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Abstract. We describe an infinite family of non-Plücker cluster variables
inside the double Bruhat cell cluster algebra defined by Berenstein, Fomin,
and Zelevinsky. These cluster variables occur in a family of subalgebras
of the double Bruhat cell cluster algebra which we call Double Rim Hook
(DRH) cluster algebras. We discover that all of the cluster variables are
determinants of matrices of special form. We conjecture that all the cluster
variables of the double Bruhat-cell cluster algebra have similar determi-
nant form. We notice the resemblance between our staircase diagram and
Auslander-Reiten quivers.
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1. Introduction

Cluster algebras have been introduced by Fomin and Zelevinsky [FZ02],
and have since developed into a major area of mathematics. Cluster algebras
are subalgebras of rational functions in many variables. They are defined via
dynamical systems; starting with a seed, which consists of a quiver and a
rational function for each vertex of the quiver (called a cluster variable), one
performs mutations to the seed to get new collections of cluster variables. The
cluster algebra is the algebra generated by all the cluster variables obtained
by mutations from the original seed. It turns out that many well algebras
have cluster algebra structure; in particular coordinate rings of many algebraic
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varieties have this property, thus allowing one to use combinatorial methods
to study geometry. More information on the current state of the field can be
found in [P].

This paper is concerned with a particular cluster algebra, namely the co-
ordinate ring of the open double Bruhat cell Gw0,w0 of GLn(C). This cluster
algebra is generally known to be of wild type, namely the number of clus-
ter variables is infinite and even the number of possible quivers obtained by
mutations from the initial seed is infinite. As such, a full combinatorial un-
derstanding of it is somewhat hopeless. The main result of the report is a
description of a family of subalgebras of finite type, which we refer to as the
double rim hook algebras, and an explicit description of all the cluster vari-
ables of these algebras. As far as we know this is the first explicit description
of infinite families of non-Plücker cluster variables in the double Bruhat cell
cluster algebra.

It is known that all the minors of a matrix with distinct variables for entries
are cluster variables of the double Bruhat cell algebra. The cluster variables
of the double rim-hook subalgebras are not minors of such a matrix, but they
are all determinants of a particular form. We suspect that all cluster variables
of the double Bruhat cell algebra are of this form, but we do not know how
one would approach a proof of this statement.

2. Open double Bruhat cell cluster algebra

As shown in [BFZ05], the coordinate ring of the open double Bruhat cell
Gw0,w0 of GLn(C) has the structure of a cluster algebra (in fact, that was
shown for all double Bruhat cells). Following [FR05], we define this cluster
algebra via a combinatorial gadget called double wiring diagrams. An example
is shown in Figure 1. Such a diagram consists of two collections of piecewise
straight lines, denoted by two colors, with the property that each pair of lines
of the same color intersects precisely once. Thus, in each color we end up with
a diagram for a reduced expression of the longest element of the symmetric
group. The lines of each color are numbered so that the left endpoints of
the lines end up numbered bottom to top. The chambers of a double wiring
diagram are the areas of each level between, or to the side of, crosses. Each of
these is labeled by the indices of lines below it (see Figure 2).

Remark 2.1. In the literature, the labels on the red lines usually go top to
bottom. Our convention was chosen to work better for the correspondence with
the double rim hook algebras. It will, however, result in using axis-coordinates
when talking about matrices; for example we will label the bottom left entry
of an n× n matrix X by x11 and the top left by x1n.

Now we describe a seed for this cluster algebra, starting with the quiver.
Fix a positive integer n. Choose a double wiring diagram D on n strands. The
vertices of the quiver are the chambers of D, except for the bottom chamber
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Figure 1. A double
wiring diagram on four
strands.
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Figure 2. Chamber
labels for the wiring
diagram.

Figure 3. Local rules for arrows of a quiver coming from a
double wiring diagram.

Figure 4. An example of a quiver corresponding to a double
wiring diagram.

labeled by (∅,∅). The arrows of the quiver are placed according to the local
rules in Figure 3; these ensure that the mutation is as described in [FR05,
Lemma 4.23]. The first column just claims that every red crossing has an arrow
from the chamber on its left to the chamber on its right, and the opposite is
true of the blue crossings. The second and third columns deal with the cases
when one chamber is completely above or below another. The last two columns
deal with the cases when the two chambers are on adjacent levels but are not
completely above or below each other. All the cases that are unaccounted for
do not have arrows. See Figure 4 for the quiver corresponding to our example
of the double wiring diagram.
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Now we describe the initial cluster. Let X = (xij) be an n× n matrix with
distinct variables as entries (recall that we are using axis-coordinates to denote
matrix entries). The variables attached to vertices are the minors of X whose
columns are the red labels of a chamber and whose rows are the blue labels of
a chamber.

3. Double rim hooks

3.1. Double Rim Hooks. A North-East lattice path λ is a finite word in the
letters N and E. We think of λ as a zigzag segment, starting from a point on
the plane, going up one unit when a letter N is read, and going right one unit
when a letter E is read, with the reading order of the word λ being from the
left to the right. For example, we consider the path NNE as the zigzag path
starting from a point on the plane, going up two units and then going right
one unit.

The lines X = k for all k ∈ Z and Y = ` for all ` ∈ Z make the plane
an infinite chessboard. For a North-East lattice path λ of length l = l(λ), we
define the λ-array as a subset of the infinite chessboard as follows. Consider
the path λ starting at the vertex (1, 1). The λ-array is defined to be the union
of all the 2 × 2-squares whose centers are lattice points on λ. Evidently, the
λ-array contains 2·l(λ)+4 connected unit squares (cells). We denote the set of
these cells by C(λ). We may associate a rational function to each cell of C(λ).
A λ-Double Rim Hook (or λ-DRH) is the data of the λ-array together with
the 2 · l(λ) + 4 rational functions. When we put the indeterminate variable aij
into the cell whose upper right vertex is (i, j) for all cells in C(λ), the resulting
λ-DRH will be called the initial λ-DRH.

For example, the initial NNE-DRH is shown below. The NNE path is shown
in orange.

a14 a24 a34

a13 a23 a33

a12 a22

a11 a21

The initial NNE-DRH

3.2. Initial DRH quiver. In this section, we shall describe the construction
of the initial λ-DRH quiver. In the initial λ-DRH, let cij ∈ C(λ) denote the
cell with aij.

First, we freeze the lower left corner cell, c11, and the upper right corner
cell, cpq, where p is the number of E’s in λ plus 2, and q is the number of
N’s in λ plus 2. Then, we define a subset M(λ) ⊆ C(λ) algorithmically as
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follows. Suppose initially there is a bug in the cell c12, which is the one above
the lower-left frozen cell. The goal of the bug is to jump one unit at a time,
north or east, until he reaches a cell adjacent to the upper right frozen cell, at
which point the process terminates. Starting in the cell c12, as long as he is
not next to the upper right frozen cell, he goes right as much as possible until
he hits a wall, then goes up as much as possible, then right, then up, and so
on, and he eventually stops in a cell adjacent to the upper right frozen cell.
The set M(λ) is defined to be the set of l + 1 cells the bug has been in.

The quiver Qλ is specified as follows. The mutable vertices are precisely the
l(λ)+1 cells inM(λ). There are l(λ)+3 frozen vertices, including the l(λ)+1
connected 2×2-squares in the λ-array, and the two previously frozen cells (c11

and cpq). The variables associated with the vertices are given as follows. To
each mutable vertex cij ∈M(λ), we associate the variable aij. To c11 and cpq,
we associate a11 and apq, respectively. To each 2×2-frozen vertex, we associate
the 2× 2-determinant of the square.

The arrows between the mutable vertices in Qλ are defined as follows. Two
mutable vertices V and V ′ are connected by an arrow if the corresponding
cells share an edge. If V ′ is to the right of V , the arrow is from V to V ′. If V ′

is above V , the arrow is from V ′ to V .
In order to describe the arrows between the frozen vertices and the mutable

vertices, we first look at some determinantal identities. Consider a 2× 2 array
with variables inside as shown below.

a b

c d

Here, we have the first determinantal identity

• (D1) a · d =

∣∣∣∣a b
c d

∣∣∣∣+ b · c.

Next, consider a 2× 3 array with variables inside as shown below.

a b c

d e f

Here, we have two determinantal identities:

• (D2) b ·
∣∣∣∣a c
d f

∣∣∣∣ = a ·
∣∣∣∣b c
e f

∣∣∣∣+ c ·
∣∣∣∣a b
d e

∣∣∣∣, and

• (D3) e ·
∣∣∣∣a c
d f

∣∣∣∣ = d ·
∣∣∣∣b c
e f

∣∣∣∣+ f ·
∣∣∣∣a b
d e

∣∣∣∣.
Finally, consider a 3× 2 array with variables inside as shown below.



6 MICHAEL CHMUTOV, PAKAWUT JIRADILOK, AND JAMES STEVENS∣∣∣∣a12 a22

a11 a21

∣∣∣∣ ∣∣∣∣a22 a32

a21 a31

∣∣∣∣

a12 a22

a11 a32

Figure 5. the initial quiver of the E-DRH. The mutable ver-
tices are drawn as circles and the frozen ones as rectangles.

a d

b e

c f

We have two more determinantal identities:

• (D4) b ·
∣∣∣∣a d
c f

∣∣∣∣ = a ·
∣∣∣∣b e
c f

∣∣∣∣+ c ·
∣∣∣∣a d
b e

∣∣∣∣, and

• (D5) e ·
∣∣∣∣a d
c f

∣∣∣∣ = d ·
∣∣∣∣b e
c f

∣∣∣∣+ f ·
∣∣∣∣a d
b e

∣∣∣∣.
The arrows between the frozen vertices and the mutable vertices are defined

locally at each mutable vertex, so that the resulting exchange relation is one
of the five determinantal identities above.

For example, if λ = E, then the initial quiver Qλ is shown in Figure 5. In
this quiver, the two determinantal identities involved are

a12 ·
�� ��a21 =

∣∣∣∣a12 a22

a11 a21

∣∣∣∣+ a11 · a22

a22 ·
�
�

�



∣∣∣∣a12 a32

a11 a31

∣∣∣∣ = a12 ·
∣∣∣∣a22 a32

a21 a31

∣∣∣∣+ a32 ·
∣∣∣∣a12 a22

a11 a21

∣∣∣∣ .
The boxed expression in each equation is the cluster variable into which the
original mutable variable transforms when we mutate the quiver at the corre-
sponding node.

The λ-DRH cluster algebra Aλ is defined as the type-A cluster algebra
generated from the quiver Qλ. Our main result is the explicit description of
all the cluster variables of Aλ, for every North-East lattice path λ.
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Figure 6. A DRH with its extended worm, skeleton, and a
choice of correspondence.

Figure 7. The bottom two rows of the wiring diagram corre-
sponding to the DRH and correspondence choice in the previous
figure.

4. Constructing a double wiring diagram from a DRH

It is sufficient to construct a double wiring diagram for a DRH whose skele-
ton has as many E’s as it has N’s (since we can extend any DRH to one of
these).

The bottom layer is formed as follows. Extend the worm to the southwest
cell and to the northeast cell. Following this extended worm from southwest
to northeast, place a blue crossing for each N-step, and a red crossing for each
each E-step (see Figures 6 and 7).

The second row from the bottom is constructed from the skeleton. First,
for each step (edge) of the skeleton, choose a vertex of the worm that is in a
cell adjacent to it (an example of such a choice is given by the blue arrows in
Figure 6). We will refer to this choice as a choice of correspondence; it is clear
that such a choice always exists, but it may not be unique. In the same way as
for the bottom row, looking at the skeleton from southwest to northeast, place
a blue crossing for every N step of the skeleton and a red crossing for every
E step of the skeleton. The placement of each crossing is determined by the
associated vertex of the worm, namely the second row cross goes between the
bottom crosses corresponding to the steps of the worm adjacent to the vertex
(see Figures 6 and 7).
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Lemma 4.1. In the above construction, between two crosses of the same color
in the bottom row, there is a cross of the same color in the top row.

