherence. If a white dot is added at ¢, then projection via a
and then via d gives incoherence. If a white dot is added at f, then projection
via a gives incoherence.

Therefore, we have shown that the diagram above is maximal in the sense
that if any dot is added to any existing parallelism class, then the diagram
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will be incoherent. We will save showing that the diagram is all-coherent for
later. For now, we have them in the list in the theorem.
Case 3.12.5 (c, e, f) has color (+1, +1, +1).

C

@~
EH<

¢ 4 3
* | o

If there is a black dot at b, then projection via d and then via e gives
incoherence. Thus, suppose there is a white dot at b. If there is a white dot at
d, then projection via ¢ and then via e gives incoherence. Thus, suppose there
is a black dot at d. Then, projection via ¢ and then via d gives incoherence.

We have finished Case 3.12.

Case 3.13 The six parallelism classes follow 1C(6,3,13).

c

EH<

€

4 : :
* [+
We claim that all non-degenerate Gale diagrams that occur in this case in
incoherent. Suppose otherwise that the diagram is coherent. Without loss of
generality, assume there is a black dot at a. Consider the projection via f. In
the resulting two-dimensional Gale diagram, there are at least two vectors on
the line feb, at least two vectors on the line fda, and at least a vector on the
line fe. By corank 2 classification (cf. [1]), if the diagram is coherent, then we
know that the multiplicity at ¢ is 1 and that either

e all vectors on feb are in the same direction and there are exactly two
vectors on fda on opposite direction, or
e all vectors on fda are in the same direction and there are exactly two
vectors on feb on opposite direction.
We exploit the collinearity in the diagram, and use the same analysis with

projections via any point. This is possible because every point on the diagram
is on two of the four dotted lines as shown above.
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If we use the analysis through projection at f, we conclude that its “dual”
point ¢ has multiplicity 1. On the other hand, if we do at ¢, we conclude that
f has multiplicity 1. Since all points have their own duals ((a,e), (b, d), and
(¢, f)), we conclude that all points in the diagram have multiplicity exactly 1.

Case 3.13.1 (b, d) has color (—1,—1).

Then, by projection via f and the analysis above, the point at e must be
white. Now, consider the plane generated by a, d, and f. In order for the
Gale diagram to strongly capture zero, the point at ¢ must be black. Then, by
projection via e and the analysis above, the point at f must be white. However,
we note that all the vectors are in the same closed half-space generated by the
plane through a, b, and c¢. This gives a contradiction.

Case 3.13.2 (b, d) has color (—1,+1).

Then, by projection via f and the analysis above, e must be black. The
plane through a, b, and ¢ forces f to be white. Projection at e implies that c is
white. However, all the vectors now lie on the same side of the plane through
b, e, and f. A contradiction.

Case 3.13.3 (b, d) has color (+1,—1).

The same argument as in Case 3.13.2 applies due to symmetry.

Case 3.13.4 (b, d) has color (+1,+1).

By the same argument as above, e must be white. The plane through b, e,
and f forces the dot at c to be black. Similarly, the dot at f is black. However,
the projection via a and then via e gives an incoherent diagram.

Therefore, all non-degenerate Gale diagrams in Case 3.13 are incoherent.

Case 3.14 The six parallelism classes follow 1C(6,3,14).

a

H=

Ho

4 : !
| [+ |

Assume without loss of generality that there is a black dot at a. As before, if
among ¢, e, and f, there are two black dots and a white dot, then the diagram
is incoherent. Otherwise, there are 5 cases to consider.

We will use the analysis of corank 2 classification that we used in Case
3.13 again. Unlike Case 3.13, we cannot use the technique at any point we
wish. Instead, we can only use it at b, e, and f. An immediate result is that
if the diagram is coherent, then the parallelism classes a, ¢, and d all have
multiplicity 1.

Case 3.14.1 (c, e, f) has color (—1,—1,—1).
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H=

oo

€ d
5 5 4

Recall that a, ¢, and d all have multiplicity 1. If the point at d is black,
then consider the plane through a, b, and e. The side of the plane containing
d has only one black point, while there are white points and ¢ and f. Since
the multiplicity of ¢ is 1, there cannot be any more points to ¢. In order for
the diagram to strongly capture zero, there must be a black point at f. Then,
projection via ¢ and then via e gives incoherence.

Suppose the point at d is white. If there is a white dot at b, then projection
via ¢ and then via e gives incoherence. Suppose all dots at b are black. Now
consider the plane generated by b, ¢, and f. There is only one black dot at a,
and only one white dot at d. For the diagram to capture zero strongly, there
must be a black dot at e. Note that now b and e both have black dots, while
each of ¢ and d has a white dot. Thus, projection via a and then via f gives
incoherence.

Case 3.14.2 (c, e, f) has color (—1, -1, +1).

H=

Lo

é 5 d

If there is a white dot at b, then projection via ¢ and then via d gives
incoherence. Thus, suppose all the dots at b are black. If there is a black dot
at d, then projection via a and then via f gives incoherence. Thus, suppose
all the dots at d are white. Then, the projection via a and then via d gives
incoherence.

Case 3.14.3 (c, e, f) has color (—1,+1, —1).
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a
o
)
[* |
C
J
! ¢ d
9 o [* |

If there is a black dot at b, then projection via a and then via d gives
incoherence. If there is a white dot at b, then projection via ¢ and then via d
gives incoherence.