Before proving the lemma, let us finish the description. Continue filling the
upper rows in some way to achieve a valid double wiring diagram (since we
will freeze the corresponding variables as well anything connected to them, we
do not care about the way this is achieved).

Example 4.2. The wiring diagram in Figure 1 corresponds to the ENNE DRH
(with some choice of correspondence).

Proof of Lemma 4.1. First we show that every vertex of the worm which is
not a corner has an arrow pointing at it. Note that the only cells of the DRH
which do not have the skeleton on one edge are the corners. Consider a a
vertex v of the worm which is not a corner of it (hence it is not in a corner
of the DRH). We already noted that the skeleton covers one edge of the cell
containing this vertex. Moreover, one of the two edges parallel to the worm
must be covered by the skeleton since otherwise we will violate the condition
that the DRH cannot have three cells on the same diagonal. The arrow from
this edge must necessarily point to v.

The above paragraph, proves the lemma in case when the two crosses of the
same color in the bottom row come consecutively. Suppose not, i.e. we have
two crosses of the same color separated by some crosses of the opposite color.
For the worm, we are looking at two consecutive bends. Now we notice that,
by construction, for every corner of the extended worm, there exists a vertex
of the skeleton adjacent to both edges of the worm. Using this observation, we
see that between the two corner vertices of the worm, the skeleton must cross
the worm. The edge of the skeleton at the crossing corresponds to the sought
crossing of the same color in the second row. �

Proposition 4.3. Consider a DRH V , and its initial seed (Q,x). Form a
double wiring diagram from V as described above, take its initial seed, freeze
the all the vertices corresponding to the chambers which are not in the bottom
row, and get rid of all the disconnected frozen vertices. Call the resulting seed
(Q′,x′). Then the seeds (Q,x) and (Q′,x′) are equivalent.

Proof. There is a natural bijection between the vertices of the two quivers
which takes frozen vertices precisely to frozen vertices. We only need to check
that the connections from every mutable vertex in Q, i.e. an internal vertex of
the extended worm, are the same in both scenarios. Choose an internal vertex
v of the extended worm. There are two cases based on whether or not v is a
corner of the extended worm.

Suppose v is not a corner of the extended worm; without loss of generality
assume the worm is horizontal at v. Let vp and vn be the previous, and next
vertices of the worm, respectively. As seen in the proof of Lemma 4.1, a
horizontal edge of the skeleton covers an edge of the cell containing v. Let
w, w′ be the two vertices of that edge, with w earlier than w′ in the skeleton.
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Every vertex of the skeleton corresponds to a frozen variable; let ∆ and ∆′ be
the frozen variables corresponding to w and w′, respectively. Then in Q, v has
incoming arrows from vp and ∆′ and outgoing arrows to vn and ∆.

Now let us analyze the wiring diagram picture. The extended worm edges
from vp to v and from v to vn correspond to two consecutive red crossings in
the bottom row. The skeleton edge from w to w′ corresponds to a red crossing
in the second row between the two. There may, or may not, be at most one
additional blue crossing in the second row between the two. Regardless of that
there will be an arrow into the chamber corresponding to v from the chamber
corresponding to w′ and an arrow out of the chamber corresponding to v to
the chamber corresponding to w. Thus indeed the two local pictures of the
quivers coincide.

The case when v is a corner of the extended worm, the analysis is similar;
this is the case corresponding to the 2× 2 matrix determinantal identity. �

5. DRH staircase

5.1. Construction of the DRH staircase. A convenient way to study the
cluster variables is through the DRH staircase, a “board” which serves as
a bookkeeping device to record the cluster variables and the combinatorial
relationships thereof.

To construct the DRH staircase for each given North-East lattice path λ, we
consider the infinite chessboard Z×Z. We will label the cells using the matrix
convention: we write the integer row indices in the increasing order from the
top down to the bottom, and write the integer column indices in the increasing
order from the left to the right. We embed the λ-array into this chessboard so
that the bottom-leftmost cell of the DRH coincides with the (1, 0)-cell of the
chessboard. Here, the (i, j)-cell of the chessboard refers to the cell in column
i and row j. The row and column indices of this board will then be taken
modulo l + 4. For example, Figure 8 shows the NNE-DRH staircase. There,
the embedded NNE-DRH is drawn in cyan. We will explain the thick zigzag
lines and the green cells later.

We will not concern all the cells in Z/(l + 4) × Z/(l + 4). Our focus will
be on a subset of the chessboard, which we call the DRH staircase. In Figure
8, the NNE-DRH staircase is in fact the collection of cells bounded between
two staircase paths drawn in thick black lines. These are zigzag paths which
go right one unit and down one unit infinitely alternatively.

The two staircase paths are drawn according to the following rule. The
lower one is the zigzag path which cuts out exactly one bottom-leftmost cell
c11 of the DRH, in a way that c11 lies below the staircase path and the rest of
the DRH lies above. Similarly, the upper one is the one which cuts out exactly
one top-rightmost cell cpq of the DRH.
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Figure 8. The NNE-DRH staircase

Bounded between the two staircase paths is the DRH staircase. The λ-DRH
staircase is (l + 1)-cell wide, both horizontally and vertically. Currently, we
still have not described how to assign a rational function to each cell in the
λ-DRH staircase. We will see that the cells in the DRH staircase are in one-
to-one correspondence with the mutable cluster variables of the DRH cluster
algebra.

Observation 5.1. The cell (i, j) ∈ Z/(l+ 4)×Z/(l+ 4) is in the DRH staircase
if and only if i− j /∈ {−1, 0, 1}.

Consider an (l + 4)-gon P := P1P2 . . . Pl+4. Observation 5.1 implies that
there is a bijective correspondence between the cells in the DRH staircase and
the directed diagonals of P : the cell (i, j) corresponds to the directed diagonal
−−→
PiPj. If we ignore the direction, each diagonal then corresponds to exactly
two different cells in the DRH staircase. This is called the staircase-polygon
correspondence.

5.2. Connection to polygon triangulations and cluster variables. It is
well-known that there is a one-to-one correspondence between the triangula-
tions of P and the seeds of the type-A cluster algebra Aλ. (See, for example,
[Wil14].) We can therefore assign a cluster variable to every diagonal of the
(l + 4)-gon in a way that for every triangulation, the l + 1 diagonals in the
triangulation are the l + 1 variables in the corresponding seed. Furthermore,
there are many such assignments possible. Given an assignment of variables
to a seed (i.e. the diagonals in a triangulation), we can fill in the variables in
all other diagonals uniquely in such a way that obeys variable mutations (i.e.
diagonal flips).
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3 −3 = 4

−2 = 5

−1 = 6
a12

a22

a23

a24

Figure 9. The heptagon triangulation that corresponds to the
initial worm of the NNE-DRH.

The mutable part M(λ) of Qλ can be considered inside the DRH staircase
as a path consisting of l + 1 cells, starting from a cell adjacent to the lower
boundary of the DRH staircase, going north or east one step at a time, until
it reaches a cell adjacent to the upper boundary of the DRH staircase (cf. the
definition ofM(λ) in section 3.2). Such path for λ = NNE is shown in Figure
8 in red. This path is an example of an object which we call a worm inside
the DRH staircase.

Definition 5.2. Let C be a cell inside the λ-DRH staircase on the lower
boundary of the staircase. From C, we obtain the other l(λ) cells by starting
from C and go north or east one step at a time until we reach the upper
boundary. A worm inside the λ-DRH staircase is defined to be a set of l + 1
cells obtained from such construction.

For example, M(λ) is a worm. We call it the initial worm of the λ-DRH
staircase.

Observation 5.3. Every worm corresponds to a triangulation via the staircase-
polygon correspondence.

The l+1 cells in the initial wormM(λ) correspond to l+1 diagonals which
form a triangulation in P . As an example, the triangulation which corresponds
to the initial worm M(λ) when λ = NNE is shown in Figure 9. Recall from
the construction of the initial DRH quiver Qλ that we associate to every cell
inM(λ) a mutable variable aij. Therefore, we can assign these l+ 1 variables
to the l + 1 diagonals of the seed (triangulation) corresponding to M(λ).

A sequence of diagonal flips can transform this triangulation to any triangu-
lation while keeping track of how cluster variables are mutated. In particular,
the cluster variables associated with any diagonal of P can be specified. Since
the cells in the staircase correspond to the diagonals of P , we can associate to
every cell of the staircase a mutable cluster variable. Consequently, we obtain
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all the mutable cluster variables of Aλ in the staircase. Once we fill all the
cells in the staircase, we have a complete description of all the cluster vari-
ables. The main result of this paper is an explicit description of the variable
associated to a given cell in the staircase.

5.3. Climbing worms. Consider any worm w = c1c2 . . . cl+1 in the λ-DRH
staircase. We shall say that the cell ci is a bend if 1 < i < l+ 1 and the centers
of the cells ci−1, ci, and ci+1 are not collinear. If a cell in w is not a bend, then
we shall say that it is a non-bend. Note that the starting vertex c1 and the
finishing vertex cl+1 are always non-bends.

There is a local operation applied to w that changes w at exactly one cell.
This operation is applied to bends, the starting vertex, or the finishing vertex.
Suppose that ci is a bend. It can be either an NE-bend or an EN-bend. An
NE-bend is one in which ci−1ci is vertical while cici+1 is horizontal. An EN-
bend is one in which ci−1ci is horizontal while cici+1 is vertical. When ci is
an NE-bend, if we put coordinates ck = (qk, rk) for k = i − 1, i, i + 1, we
have qi+1 = qi + 1 = qi−1 + 1 and ri+1 = ri = ri−1 − 1. (Recall how we give
coordinates to the cells in §5.1.) In this case, the worm operation at ci applied
to w gives the worm w′ with ci(qi, ri) replaced by c̃i(qi + 1, ri + 1). On the
other hand, if ci is an EN-bend, then the worm operation at ci applied to w
gives the worm w′ with ci(qi, ri) replaced by c̃i(qi − 1, ri − 1).

The worm operation at the starting vertex c1(q1, r1) changes c1 into c̃1(q1 +
1, r1 + 1) if c1c2 is horizontal, and into c̃1(q1 − 1, r1 − 1) if c1c2 is vertical.
Analogously, the worm operation at the finishing vertex cl+1(ql+1, rl+1) changes
cl+1 into c̃l+1(ql+1+1, rl+1+1) if clcl+1 is vertical, and into c̃l+1(ql+1−1, rl+1−1)
if clcl+1 is horizontal.

It is not hard to see that given any two worms w1, w2, there is a sequence
of worm operations as described above to transform w1 to w2. In particular,
starting with any worm, one can transform it into a worm that contains any
cluster variable in Aλ.

Lemma 5.4. Suppose that w is a worm inside the λ-DRH staircase. Let w′

be a worm obtained by applying the worm operation on w at ci. Then, the
triangulation of P corresponding to w′ is obtained by flipping the diagonal
corresponding to ci in the triangulation corresponding to w.

Before proving Lemma 5.4, we note that the lemma says that worm opera-
tions are diagonal flips. Therefore, we can assign quivers to the worms in the
unique manner that respects quiver mutations. We start with the initial worm
M(λ) with the quiver Qλ associated to this particular seed. Then, we do a
worm operation onM(λ) to obtain another worm. We did not know hitherto
how we should transform Qλ compatibly with this worm operation. Now, by
the lemma, we discover that the right thing to do is to mutate at the vertex
we do the worm operation. As a result, the worm operation changes (w,Q) to

(w̃, Q̃), where the changes from w to w̃ and from Q to Q̃ occur at the same
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Figure 10. The worm operation on the initial worm of the
NNE-DRH at the final vertex

vertex. Therefore, every worm w has an associated quiver Qw. With this new
notation, QM(λ) = Qλ.

We now prove Lemma 5.4.

Proof. For convenience, if v is a worm, let ∆(v) denote the triangulation of P
corresponding to v under the staircase-polygon correspondence. If the worm
operation occurs on w at an NE-bend ci(qi, ri), then the diagonal corresponding
to ci in ∆(w) is PqiPri . It is a diagonal of the quadrilateral PqiPqi+1PriPri+1 in
∆(w). Therefore, the diagonal PqiPri flips to Pqi+1Pri+1. This agrees with the
worm operation which changes (qi, ri) to (qi + 1, ri + 1). The case when ci is
an EN-bend is done similarly.

If the worm operation occurs on w at the starting vertex c1(r1 + 2, r1) when
c1c2 is horizontal. We have that c2 has coordinate (r1 + 3, r1). Thus, the diag-
onal corresponding to c1 is Pr1Pr1+2, which is a diagonal of the quadrilateral
Pr1Pr1+1Pr1+2Pr1+3. Therefore, Pr1Pr1+2 flips to Pr1+1Pr1+3. This agrees with
the worm operation which changes (r1 +2, r1) to (r1 +3, r1 +1). The case when
c1c2 is vertical is the reverse flip of this case. The case of worm operation at
the finishing vertex is done similarly. �

For instance, starting with the seed of the NNE-cluster algebra shown in
Figure 9, we may flip the diagonal P2P4. This produces a new triangulation
which has P3P5 instead of P2P4, as shown below.

0

1

2

3 4

5

6

7→

0

1

2

3 4

5

6

In the setting of DRH staircase, the transformation produces a new worm
by moving (2, 4) to (3, 5) As shown in Figure 10.
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In the construction of the staircase, we saw that the λ-DRH was initially
embedded into the DRH staircase, except for the two cells c11 and cpq which
lie outside the staircase. We see that in the l + 1 cells in M(λ), which are in
both the DRH and the DRH staircase, the variables are put into the staircase
so that they match the variables inside the DRH by construction.

There are l+1 more cells which are in the DRH inside the DRH staircase. In
these cells, we associate variables aij in Section 3.1 when they are considered
in the DRH. However, when they are considered inside the DRH staircase,
we associate variables to them using quiver mutations. We claim that the
variables in the l + 1 cells from quiver mutations agree with the variables we
initially gave in the DRH construction. In particular, this implies that all aij
except a11 and apq are mutable cluster variables.

The result in the following lemma is easy to believe, although its proof may
seem tedious. We give the proof anyway to illustrate a preliminary approach
to DRH quivers.

Lemma 5.5. For any cell inside the DRH in the DRH staircase, the variable
associated to the cell in the DRH staircase (obtained from quiver mutations)
is the same as the variable aij previously assigned to the DRH in Section 3.1.

Proof. It suffices to show that for any worm w = c1c2 . . . cl+1 inside the λ-DRH,
the mutable variable at the vertex ci of the quiver Qw is the corresponding
variable associated to ci, as given in Section 3.1. Suppose that after k worm
operations, the worm w is transformed into ŵ, which contains the desired cell
ĉ. Our strategy of this proof is to write down the quiver explicitly after each
i ≤ k worm operations. We notice that in all the cases the quivers are similar.

Start with the initial worm and its quiver (M(λ), Qλ), where M(λ) =
c1c2 . . . cl+1. Suppose we are given any cell ĉ inside the DRH that is not frozen.
Then, there is a sequence of worm operations at consecutive vertices to trans-
form the initial worm to a worm containing ĉ. The sequence of operations is
either of the form i, i + 1, i + 2, . . . , i + k − 1, or i, i − 1, i − 2, . . . , i − k + 1.
Here, operation at j means operation at the j-th vertex. We consider three
cases: when i = 1, when i = l + 1, and when 1 < i < l + 1.

Case 1. Suppose that i = 1. This means that the desired cell ĉ is on the
bottow row. That is, ĉ = ck1 for some k > 1. To get from w to a worm ŵ
that contains ck1, we perform the sequence of worm operations: 1, 2, . . . , k−1.
The picture below shows the start of the initial wormM(λ). The worm starts
at the cell a12, which initially has the variable a12. The assumption that the
sequence 1, 2, . . . , k − 1 takes w to the desired cell ck1 shows that at least the
first (k − 1) steps of the worm are east-steps. The diagonal dotted segment
shown denotes the fact that there may be more steps, possibly N or E, after
ck2.
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a11 ak1

Before the operations, the initial quiver M(λ) has the following cluster
variables in the first k vertices, in order: a12, a22, . . . , ak2. For each i =
1, 2, . . . , k − 1, let

∆i :=

∣∣∣∣ai,2 ai+1,2

ai,1 ai+1,1

∣∣∣∣
be the i-th 2 × 2 frozen minor that occurs in the DRH. The local picture of
the quiver Qλ near the first k − 1 vertices is the following.

∆1 ∆2 ∆3 ∆k−1

a12 a22 a32 . . . ak−1,2 . . .

a11

The mutable vertex a12 has out-arrows to the mutable vertex a22 and the
frozen vertex a11, and it has an in-arrow from the frozen vertex ∆1. For
1 < i < k, the mutable vertex ai2 has out-arrows to the mutable vertex ai+1,2

and to the frozen vertex ∆i−1, and it has in-arrows from the mutable vertex
ai−1,2 and from the frozen vertex ∆i.

It is straightforward by induction that after the first i mutations, which
mutate a12, a22, . . . , ai2, for i ≤ k − 1, the quiver becomes as the following
picture. The mutable vertex a21 has in-arrows from ∆2 and a11, and has out-
arrows to ∆1 and a31. For 3 ≤ j ≤ i, the mutable vertex aj1 has in-arrows
from aj−1,1 and ∆j, and has out-arrows to aj+1,1 and ∆j−1. The mutable
vertex ai+1,1 has in-arrows from ai,1 and ai+1,2, and has an out-arrow to ∆i.
The mutable vertex ai+1,2 has an in-arrow from ∆i+1, and has out-arrows to
ai+1,1 and ai+2,2. The rest of the diagram remains unchanged.
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∆1 ∆2 ∆i ∆i+1 ∆i+2

a21 a31 . . . ai+1,1 ai+1,2 ai+2,2 . . .

a11

If the resulting worm has not reached the cell ĉ yet, the next vertex to
mutate is ai+1,2. The variable ai+1,2 will change into ai+2,1 after mutation,
because of the exchange relation

ai+1,2 · ai+2,1 = ∆i+1 + ai+1,1 · ai+2,2.

Therefore, after k steps, the worm will reach the cell ĉ = ck1, and give the cell
the cluster variable ak1 as desired.

Case 2. Suppose that i = l+1. Then, the sequence of worm operations which
transforms w into ŵ containing ĉ is of the form l + 1, l, . . . , l + 1 − (k − 1).
There are two possibilities, whether the final step of w is horizontal or vertical.

Case 2.1. If the final step is horizontal, then the last cell in M(λ) must
be ap,q−1. This is because if the last cell were ap−1,q instead, the first worm
operation at the last vertex would take the worm outside of the DRH, which
violates our assumption. Consequently, the cell ĉ must be cp−(k−1),q.

ĉ apq

Note that the local picture of Qλ at the last k mutable vertices is as the
following. Here, ∆i denotes the i-th frozen 2 × 2-minor that occurs in the
DRH. To save space, in the diagram below, we may write aij to denote ai,j.

∆l+1−k ∆l+1−(k−1) ∆l+1

. . . a
p−(k−1)
q−1 a

p−(k−2)
q−1

. . . apq−1

apq



DOUBLE RIM HOOK CLUSTER ALGEBRAS 17

We observe the similarity of this quiver with the one is Case 1. The rest of
the argument is by induction analogous to the previous case.

Similarly, for Case 2.2, when the final step is vertical, we use an analogous
induction argument to show that the variable to give to ĉ is the same as the
variable aij at the cell in the DRH.

ĉ

apq

Case 3. Suppose that 1 < i < l + 1. The sequence of worm operations can
either take the form i, i+1, . . . , i+k−1 or i, i−1, . . . , i−k+1. In each of the
two cases, the bend at ci can either be an NE-bend or an EN-bend. Again,
we will see that the four cases are similar. We will explicitly show one case:
when the sequence takes the form i, i + 1, . . . , i + k − 1 and the bend at the
i-th vertex is an NE-bend.

ĉ

Let the cell at the bend be cr,s. Thus, ĉ is cr+k,s−1. The initial quiver can
be drawn locally as follows. As before, we may write aij to denote ai,j.

∆r+s−2 ∆r+s−1 ∆r+k+s−3

. . . ars ar+1
s

. . . ar+k−1
s

. . .

We start mutating at the cell with ar,s and continue to the right. For
1 ≤ i ≤ k, after i mutations the quiver becomes as follows.
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∆r+s−2 ∆r+s−1 ∆r+k+s−3 ∆r+i+s−2

. . . ar+1
s−1 ar+2

s−1
. . . ar+is−1 ar+is

. . .

Note that if i = k, the arrows at ar+i,s might be different from what is
shown, but the quiver gives ar+k,s to the cell ĉ = cr+k,s as claimed. If i < k,
then the next vertex to mutate is ar+i,s. After the i+1-st mutation, the cluster
variable ar+i,s will be changed into ar+i+1,s−1 because of the exchange relation

ar+i,s · ar+i+1,s−1 = ar+i,s−1 · ar+i+1,s + ∆r+i+s−2.

This finishes the proof. �

In the proof of the previous lemma, we also observe that the quiver for
worms inside the DRH behaves nicely. In particular, a mutable vertex only
has frozen arrows from frozen vertices that are not very far from it: if there
is an arrow between the i-th mutable vertex and ∆j, then we expect i and j
to be close. Later, when we allow the worm to leave the DRH, this will no
longer be the case. The frozen arrows can come from frozen vertices very far
from the mutable vertex we consider.

Given the λ-DRH staircase, we have now filled variables into the cells which
are also in the DRH. In Figure 8, these cells are shown in cyan. Recall from
the staircase-polygon correspondence that a certain cluster variable (diagonal)
corresponds to two cells in the staircase. Namely, if we put variable α into
the cell with staircase coordinate (i, j), then we also put the same variable
into the cell (j, i). This gives us the transpose DRH: the cells (i, j) in the
DRH staircase for which (j, i) is in the DRH. An example of the transpose
NNE-DRH is shown in green in Figure 8.

We can think of worm operations as a worm climbing down the DRH stair-
case. From the red worm in Figure 10, if we continue to mutate at the vertex
at (2, 5), the red point at (2, 5) will move to (3, 6).

4

5

6

0

1 2 3

By only mutating at the bends, the starting vertex, and the finishing vertex
of worms, the resulting l+1 cells in the new seed will always form a worm. As
we mutate in this way, we will not – except when the DRH is small – obtain
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all the seeds of the cluster algebra, but as the worm climbs down the staircase,
it passes all the different cells. Thus, by considering all the cluster variables
of climbing worms, we obtain all the cluster variables for the algebra.