Case 3.14.4 (c,e, f) has color (+1,—1,—1).

a
o
b
[* |
c
o
€ d
5 5

If there is a black dot at b, then projection via a and then via d gives
incoherence. Thus, suppose all dots at b are white. If the dot at d is black,
then projection via a and then via f gives incoherence. Thus, suppose that
the dot at d is white. Now, consider the plane through b, ¢, and f. For the
Gale diagram to capture zero strongly, either there must be more white dots
on the a-side, or there must be more black dots on the d, e-side. Since a and d
both have multiplicity 1, this forces e to contain a black dot. Then, projection
via a and then via f gives incoherence.

Case 3.14.5 (¢, e, f) has color (+1, +1, +1).

a

H=

(19}
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If there is an additional white dot at e or f, then projection via b and then
via d gives incoherence. Thus, suppose that all dots at e and at f are black.
Consider the plane through a, b, and e. For the diagram to capture zero
strongly, either there must be more white dots on the ¢, f-side, or the dot at
d must be black. Since all the points at ¢, e, and f are black, the dot at d
must be black. Now, we see that all the dots at a, ¢, d, e, and f are black, but
there must be at least a white dot so that the diagram captures zero strongly.
Thus, there must be a white dot at b. Then, projection via ¢ and then via e
gives incoherence.

Therefore, all non-degenerate Gale diagrams that occur in Case 3.14 are
incoherent.

Case 3.16 The six parallelism classes follow 1C(6,3,16).
a

c e
* | & * 5
In this case, the Gale diagram cannot strongly capture zero. Therefore,
there is no non-degenerate Gale diagram for A*.
Therefore, we have finished Case 3. All non-degenerate Gale diagrams that
occur are incoherent, except one case in Case 3.12.4 which is labeled as g in
the theorem.

2.4. Case 4. A* has at least 7 parallelism classes. We claim that all non-
degenerate Gale diagrams with at least 7 parallelism classes are incoherent.
Recall that from corank 2 classification (cf. [1]), we have the following result.

Fact 2.7. If a non-degenerate Gale diagram of A* is coherent, then at least
one of the following holds.

e A* has exactly four parallelism classes with at most one class having
multiplicity greater than 1.

e A* has exactly three parallelism classes with at most two classes having
multiplicity greater than 1. Furthermore, if two classes have multiplic-
ity greater than 1, then one of them has multiplicity exactly 2.

Consider a non-degenerate Gale diagram of A* with at least 7 parallelism
classes. Consider any seven classes from the diagram and ignore the dot colors.
As a result, we obtain seven distinct points on the plane. Call the set of these
seven points P.
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If at least six points of P are collinear, then there cannot be a tetrahedron
subconfiguration in the diagram. We will not consider this case.

If five points of P are collinear, then consider a point outside X the line
of collinearity. The projection via the parallelism class corresponding to the
point X gives a two-dimensional Gale diagram of at least five parallelism
classes (from the five points on the line). Thus, by Fact 2.7, the diagram is
incoherent.

A X Y
* | [ * |

B A
cd

DA

If four points of P are collinear, say the points are A, B, C', and D, then
consider two points outside of this line, say X and Y. If Y is not on the lines
XA, XB, XC, or XD, then projection via X gives incoherence as before.
Thus, suppose without loss of generality, that Y is on XA. Let the other
point be Z. Note that by the same argument, if the diagram is coherent, then
Z must be in both XAuXBuUXCuXDand YAOUYBuUYCUYD. If Zison
the line XY then projection via A yeilds a 2-dimensional Gale diagram with
at least two classes of multiplicity at least three, which cannot be coherent.
Suppose, then, that Z is on the intersection X o nY' o’ where o and o’ denote
some letters in {B,C, D}. Then, projection via Z gives a 2-dimensional Gale
diagram with four parallelism classes and with two classes having multiplicity
2. This cannot be coherent either.

Thus, suppose that at most three points of P are collinear. Consider any
point X in P. Draw lines joining X to all other size points. Since no four points
are collinear, there must be at least three distinct lines. If there are at least
five distinct lines, then projection via X gives incoherence. If there are exactly
three distinct lines, then on each line there are X and two other points, and
then projection via X gives a 2-dimensional Gale diagram with 3 parallelism
classes having multiplicity 2. By Fact 2.7, this diagram is incoherent. Thus,
suppose there are exactly four distinct lines, [, s, I3, and l4. Let each of [;
and [y contains two points different from X, and each of [3 and 4 contains a
point different from X. However, projection via X gives a 2-dimensional Gale
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diagram with four parallelism classes and with two classes having multiplicity
2. This cannot be coherent either.

Therefore, if the Gale diagram for A* contains at least 7 parallelism classes,
then (A, f) is incoherent.

3. CONCLUSION

In the previous section, we did the casework which shows that if a non-
degenerate Gale diagram of corank 3 is all-coherent, then it must belong to one
of the three families described in Theorem 2.5. The work in this REU report
successfully generalizes Robert Edman’s work [1] into zonotopes of corank 3.
The proof of the converse, which we currently omit, is more algebraic but less
tedious than the casework we did in this REU report. We hope to publish the
proof of the converse soon.

REFERENCES

[1] Robert Edman, Diameter and Coherence of Monotone Path Graphs in Low Corank,
Ph.D. thesis, University of Minnesota, 2015. http://www.math.umn.edu/~reiner/
edman-thesis.pdf

[2] Robert Edman, Mathematica code for checking whether a pair (A, f) is all-coherent,
private communication.

[3] Lukas Finschi, Catalog of Isomorphism Classes of Oriented Matroids. http://www.om.
math.ethz.ch/?p=catom