6. DRH subskeleta

Let λ be a North-East lattice path. By a subskeleton of λ, we mean a non-
empty connected subword of λ together with the data of its location in λ.
Formally, it can be thought of as a triple (λ, r, s), where 1 ≤ r ≤ s ≤ l(λ).
If λ = w1 . . . wn ∈ {N,E}n, then a subskeleton of the λ-DRH has the form
wrwr+1 . . . ws for some 1 ≤ r ≤ s ≤ n.

It is convenient to attach with each letter in λ its location in the word. The
letter W ∈ {N,E} which is the i-th letter from the left may be written as
W i. For example, instead of writing λ = NENE, we may write N1E2N3E4.
Indeed, there is no addition or loss of information when writing in this way.
Labeling so simply makes it easier to keep track of which N (or E) is which.

This convention makes discussions of subskeleta easy. For instance, we have
that the subskeleta of N1E2N3E4 are N1, E2, N3, E4, N1E2, E2N3, N3E4,
N1E2N3, E2N3E4, N1E2N3E4. The subskeleta N1E2 and N3E4 are consid-
ered different.

The number of subskeleta of λ is l(l+1)
2

, which is the same as the number
of “not-yet-filled” cells in the λ-DRH staircase between the original DRH and
the transpose DRH (the white cells between the cyan and the green in Figure
8). The equality can be understood combinatorially. We will establish a
combinatorial bijective correspondence between the subskeleta and the not-
yet-filled cells.

For convenience, letWλ denote the finite board containing the l(l+1)
2

cells in
the DRH staircase which are in between the original DRH and the transpose
DRH. For example, in Figure 12, when λ = NENEEN ,Wλ is the finite board
of twenty-one white cells in the middle (while the original DRH is in cyan and
the transpose DRH is in green). Recall that the row and column indices are
taken modulo l + 4 = 10 in this case.

When there is no confusion, we may use Wλ to also mean the set of l(l+1)
2

cells, instead of the board itself. As we mentioned in the previous section, we
are interested in the subskeleta of the DRH. We shall denote by Sλ the set of
l(l+1)

2
subskeleta of λ. The goal of this section is to establish the combinatorial

bijective map

Subsk :Wλ → Sλ

assigning a subskeleton to each cell of Wλ.
Note that the “northwest” boundary of Wλ between the original DRH and
Wλ is a λ-lattice path, while the “southeast” boundary of Wλ between the
transpose DRH and Wλ is the transpose λt. Here, the transpose of the word
w1w2 . . . wn is the word wtnw

t
n−1 . . . w

t
1, where Et = N and N t = E. Thus, we
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E3

N1

N2

E3 N2 N1

Figure 11. The row and column labels for WNNE.

can label each of the l unit segments on the northwest boundary by Ei or N i

following its corresponding letter in λ. Similarly, we can label each of the l
unit segments on the southeast boundary by Ei or N i with its corresponding
letter in λ. For convenience in this section, let’s denote by BNW the collection
of l unit segments on the northwest boundary, and by BSE the collection of l
unit segments on the southeast boundary.

Observe that each row (or column) of the staircase that intersects (i.e. share
at least one cell) withWλ contains exactly one element of BNW ∪BSE. There-
fore, we may label the row (or column) by the label Ei or N i of the unit
segment in BNW ∪ BSE that the row (or column) contains. In total, there
will be l labeled rows and l labeled columns. By considering the l × l chess-
board obtained from these labeled rows and columns, we embed Wλ into an
l × l chessboard. Each cell in the l × l chessboard can be identified with an
ordered-pair (W r,W s) where r, s ∈ 1, 2, . . . , l with W r being the row label and
W s being the column label. The letter W here denotes a symbol that is either
N or E. The label W i is either N i or Ei, depending on whether the i-th letter
in λ is N or E.

For example, the row and column labels for WNNE is shown in Figure 11.
The northwest and the southeast boundaries are shown in think broken seg-
ments. The ordered-pair identification of the top-left cell is (N2, E3). Given
a cell (W r,W s) in the l× l chessboard, how do we know whether it is in Wλ?
The following lemma answers this question.

Lemma 6.1. In the l× l chessboard with row and column labels as described,
the cell (W r,W s) belongs to Wλ if and only if r ≤ s.

Proof. There exists a unique vertical line in the DRH staircase which separates
the DRH and the transpose DRH. There also exists a horizonal line in the
DRH staircase which separates the DRH and the transpose DRH. These two
lines form an XY-axis, which we call the DRH axis. In Figure 12, the axis
is drawn in red. Suppose that each cell has one unit sidelength. Let ν and
ε, respectively, be the numbers of N’s and E’s in λ. Considered in this XY-
coordinate system, the northwest boundary then starts at (−ε, 0) and ends at
(0, ν). The southeast boundart starts at (ν, 0) and ends at (0,−ε). The part
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of the upper staircase path that bounds Wλ starts at (0, ν), goes right and
then down alternatively, and ends at (ν, 0). On the other hand, the part of
the lower staircase path that boundsWλ starts at (−ε, 0), goes down first and
then right alternatingly, and ends at (0,−ε).

We make a quick note about the notations that (u, v) refers to a point in
the XY-plane if u and v are real numbers, while (W i,W j) refers to a cell in
Wλ if W i is a row label and W j is a column label.

(⇒) We will show that a cell (W r,W s) in Wλ satisfies r ≤ s. When con-
sidered with the DRH axis, (W r,W s) can be in one of the four quadrants.
If (W r,W s) is in the first quadrant, then (W r,W s) = (N r, N s). If it is in
the second quadrant, then (W r,W s) = (N r, Es). If it is in the third quad-
rant, then (W r,W s) = (Er, Es). Lastly, if it is in the fourth quadrant, then
(W r,W s) = (Er, N s).

Case 1. Suppose that (W r,W s) = (N r, N s) is in the first quadrant. In XY-
coordinate, the cell can be written as [u, u+ 1]× [v, v+ 1] for some u, v ∈ Z≥0

such that u+ v ≤ ν − 1. By construction, the cell is in the row N r, where N r

is the (v + 1)-st N in λ. Analogously, the column label N s is the (ν − u)-th
N in λ. Because v + 1 ≤ ν − u, we see that N r occurs before N s in λ, which
shows that r ≤ s.

Case 2. Suppose that (W r,W s) = (N r, Es) is in the second quadrant. If
we draw a horizontal line from the cell to the left, the line hits the northwest
boundary of Wλ at the segment N r in BNW . If we draw a vertical line from
the cell upward, the line hits the northwest boundary at the segment Es in
BNW . It is evident that N r comes before Es is λ. Therefore, r ≤ s.

We note that Case 3 when the cell is in the third quadrant is analogous to
Case 1, and Case 4 when the cell is in the fourth quadrant is analogous to
Case 2. Therefore, and cell (W r,W s) ∈ Wλ satisfies r ≤ s.

(⇐) The first part of this proof shows that if (W r,W s) ∈ Wλ, then r ≤ s.

Conversely, we know that there are exactly l(l+1)
2

cells in Wλ, while there are

also exactly l(l+1)
2

ordered pairs (r, s) such that 1 ≤ r ≤ s ≤ l. Therefore, for
any such pair (r, s), we must have that (W r,W s) ∈ Wλ. �

From Lemma 6.1, we now define the desired map Subsk : Wλ → Sλ. We
have established a bijective correspondence between the cells inWλ and (r, s) ∈
Z× Z such that 1 ≤ r ≤ s ≤ l. Given a cell γ ∈ Wλ, we let (rγ, sγ) denote its
corresponding ordered pair. Then, we define

Subsk(γ) := W rγW rγ+1 · · ·W sγ

where λ = W 1W 2 · · ·W l. For example, the twenty-one subskeleta of λ are
filled in the twenty-one cells of Wλ in Figure 13.
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Figure 12. The NENEEN-DRH staircase

Before moving on, let us prove a nice corollary of Lemma 6.1. The result is
not difficult to prove by carefully checking all possible cases, but here we will
use bookkeeping techniques we have developed to establish the result swiftly.

Corollary 6.2. Let λ be a North-East lattice path. For positive integers m,n,
an m× n-rectangle inside the λ-DRH staircase cannot simultaneously contain
both a cell from the DRH and a cell from the DRH transpose.

Proof. Suppose, for sake of contradiction, that there exists a rectangle contain-
ing both a cell c from the DRH and a cell c′ from the DRH transpose. Both
DRH axes must therefore pass through this rectangle, with c being in the sec-
ond quadrant and c′ being in the fourth quadrant. Since there are no cells from
the DRH or the DRH transpose in the first or the third quadrants, every row
and every column of this rectangle contain a cell in Wλ, and must therefore
have a label. Let r and s, respectively, be the row and the column labels of
the cell c. Let r′ and s′, respectively, be the row and the column labels of the
cell c′. Thus, (W r,W s), (W r′ ,W s′) /∈ Wλ, while (W r,W s′), (W r′ ,W s) ∈ Wλ.
Lemma 6.1 yields

s ≥ r′ > s′ ≥ r > s,

a contradiction. �

Recall that we start with the initial λ-DRH, create the DRH staircase, and
aim to describe the variables to associate to each cell in the staircase. The
cells in the DRH or in the transpose DRH are promptly filled. Our goal is
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Figure 13. Subsk (WNENEEN)

to describe the variable in the cell γ ∈ Wλ. The mutable cluster variable
we associate to γ will be denoted c(γ). We will see that c(γ) has a close
relationship with Subsk(γ).

As a λ-DRH comes with the data of 2 · l(λ)+4 variables filled in the λ-array,
a subskeleton µ = (λ, r, s) of λ is also endowed with 2 · l(µ) + 4 variables filled
in the µ-array. Namely, we keep all the variables from the λ-DRH near lattice
points of µ. In this way, for γ ∈ Wλ, the subskeleton Subsk(γ) is actually a
DRH itself. Hence, the map Subsk gives a DRH to every cell in Wλ. We call
such a subskeleton µ with the data of 2 · l(µ) + 4 rational functions endowed
from the larger DRH a DRH subskeleton.

Observe also that if we look from the bottom to the top, we see that the row
labels for cells in Wλ start from the biggest indexed E, go in the decreasing
order to the smallest indexed E, continue with the smallest indexed N , and go
in the increasing order to the biggest indexed N , with the horizontal DRH axis
lying in between the E’s and the N ’s. The column labels are similar. If we
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E N
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ar

t

end

Figure 14. Ordering of the row and column labels of cells in Wλ

look from the left to the right, we see that column labels go from the smallest
indexed E to the highest indexed E, and then from the highest indexed N to
the lowest indexed N , with the vertical DRH axis lying in between the E’s
and the N ’s.

In Figure 14, the axes are the DRH axes. The vertical arrows denote the
ordering of the row labels as described above. Likewise, the horizontal arrows
denote the ordering of the column labels. The words “start” and “end” denote
the fact that in each cell in Wλ, we use the row label to indicate the starting
point of the corresponding subskeleton and the column label to indicate the
ending point.

To obtain the cluster variable c(γ) from Subsk(γ), we introduce a process
called DRH standardization in the next section. This process takes in a DRH
and gives out a DRH in standard form. In particular, it produces a square
matrix whose determinant is a desired cluster variable up to a sign.

7. DRH standardization

Given a DRH subskeleton µ of a DRH λ, the cluster variable c(µ) is the
determinant of a matrix obtained as a result of a process called DRH stan-
dardization. In order to describe the process, we shall discuss certain families
of matrices which will appear frequently later. We shall also introduce the
notion of matrix concatenation. This notation greatly helps us avoid writing
clumsy matrices.

7.1. Matrix concatenation. We will look at double rim hooks from a more
algebraic point of view. We can think of each DRH as a concatenation of small
matrices, of dimension 1× 2, 2× 1, or 2× 2. This makes it easier for us to do
algebraic manipulations with double rim hooks.
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Definition 7.1. A 2× 2 block is a 2× 2 array with the data of four variables
associated to the cells.

In other words, a 2× 2 block is an ∅-DRH. It can also be thought of a 2× 2
matrix. The collection of all 2× 2 blocks is denoted B.

When there are two 2 × 2 blocks b1, b2 ∈ B, we write b1b2 to denote the
concatenation of the two blocks, by putting b2 to the right of b1, forming a
2× 4 matrix, which we think of as an EE-DRH.

If there is another block b3, we write b1b2b3 to denote the DRH formed by
attaching b3 right above b2 in b1b2, thus forming an EENN -DRH. If there
is also a block b4, the DRH b1b2b3b4 is obtained by attaching b4 to the right
of b3. The process continues in this manner: when there is another block bk,
attach it to the right or to the top of bk−1, so that the attachments are in the
zigzagged right-top-right-top order.

Definition 7.2. A horizontal domino is a 1× 2-matrix. A vertical domino is
a 2× 1-matrix. The collection of all horizontal dominoes is denoted DH . The
collection of all vertical dominoes is denoted DV .

Suppose that s ∈ DH is a horizontal domino. We shall write sb1b2 · · · bk
to denote the DRH formed by attaching s to the bottom of b1 in b1b2 · · · bk.
If, instead s ∈ DV is a vertical domino, we write sb1b2 · · · bk to refer to the
DRH formed by first attaching b1 to the right of s, and then attaching b2 on
top of b1, then b3 to the right of b2 and so on. The attachments are always
alternatively right and top (or top and right). It is important to note that
when s ∈ DV , sb1 · · · bk is different from attaching s to b1 · · · bk.

We also write b1 · · · bkf when it makes sense as follows. If k is even and
f ∈ DH , then b1 · · · bkf denotes the DRH obtained by attaching f on top of bk
in b1 · · · bk. If k is odd and f ∈ DV , then b1 · · · bkf denotes the DRH obtained
by attaching f to the right of bk.

Finally, we write sb1 · · · bkf when it makes sense. Starting with s, attaching
b1 to s, attaching b2 to b1, and so on, we can define sb1 · · · bkf as long as the
attachments are always alternatively right and top (or top and right). See
Figure 15 for some cases of sb1 · · · bkf .

If we have d1, d2 ∈ DH , we can form a block d1d2 ∈ B by attaching d2 on
the top of d1. Similarly, if d1, d2 ∈ DV , attaching d2 to the right of d1 forms a
block d1d2 ∈ B.

We have the maps v+, v− : B → DV , defined so that for any block b ∈ B,
b = v−(b)v+(b). In other words, v−(b) is the left 2 × 1 column of b, while v+

is the right. Similarly, we have h+, h− : B → DH with b = h−(b)h+(b) for any
block b.

The matrices formed by concatenating elements of B, DH , and DV , and
then adding zeroes in all irrelevant entries will be called DRH matrices.
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Figure 15. Some cases of the DRH sb1b2 · · · bkf . (Left) k ∈ 2Z,
s, f ∈ DH . (Center) k ∈ 2Z, s, f ∈ DV . (Right) k ∈ 2Z + 1,
s ∈ DV , f ∈ DH .

The DRH sb1b2 . . . bkf is always a square DRH matrix, as long as s and
f are appropriate dominoes. We can define the determinants for these DRH
matrices from the usual determinants. A crucial step in proving our main
result is establishing determinantal identities of these DRH matrices. The
identities we study in this paper are generalizations of Dodgson’s identity on
minors. Essential examples of these identities will be proved in Section 7.4.

7.2. End transformations. There are a certain number of ways of trans-
forming a DRH into another that will be of interest to us. These transfor-
mations change a given DRH at one of the two ends of the DRH. First, we
observe that given any DRH λ of positive length, we can write λ = sλ′, where
s is the starting domino of λ. Here, s ∈ DH if the first letter in λ is N , and
s ∈ DV if the letter is E. Suppose that s̃ is another domino of the same shape
as s. Then, we consider the following end transformation of Type I.

(ET1s) λ = sλ′ 7→ s̃λ′.

Suppose λ = sλ′ as before. Let u be another domino of the same shape as
s, and s̃ be another domino of the opposite shape to that of s. We have the
end transformation of type II.

(ET2s) λ = sλ′ 7→ s̃(su)λ′.

Finally, suppose again that λ = sλ′. Let u, s̃ be dominoes of the same shape
as s, and let b ∈ B be any block. Then, there is the end transformation of
type III.

(ET3s) λ = sλ′ 7→ s̃b(su)λ′.

Analogous transformations happen at the finishing end of the DRH as well.
Suppose that λ = λ′f where f is the finishing domino. We have

• (ET1f) λ = λ′f 7→ λ′f̃ , where f̃ is a domino of the same shape as f ,

• (ET2f) λ = λ′f 7→ λ′(uf)f̃ , where u is a domino of the same shape as

f , and f̃ is a domino of the opposite shape to that of f , and
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• (ET3f) λ = λ′f 7→ λ′(uf)bf̃ , where u and f̃ are dominoes of the same
shape as f and b is a block.

An inverse of an end transformation will also be considered an end trans-
formation of the same type. Note that (ET1), whether at the starting or the
finishing domino, always preserves the length of the DRH, (ET2) alters the
length by 2, and (ET3) alters the length by 4.

7.3. Standardization. Given a DRH subskeleton µ in the DRH staircase
for the initial λ-DRH, we describe the cluster variable c(µ) associated to the
subskeleton via standardization.

Definition 7.3. A non-empty North-East lattice path is said to be standard
(or standardized) if it is an alternating concatenation of NE and EN . A
standard path can start with either NE or EN .

In other words, the standard paths include EN , NE, ENNE, NEEN ,
ENNEEN , NEENNE, and so on. In a manner similar to what we defined
in Section 5.3, a lattice point on a North-East lattice path is called a bend if
the two segments which have the point as their endpoints are perpendicular.
The starting and the finishing vertices are not considered to be bends. Lattice
points on the path that are not bends are called non-bends. We have the
following observations.

Observation 7.4. A non-empty North-East lattice path λ is standard if and
only if every unit segment in λ has one bend endpoint and one non-bend
endpoint.

Let λ be a non-empty North-East lattice path. A DRH whose underlying
skeleton is λ is said to be standard if λ is.

Observation 7.5. A DRH with nontrivial skeleton is standard if and only if it
can be decomposed in the form sb1b2 . . . bkf , where s, f are dominoes of the
same shape if 2|k and of the opposite shape if 2 - k, and b1, b2, . . . , bk ∈ B.

Definition 7.6. Let µ be a DRH with nontrivial skeleton. Let s and f be the
starting and the finishing dominoes, respectively, of µ. Let b1, b2, . . . , bk be the
2 × 2 squares at the bends of µ in their usual order (from left to right in the
underlying North-East word of µ). Then, the standardization of the DRH µ
is the DRH

Std(µ) := sb1b2 . . . bkf.

Definition 7.7. Let µ be a DRH with nontrivial skeleton. Suppose that Std(µ)
is an η × η matrix. Then, the cluster variable associated to µ is defined to be
the polynomial

c(µ) := (−1)
(η−1)(η−2)

2 · det (Std(µ)) .
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The sign (−1)
(η−1)(η−2)

2 is positive when η is 1 or 2 modulo 4, and negative
when η is 3 or 0 modulo 4.

Our main theorem states that these cluster variables c(µ), together with
those already present as entries in the DRH, are the mutable cluster variables
of the DRH cluster algebra Aλ when µ ≤ λ are subskeleta.

Moreover, since Subsk is a combinatorial bijection between the cells in Wλ

and the nonempty subskeleta of λ. We may now put each mutable cluster
variable c(µ) inside Subsk−1(µ) ∈ Wλ. In this way, the DRH staircase is now
completely filled with all the desired mutable cluster variables. For a cell C
inside the staircase (whether it is insideWλ, or the original DRH, or the DRH
transpose), we write e(C) to denote the rational function that is the mutable
cluster variable associated to the cell C.

7.4. Generalization of Dodgson’s identity. The main point of this section
is to show that given an identity of a certain form on minors, one can adjoin
the same rows and columns to all the minors involved while preserving the
identity.

Let n1, n2 ∈ Z>0. Let X = [xi,j] be an n1 × n2 matrix. For I ⊆ [n1] and
J ⊆ [n2] of the same size let ∆I,J denote the minor of X with rows I and
columns J . We will be using the common “convention” that ∆∅,∅ = 1.

Lemma 7.8. Let k, l,m ∈ Z>0. Suppose we have a collection {Iji } i∈[l]
j∈[k]

of

subsets of [n1] and a collection {J ji } i∈[l]
j∈[k]

of subsets of [n2], with ∀i, j,
∣∣Iji ∣∣ =

∣∣J ji ∣∣
and ∀i,

∑
j

∣∣Iji ∣∣ = m. Moreover, suppose for some c1, . . . , cl ∈ Z, we have

(1)
l∑

i=1

ci

(
k∏
j=1

∆Iji ,J
j
i

)
= 0.

Then for any I ′ ⊆ [n1] \
(⋃

i,j I
j
i

)
and J ′ ⊆ [n2] \

(⋃
i,j J

j
i

)
of the same size

we have

(2)
l∑

i=1

ci

(
k∏
j=1

∆Iji ∪I′,J
j
i ∪J ′

)
= 0.

We will now handle a special case of Lemma 7.8.

Lemma 7.9. Suppose n′ ≤ min(n1, n2), and I = {i1, . . . , in′} ⊆ [n1], J =
{j1, . . . , jn′} ⊆ [n2]. Then ∆I,J is a polynomial PI,J(xi,j). Fix a pair of
equinumerous sets: I ′ ⊆ [n1] \ I and J ′ ⊆ [n2] \ J . For i ∈ I and j ∈ J
define x̃i,j = ∆{i}∪I′,{j}∪J ′. Then

∆I∪I′,J∪J ′ (∆I′,J ′)
n′−1 = PI,J(x̃i,j).

Proof. We will need to use a certain Plücker relation; these are described nicely
in [Lec93, Section 2.1]. In the notation thereof, we will take the special case of
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1
1

1
1

1

I

I ′

J J ′ J J ′

0

Figure 16. The matrix concerning the Plücker relation of interest.

the matrix schematically pictured in Figure 16. Note that in the actual matrix
X, the indices I, J , I ′ and J ′ will interlace in some way. To be more precise
we take the sub-matrix of X on rows I ∪ I ′ and columns J ∪ J ′, and augment
it on the right by a similar matrix except that (i) we put the identity matrix
in place of the matrix with rows I and columns J and (ii) we put the zero
matrix in place of the matrix with rows I ′ and columns J . In the notation of
Leclerc’s, we take a, b, . . . , d to be the first n′ + |I ′| columns and e, f, . . . , h to
be the last n′ + |I ′| columns, and apply Equation (2) in [Lec93, Section 2.1].

The resulting identity is

∆I∪I′,J∪J ′∆I′,J ′ =
n′∑
l=1

(−1)l+1∆{i1}∪I′,{jl}∪J ′∆(I\{i1})∪I′,(J\{jl})∪J ′ .

In case I ′ and J ′ are empty, this is just row expansion of the determinant.
Now we can finish the calculation

∆I∪I′,J∪J ′ (∆I′,J ′)
n′−1 =

n′∑
l=1

(−1)l+1∆{i1}∪I′,{jl}∪J ′∆(I\{i1})∪I′,(J\{jl})∪J ′ (∆I′,J ′)
n′−2

=
n′∑
l=1

(−1)l+1x̃i1,jl∆(I\{i1})∪I′,(J\{jl})∪J ′ (∆I′,J ′)
n′−2

=
n′∑
l=1

(−1)l+1x̃i1,jlPI\{i1},J\{jl}(x̃i,j)

= PI,J(x̃i,j),

Where the third equality holds by induction on n′ and the fourth is just the
expansion of the determinant in jn′-th row. �
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Proof of Lemma 7.8. The proof now becomes easy. Equation (1), in the nota-
tion of the previous lemma becomes

l∑
i=1

ci

(
k∏
j=1

PIji ,J
j
i
(xi,j)

)
= 0,

while the left hand side of equation (2) becomes

l∑
i=1

ci

(
k∏
j=1

PIji ,J
j
i
(x̃i,j)

)
(∆I′,J ′)

n′−1
.

This is obtained from the left hand side of the previous equation via a substi-
tution, thus it must be 0, finishing the proof. �

We will briefly discuss here why Lemma 7.8 is referred to as a generalization
of Dodgson’s identity. Suppose we would like to calculate the 3×3 determinant:∣∣∣∣∣∣

x11 x12 x13

x21 x22 x23

x31 x32 x33

∣∣∣∣∣∣ .
Dodgson [Dod1866] proposed the following method. First, construct the ma-
trix of minors

M =

[
∆12,12 ∆12,23

∆23,12 ∆23,23

]
.

Then, the desired 3 × 3 determinant is det(M)/x22. This procedure is called
Dodgson condensation. The underlying algebraic identity is simply

∆123,123∆2,2 = ∆12,12∆23,23 −∆12,23∆23,12.

More generally, the following identity, called Dodgson’s identity (also known
as Desnanot-Jacobi identity), holds true for n× n matrices:

∆[n],[n]∆[n]−{1,n},[n]−{1,n} = ∆[n−1],[n−1]∆[n]−{1},[n]−{1}−∆[n−1],[n]−{1}∆[n]−{1},[n−1].

What is this identity in light of Lemma 7.8? Note that we may take I ′ =
J ′ = [n]−{1, n}. Removing I ′ and J ′ from every minor reveals the underlying
identity:

∆{1,n},{1,n}∆∅,∅ = ∆1,1∆n,n −∆1,n∆n,1

which is the most basic non-trivial determinantal identity. Our lemma says
that we can always add new indices to every minor in a homogeneous deter-
minantal identity – like the one above – to obtain a new higher-dimensional
identity on minors. Thus, Dodgson’s identity immediately follows.

From the lemma, we can deduce a number of corollaries. These algebraic
results will be useful in the proof of Theorem 8.3, which is one of our main
results.
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Corollary 7.10. Let k be an even positive integer. Let s, s̃, f, f̃ ∈ DH and
b1, . . . , bk ∈ B. Then, we have the following determinantal identity

det(sb1 · · · bkf̃) det(s̃b1 · · · bkf)− det(sb1 · · · bkf) det(s̃b1 · · · bkf̃)

= |s̃s| · |b1| · · · · · |bk| · |ff̃ |.

Proof. Consider the (k+ 4)× (k+ 2) matrix X formed by attaching the block

s̃s right below b1 in b1b2 · · · bk(ff̃) with rows and columns labeled as in the
figure below.

s̃

s

b1 b2

. .
. bk

f̃

f

1 2 3 . . . (k + 2)

1

2

3

...

(k + 3)

(k + 4)

The left-hand-side of the identity we want to prove can be written in terms of
minors of X as follows.

∆{2,...,k+2,k+4},[k+2]∆{1,3,...,k+3},[k+2] −∆{2,...,k+3},[k+2]∆{1,3,...,k+2,k+4},[k+2].

Consider I ′ = {3, . . . , k + 2} and J ′ = {3, . . . , k + 2}. In all the four minors,
the rows and the columns include I ′ and J ′. Taking I ′ and J ′ out from the
minors yields

∆{2,k+4},{1,2} ·∆{1,k+3},{1,2} −∆{2,k+3},{1,2} ·∆{1,k+4},{1,2}

Since we have the identity

∆{2,k+4},{1,2} ·∆{1,k+3},{1,2} −∆{2,k+3},{1,2} ·∆{1,k+4},{1,2}

= ∆{1,2},{1,2} ·∆{k+3,k+4},{1,2},

Lemma 7.8 allows us to add back I ′ and J ′ to obtain the higher-dimensional
identity

LHS = ∆[k+2],[k+2] ·∆{3,...,k+4},[k+2]

=
(
|s̃s| · |b2| · · · · · |bk|

)(
|b1| · |b3| · · · · · |bk−1| · |ff̃ |

)
as desired. It is helpful to look at the determinantal identity via the following
diagram.
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· − · = ·=

·=

Each colored part in the equation above shows the minor the corresponding
term represents. �

We have now seen the power of Lemma 7.8 illustrated in the proof of Corol-
lary 7.10. When we want to simplify a certain expression involving minors of
many rows and columns, we can remove “common chunks” to reduce the mi-
nor identity to a low-dimensional identity, and then we add back the removed
chunks.

This technique can be applied very generally. In fact, given a standard DRH
µ, a compatible starting end transformation ls, and a compatible finishing end
transformation lf , we can always decompose

det(µ) · det(lslfµ)− det(lsµ) · det(lfµ)

using Lemma 7.8. Corollary 7.10 is an example in which both ls and lf are
Type I end transformations. We illustrate further examples in the following
corollaries.

Corollary 7.11. Let k be an even positive integer. Let s, s̃, f, f̃ ∈ DH and
b1, . . . , bk, b

′
w, b

′
0 ∈ B such that f = h+(b′w). Then, we have the following

determinantal identity

det(sb1 · · · bkf) det(s̃b1 · · · bkb′wb′0f̃)− det(s̃b1 · · · bkf) det(sb1 · · · bkb′wb′0f̃)

= |s̃s| · |b1| · · · · · |bk| · |b′w| · |h+(b′0)f̃ |.

Proof. Similarly to the proof of the previous corollary, we consider the following
(k+ 5)× (k+ 4) matrix X formed by attaching the block s̃s right below b1 in

b1b2 · · · bkb′wb′0f̃ with rows and columns labeled as in the figure below.
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s̃

s

b1 b2

. .
. bk

f

f̃

1 2 3 4 . . . (k + 4)

1

2

3

4

...

(k + 4)

(k + 5)

The left-hand-side of the identity to prove is

∆{2,...,k+2,k+4},[k+2]∆{1,3,...,k+5},[k+4] −∆{1,3,...,k+2,k+4},[k+2]∆{2,...,k+5},[k+4].

Removing I ′ = {3, . . . , k + 2} ∪ {k + 4} and J ′ = {2, . . . , k + 2} yields

∆{2},{1} ·∆{1,k+3,k+5},{1,k+3,k+4} −∆{1},{1} ·∆{2,k+3,k+5},{1,k+3,k+4}.

Note that we have the following low-dimensional identity:

∆{2},{1} ·∆{1,k+3,k+5},{1,k+3,k+4} −∆{1},{1} ·∆{2,k+3,k+5},{1,k+3,k+4}

= ∆{k+3},{1} ·∆{1,2,k+5},{1,k+3,k+4} −∆{k+5},{1} ·∆{1,2,k+3},{1,k+3,k+4}.

Adding back chunks yields

LHS = ∆{3,...,k+4},[k+2] ·∆{1,...,k+2,k+4,k+5},[k+4]

−∆{3,...,k+2,k+4,k+5},[k+2] ·∆[k+4],[k+4].

Observe that ∆{3,...,k+2,k+4,k+5},[k+2] = 0. Therefore,

LHS = ∆{3,...,k+4},[k+2] ·∆{1,...,k+2,k+4,k+5},[k+4]

=
(
|b1| · |b3| · · · · · |bk−1| · |b′w|

)
·
(
|s̃s| · |b2| · |b4| · · · · · |bk| · |h+(b′0)f̃ |

)
as desired. �

Corollary 7.12. Let k be an even positive integer. Let s, s̃, f ∈ DH , ϕ ∈ DV ,
b0, b1, . . . , bk, bw, b

′
w ∈ B. Suppose that v−(bw) = s and v+(b′w) = f . Then,

det(sb1 · · · bkb′wϕ) det(s̃b0bwb1 · · · bkf)− det(sb1 · · · bkf) det(s̃b0bwb1 · · · bkb′wϕ)

= |s̃v−(b0)| · |bw| · |b′w| · δ · |b1| · · · · · |bk|,

where δ is the upper entry in ϕ.

Proof. Consider the following (k + 5)× (k + 5) matrix X = s̃b0bwb1 · · · bkb′wϕ,
with rows and columns labeled as in the figure below.
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s̃

b0
s

b1 b2

. .
. bk

f
ϕ

1 2 3 4 . . . (k + 5)

1

2

3

4

...

(k + 4)

(k + 5)

The left-hand-side of the identity to prove is

∆{2,4,...,k+5},{3,...,k+5}∆{1,...,k+3,k+5},[k+4] −∆{2,4,...,k+3,k+5},{3,...,k+4}∆[k+5],[k+5].

Removing I ′ = {2, 4, . . . , k + 3, k + 5} and J ′ = {3, . . . , k + 4} yields

∆{k+4},{k+5} ·∆{1,3},{1,2} −∆∅,∅∆{1,3,k+4},{1,2,k+5}.

We have the following low-dimensional identity

∆{k+4},{k+5} ·∆{1,3},{1,2} −∆∅,∅∆{1,3,k+4},{1,2,k+5}

= ∆{3},{k+5} ·∆{1,k+4},{1,2} −∆{1},{k+5} ·∆{3,k+4},{1,2}.

Adding back chunks yields

LHS = ∆{2,...,k+3,k+5},{3,...,k+5} ·∆{1,2,4,...,k+5},[k+4]

−∆{1,2,4,...,k+3,k+5},{3,...,k+5}︸ ︷︷ ︸
=0

·∆{2,...,k+5},[k+4]

=
(
|bw| · |b2| · |b4| · · · · · |bk| · δ

)
·
(
|s̃v−(b0)| · |b1| · |b3| · · · · · |bk−1| · |b′w|

)
as desired. �

8. The main decomposition theorem

Recall that we have a proposed mutable cluster variable which is the de-
terminant (up to a sign) of a standard DRH in each cell of Wλ. We say
that (m11,m12;m21,m22) is a quadruple inside Wλ if they are the upper-left,
upper-right, lower-left, and lower-right cells, respectively, of a 2 × 2-square
inside Wλ.

Quadruples inside Wλ are of great interest to us, because they are where
worm operations happen. Consider, for example, the quadruple

q = (m11,m12;m21,m22)
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inside Wλ and a worm w that contains m21 → m11 → m12. The worm op-
eration on w at m11 sends the worm to another worm w′ with m11 replaced
with m22. In Section 9.3, we will describe the quiver Qw for every worm w.
Understanding the determinant

|q| :=
∣∣∣∣e(m11) e(m12)
e(m21) e(m22)

∣∣∣∣
is important in describing the frozen arrows at m11 in w (and therefore m22

in w′). Our main result of this section is Theorem 8.3, in which we factor
the determinant |q| into a product of frozen variables, and thus allowing us to
describe the frozen arrows. In Corollaries 7.10, 7.11, and 7.12, we have seen
some examples of how such a 2×2 determinant of standard DRH determinants
factors into small matrices. We will see in the following that such factorizations
occur in all quadruples in Wλ.

Observation 8.1. Let (m11,m12;m21,m22) be a quadruple insideWλ. Let µij :=
Subsk(mij). Then, there is a finishing-domino end transformation lf which
sends Std(µ11) to Std(µ12) and there is a starting-domino end transformation
ls which sends Std(µ11) to Std(µ21). These end transformations are necessarily
unique. Furthermore, lf sends Std(µ21) to Std(µ22) and ls sends Std(µ12) to
Std(µ22).

If (m11,m12;m21,m22) is a quadruple insideWλ. Then, we may consider the
row labels r1, r2 of the rows containing m11,m21, respectively. We also consider
the column labels s1, s2 of the columns containing m11 and m12, respectively.
Then, for i, j ∈ {1, 2}, Subsk(mij) starts at segment wri and ends at segment
wsj , inclusive. Therefore, among the four subskeleta, there is a unique one
that is the shortest, and there is a unique one that is the longest.

Definition 8.2. Suppose that q := (m11,m12;m21,m22) is a quadruple inside
Wλ. Let µij := Subsk(mij), and let µ′ and µ′′, respectively, be the shortest and
the longest of the four subskeleta among µij. Then, we define F(q) to be the
subset of frozen variables of Qλ given by the following rule.

(1) If q is not split by any DRH axis, then F(q) includes
(i) the frozen coefficients ∆i (1 ≤ i ≤ l + 1) corresponding to the

bends of µ′,
(ii) the frozen coefficients ∆i (1 ≤ i ≤ l + 1) corresponding to the

endpoints of µ′′, and
(iii) the frozen coefficients ∆i (1 ≤ i ≤ l + 1) corresponding to the

endpoints of µ′ that are also bends of µ′′.
(2) If q is split by a DRH axis, then follow (1), but also include the following

modifications.
(a) If q is split by the vertical DRH axis, then necessarily, (ii) includes

∆l+1. In this case, remove ∆l+1 and insert apq in F(q).
(b) If q is split by the horizontal DRH axis, then necessarily, (ii) in-

cludes ∆1. In this case, remove ∆1 and insert a11 in F(q).
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Theorem 8.3 (The Main Decomposition Theorem). Let q be a quadruple
inside Wλ. Then,

|q| =
∏

∆∈F(q)

∆.

Proof. The identities to prove in the various cases of q will be different. In this
proof, we will show the identities for certain important cases. The rest can be
argued analogously.

The collection F(q) depends crucially on where q is in Wλ. In particular,
whether q is cut by either or both of the DRH axes will affect the elements of
F(q).

The DRH axes split Wλ into four quadrants. Let the center of q have
corrdinate (qx, qy) with respect to the DRH axes. We will introduce the
following notation to bookkeep the casework: we say that q is in the case
(i, j)αβ where i, j ∈ Z and α, β ∈ {−, 0,+}, if deg(e(m12))− deg(e(m11)) = i,
deg(e(m21))−deg(e(m11)) = j, and the signs of qx and qy are α and β, respec-
tively.

for example, the case (0, 2)−+ refers to when the whole q is to the left of
the vertical DRH axis and is above the horizontal DRH axis, deg(e(m12)) =
deg(e(m11)), and deg(e(m21)) = deg(e(m11)) + 2.

In light of Observation 8.1, we use the notation µij to denote Subsk(mij).
We will also use ls and lf to denote the end transformations which transform
Std(µ11) 7→ Std(µ21) and Std(µ11) 7→ Std(µ12), respectively.

The number of possible (i, j)αβ is finite. It is not hard to notice the following:

• if α = −, then i ∈ {0,+2},
• if α = 0, then i ∈ {−1,+1},
• if α = +, then i ∈ {−2, 0},
• if β = −, then j ∈ {−2, 0},
• if β = 0, then j ∈ {−1,+1}, and
• if β = +, then j ∈ {0,+2}.

There are hence 36 possibilities for (i, j)αβ, each of which gives a certain
algebraic identities we will prove. Most cases will be analogous and we will
show only particular cases.

As we saw earlier, there is a unique shortest subskeleton and a unique longest
one among the four µij. We let µ̃ denote the shortest subskeleton µij. Consider
the lattice path λ inside the initial λ-DRH again, as we did in Section 3.1. We
can now consider µ̃ inside λ inside the DRH as well. Let v1, . . . , vk denote all
the bends in µ̃ (in that order). We will denote by bi ∈ B the 2 × 2-square in
the DRH centered at vi.

Let w and w′ denote the starting vertex and the final vertex of µ̃. Let u and
u′ denote the starting vertex and the final vertex of the longest subskeleton.
Note that from u to w, there may or may not be a bend. Nevertheless, since
transformations at endpoints are end transformations, there can be at most
one bend. If it exists, call it v0. Analogously, if a bend between w′ and
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u′ exists, we call it v′0. The 2 × 2-squares at u, u′, w, w′, v0, v
′
0 will be called

bu, b
′
u, bw, b

′
w, b0, b

′
0, respectively. These notations will come in handy when we

standardize many DRHs from subskeleta.
Recall that if b is a block, we use h+(b), h−(b) ∈ DH to denote the upper

and the lower 2 × 1 submatrices of b. Simiarly, we use v+(b), v−(b) ∈ DV to
denote the right and the left 1× 2 submatrices of b.

Case (0, 0)++. In this case, µ̃ := µ12. Necessarily, µ̃ starts with N and ends

with N (and thus 2|k). We have µ11 = µ̃N , µ22 = Nµ̃, and µ21 = Nµ̃N . Note
also that both ls and lf are of type I. Write s := h−(bw) ∈ DH , f := h+(b′w) ∈
DH , s̃ := h−(bu) ∈ DH , and f̃ := h+(b′u) ∈ DH . We have

Std(µ̃) = sb1 · · · bkf
Std(Nµ̃) = s̃b1 · · · bkf

Std(µ̃N) = sb1 · · · bkf̃

Std(Nµ̃N) = s̃b1 · · · bkf̃ .

Note that all these four matrices have the same dimension (k + 2) × (k + 2).
We then have

e(m11) = c(µ11) = (−1)
(k+1)k

2 · det(sb1 · · · bkf̃)

and similar expressions for e(m12), e(m21), and e(m22). We have obtained:

|q| = det(sb1 · · · bkf̃) det(s̃b1 · · · bkf)− det(sb1 · · · bkf) det(s̃b1 · · · bkf̃).

We want to show that |q| equals the product of frozen variables in F(q). Going
back to Definition 8.2, we find that F(q) contains the frozen cluster variables
that correspond to: (i) all the bends inside µ̃ and (ii) the endpoints of Nµ̃N .
Note that the endpoints of µ̃ are not bends in Nµ̃N and therefore we do not
have contributions from (iii) from Definition 8.2.

The frozen variables that correspond to the bends inside µ̃ are precisely
|b1|, |b2|, . . . , |bk|. The frozen variables that correspond to the endpoints of

Nµ̃N are |bu| = |s̃s| and |b′u| = |ff̃ |. Therefore, it remains to show that

det(sb1 · · · bkf̃) det(s̃b1 · · · bkf)− det(sb1 · · · bkf) det(s̃b1 · · · bkf̃)

= |s̃s| · |b1| · · · · · |bk| · |ff̃ |.

This is precisely Corollary 7.10. Now we start to see how our hard work with
algebraic identities pays off. The identities we proved will be directly useful
in dealing with the cases in this proof.

Case (−2, 0)++. We still have µ̃ = µ12, µ̃ starts with N and ends with N

forcing 2|k. Now that the degree of e(m11) is two greater than that of e(m12).
There is a positive integer σ such that µ11 = µ̃EσN . We also have µ22 = Nµ̃
and µ21 = Nµ̃EσN . The end transformation ls in this case is of Type I,
while lf is of Type III. As in the previous case, let s := h−(bw), f := h+(b′w),
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s̃ = h−(bu), and f̃ := h+(b′u). We have

Std(µ̃) = sb1 · · · bkf
Std(Nµ̃) = s̃b1 · · · bkf

Std(µ̃EσN) = sb1 · · · bkb′wb′0f̃

Std(Nµ̃EσN) = s̃b1 · · · bkb′wb′0f̃ .

Therefore,

|q| = det(sb1 · · · bkf) det(s̃b1 · · · bkb′wb′0f̃)− det(s̃b1 · · · bkf) det(sb1 · · · bkb′wb′0f̃).

On the other hand, we have F(q) = {b1, . . . , bk, bu, b
′
u, b
′
w}. It remains to show

that

det(sb1 · · · bkf) det(s̃b1 · · · bkb′wb′0f̃)− det(s̃b1 · · · bkf) det(sb1 · · · bkb′wb′0f̃)

= |s̃s| · |b1| · · · · · |bk| · |b′w| · |h+(b′0)f̃ |.

This is precisely Corollary 7.11. The work in all other cases is analogous in the
sense that we follow the following procedure: first, write down the four matrices
Std(µij) (and e(mij)); second, notice which types of end transformations ls
and lf are; third, decompose the determinant |q| using the generalization of
Dodgson’s identity in Lemma 7.8.

The two examples we showed above concern end transformations of Types I
and III. It will be interesting to see how decomposition of |q| behaves for end
transformations of Type II. Therefore, we will show another case.

Case (−1,+2)0+. The 2×2-square q is cut in half by the vertical DRH axis,
but is above the horizonal DRH axis. As a result, all µij starts with N , while
µ11 and µ21 end with E but µ12 and µ22 end with N . The shortest subskeleton
is µ̃ = µ12. Let s = h−(bw), f = h+(b′w), s̃ = h−(bu), and ϕ = v+(b′u). Note
that we use ϕ instead of f to indicate that the shape of the finishing domino
of the longest subskeleton is different from that of µ̃. We have

e(m11) = (−1)
(k+2)(k+1)

2 · det(sb1 · · · bkb′wϕ)

e(m12) = (−1)
(k+1)k

2 · det(sb1 · · · bkf)

e(m21) = (−1)
(k+4)(k+3)

2 · det(s̃b0bwb1 · · · bkb′wϕ)

e(m22) = (−1)
(k+3)(k+2)

2 · det(s̃b0bwb1 · · · bkf).

Note that k is still even in this case. We have

|q| = det(sb1 · · · bkb′wϕ) det(s̃b0bwb1 · · · bkf)−det(sb1 · · · bkf) det(s̃b0bwb1 · · · bkϕ).

Note that the end transformation ls is of Type III, while lf is of Type II. From
Definition 8.2, we have F(q) = {b1, . . . , bk, bu, apq, bw, b

′
w}. Again, the equality

|q| =
∏

∆∈F(q) ∆ follows directly from Lemma 7.8. We proved this identity
specifically in Corollary 7.12. �
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Corollary 8.4. Suppose that M = [mij]1≤i,j≤3 is a 3 × 3 square inside Wλ.
Then,

det

e(m11) e(m12) e(m13)
e(m21) e(m22) e(m23)
e(m31) e(m32) e(m33)

 = 0.

Proof. By Dodgson condensation, it suffices to show that

|q11| · |q22| = |q12| · |q21|
where qij denotes the quadruple (mi,j,mi,j+1;mi+1,j,mi+1,j+1). By the main
decomposition theorem, we need to show that

(∗)
( ∏

∆∈F(q11)

∆
)
·
( ∏

∆∈F(q22)

∆
)

=
( ∏

∆∈F(q12)

∆
)
·
( ∏

∆∈F(q21)

∆
)
.

We will introduce some notations for this proof. If µ is a subskeleton of λ, let
E(µ) denote the product of the two frozen variables corresponding to the end-
points of µ, let B(µ) denote the product of the frozen variables corresponding
to the bends inside µ, and let I(µ) denote the product of the frozen variables
corresponding to the endpoints of µ that are also bends in λ.

Note that if i, j, k, l ∈ {1, 2, 3}, then one of the following four cases is true

• µik ∩ µjl = µil and µik ∪ µjl = µjk,
• µik ∩ µjl = µjk and µik ∪ µjl = µil,
• µil ∩ µjk = µik and µil ∪ µjk = µjl, or
• µil ∩ µjk = µjl and µil ∪ µjk = µik

depending on which of the four subskeleta is the longest. In every case, the
following relations always hold:

B(µik)B(µjl) = B(µil)B(µjk)

E(µik)E(µjl) = E(µil)E(µjk)

I(µik)I(µjl) = I(µil)I(µjk).

For each i, j ∈ {1, 2}, let µrij ,sij and µRij ,Sij denote the shortest and the longest,
respectively, subskeleta among µi,j, µi,j+1, µi+1,j, µi+1,j+1. Recall that, for each
i = 1, 2, there is a starting end transformation lsi that changes µi,j to µi+1,j, for
every j. Analogously, for each j = 1, 2, there is a finishing end transformation
lfj that changes µi,j to µi,j+1, for every i. This implies that necessarily r11 =
r12 =: r1, r21 = r22 =: r2, s11 = s21 =: s1, and s12 = s22 =: s2. We can define
Ri and Sj similarly.

For each quadruple q, define

χX(q) =

{
a11
∆1

if q is split by the horizontal DRH axis,

1 otherwise.

and

χY (q) =

{
apq

∆l+1
if q is split by the vertical DRH axis,

1 otherwise.
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The main decomposition theorem says that∏
∆∈F(qij)

∆ = B(µrij ,sij)E(µRij ,Sij)I(µrij ,sij)χ
X(qij)χ

Y (qij)

= B(µri,sj)E(µRi,Sj)I(µri,sj)χ
X(qij)χ

Y (qij).

Note that χX(qij) = χX(qij′) and χY (qij) = χY (qi′j). Thus,

χX(q11)χY (q11)χX(q22)χY (q22) = χX(q12)χY (q12)χX(q21)χY (q21).

From (∗), it remains to show that

B(µr1,s1)E(µR1,S1)I(µr1,s1)B(µr2,s2)E(µR2,S2)I(µr2,s2)

= B(µr1,s2)E(µR1,S2)I(µr1,s2)B(µr2,s1)E(µR2,S1)I(µr2,s1),

which is indeed true because of the relations we noted above for the indices
(i, j, k, l) = (r1, r2, s1, s2) and (R1, R2, S1, S2). We have finished the proof. �

9. The main theorem

In this section, we state and prove the main theorem.

Theorem 9.1. Let λ be a North-East lattice path. The set of mutable cluster
variables of the DRH algebra Aλ is

{e(m) : m is a cell in the λ-DRH staircase.}.

To prove the main theorem, we will describe the quiver Qw for every worm w
inside the DRH staircase. By construction, the proposed quiver for the initial
worm M(λ) will agree with the initial DRH quiver Qλ. We made a remark
earlier that any worm can be transformed to any other worm via a sequence
of worm operations. Therefore, to prove the main theorem, it suffices to show
that our proposed quivers are compatible with worm operations everywhere in
the DRH staircase.

In an arbitrary worm w inside the DRH staircase, the frozen arrows to each
mutable vertex can get complicated. Instead of always talking about frozen
arrows, we may use frozen coefficients at mutable vertices instead.

9.1. Frozen coefficients for quivers. Frozen coefficients are defined at mu-
table vertices of a given quiver.

Definition 9.2. Let Q be a quiver. Suppose that v is a mutable vertex in Q.
Let f1, f2, . . . , fn denote the frozen variables of Q. For each i, we denote by
mi, the multiplicity of frozen arrows from v to fi. Here, an out-arrow from v
to fi is counted as +1 arrow, while an in-arrow from fi to v is counted as −1
arrow. Then, the frozen coefficient at v in Q is defined to be

fcQ(v) :=
n∏
i=1

fmii .
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Frozen coefficients are useful because they record the data of all frozen ar-
rows at a certain mutable vertex in one expression. When the frozen variables
are algebraically independent, the data of frozen coefficients at all mutable
vertices and the data of arrows between the mutable vertices are sufficient to
recover the whole quiver.

Lemma 9.3. Let Q be a quiver. Let A and B be mutable vertices of Q such
that there is only one arrow from B to A between the two vertices. Suppose

also that all the frozen arrows at A are out-arrows. Let Q̂ be the resulting
quiver after mutating Q at A. Then, we have the following equations.

fcQ̂(A) =
1

fcQ(A)

and
fcQ̂(B) = fcQ(A) · fcQ(B).

Proof. The first equation is clear because the mutation at A flips all the frozen
arrows at A. For the second equation, consider any frozen vertex F . If F is
not connected to A, then mutating at A does not affect the frozen arrows at F .
If F is connected to A, then by assumption there are m ≥ 1 arrows from A to
F . Mutating at A adds m arrows from B to F . By considering all the frozen
vertices in this way, we conclude that fcQ̂(B) = fcQ(A) · fcQ(B) as desired. �

Indeed, the following analogous result holds when the arrows go in the op-
posite direction.

Corollary 9.4. Let Q be a quiver. Let A and B be mutable vertices of Q such
that there is only one arrow from A to B between the two vertices. Suppose

also that all the frozen arrows at A are in-arrows. Let Q̂ be the resulting quiver
after mutating Q at A. Then, we have the following equations.

fcQ̂(A) =
1

fcQ(A)

and
fcQ̂(B) = fcQ(A) · fcQ(B).

9.2. Frozen coefficients for lattice points inside the DRH staircase.
In this section, we will describe how to associate a frozen coefficient to each
lattice point inside the DRH staircase. These frozen coefficients are different
from ones we associate to mutable vertices of quivers. We will establish their
connections later. The reason we introduce them is so that the description
of quivers Qw for worms can be given more easily. Like frozen coefficients for
mutable vertices in quivers, these coefficients are Laurent monomials in the
frozen variables of Qλ.

A lattice point inside the DRH staircase refers to the center of any 2 × 2-
square inside the staircase. Our description of frozen coefficients for the points
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will be given in three steps. Through combinatorial descriptions below, we will
associate a frozen coefficient FC(u) to each lattice point u in each of the three
cases: (1) that is also inside the DRH or the DRH transpose, (2) that is also
inside Wλ, and (3) that is on either the northwest boundary or the southeast
boundary of Wλ.

In almost all the cases, the frozen coefficient FC(u) is defined to be the
determinant of the 2 × 2 square centered at u. Namely, if u is the center of
[mij]1≤i,j≤2, then we define

FC(u) :=

∣∣∣∣e(m11) e(m12)
e(m21) e(m22)

∣∣∣∣ .
As we will see in the steps below, this is the case as long as the determinant
is a homogeneous polynomial; in other words,

deg(e(m11)) + deg(e(m22)) = deg(e(m12)) + deg(e(m21)).

The exceptional cases are Cases 3.1 and 3.1’ where there are 3 of the deg(e(mij))
are 1 and the other one is 3. Only in these cases do we give a special rule for the
coefficients. We call these lattice points with nonhomogeneous determinants
special points.

Step 1. Let u be the center of a 2× 2-square inside the original DRH or the
transpose DRH. Note that the determinant of the 2× 2 square at u is a frozen
variable ∆i by definition. Then, to u, associate FC(u) := ∆i.

It will also be convenient to associate the following frozen coefficients to
these extra points:

• ∆1 to the upper right corner of c11,
• ∆0 := a11 to the lower left corner of c11,
• ∆l+1 to the lower left corner of cpq, and
• ∆l+2 := apq to the upper right corner of cpq.

These exceptional lattice points are not inside the staircase, but having frozen
coefficients there turns out to be convenient in Step 3. Do analogous extra
associations for the transpose DRH so that the frozen coefficients conform
with the DRH under transposition. For convenience, we will colloquially call
the lattice points to which we associate frozen coefficients in this step Step-1
lattice points.

Step 2. Suppose that u is a lattice point inside Wλ. Then, let the quadru-
ple centered at u be denoted by q := (m11,m12;m21,m22). As before, let
µij := Subsk(mij) be the corresponding subskeleton of λ at the cell mij. By the
main decomposition theorem (Theorem 8.3), the determinant c(µ11)c(µ22) −
c(µ12)c(µ21) is a product of frozen variables of Qλ. We define the frozen coef-
ficient FC(u) at u to be this product:

FC(u) :=
∏

∆∈F(q)

∆.
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Step 3. Let u be a lattice point on the boundary of Wλ. As above, let m11,
m12, m21, and m22 be four cells around u. In this step, some of mij will be
inside the DRH (or DRH transpose), while some will be in Wλ.

Case 3.1. Suppose that m11, m12, and m21 are in the DRH, but m22 is in
Wλ. This case happens when the DRH has a bend at u. If we let u11, u12,
u21, and u22 = u, respectively, be the upper-left, upper-right, lower-left, and
lower-right corners of m11. Then, the frozen coefficients at u11, u12, and u21

are described in Step 1. We associate

FC(u) :=
FC(u12) FC(u21)

FC(u11)

to the lattice point u. Necessarily, FC(u) is in the form ∆i∆i+2

∆i+1
in this case.

Case 3.1’. Suppose that m12, m21, and m22 are in the transpose DRH, but
m11 is in Wλ. This case is analogous to Case 1. We define FC(u) similarly: if

v11 = u, v12, v21, v22 are the corners of m22, then define FC(u) := FC(v12) FC(v21)
FC(v22)

.

Case 3.2. Suppose that m11 and m12 are in the original DRH, while m21 and
m22 are in Wλ. If we start from u and go up along the vertical line u is in,
the first Step-1 lattice point we meet is the point one unit right above u. Call
this point v. On the other hand, if we start from u and go left, the first Step-1
lattice point we meet is at least two units away from u. Call this point w.
The point w may be the exceptional points we associated frozen coefficients
to, which may not be in the DRH skeleton. This is why we associate frozen
variables to extra points in Step 1. In this case, define

FC(u) := FC(v) · FC(w).

This coefficient is necessarily of the form ∆i∆j, for some i, j = 0, 1, . . . , l + 2.
Case 3.2’ Analogous to Case 3.2 is when m21 and m22 are in the transpose

DRH, while m11 and m12 are in Wλ. Starting from u, instead of going up
and left to find v and w, we go down and right to find v and w. Then, define
FC(u) := FC(v) · FC(w).

Case 3.3 Suppose that m11 and m21 are in the original DRH, while m12

and m22 are in Wλ. This case is similar to Case 3.2. We perform the same
procedure of starting at u, going up until we find a Step-1 lattice point v,
going left until we find a Step-1 lattice point w. In this case, w is one unit
away from u, while v is farther away. Define FC(u) := FC(v) · FC(w).

Case 3.3’ Analogous to Case 3.3 is when m12 and m22 are in the transpose
DRH, while the other two are in Wλ. Starting from u, we go down until we
find a Step-1 lattice point v, and go right until we find a Step-1 lattice point
w. Define FC(u) := FC(v) · FC(w).

Case 3.4 Suppose that only m11 is in the original DRH, while the others are
in Wλ. Let x be the upper left corner of m11. Note that x is a Step-1 lattice
point. Similar to the previous cases, we start from u and go up until we meet
a Step-1 lattice point v. Starting from u again, we go left until we meet a
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non-special lattice points v special lattice points v

Exactly 1 cell in q is in Wλ Either 0, 2, 3, or 4 cells in q are in Wλ.

FC(v) is a monomial in ∆i’s FC(v) is in the form ∆i∆i+2

∆i+1

FC(v) = det(q) FC(v) 6= det(q)

det(q) is homogeneous. det(q) is non-homogeneous.

Table 1. A summary of frozen coefficients at lattice points v
in the DRH staircase. Here, q denotes the 2× 2-square centered
at v.

Step-1 lattice point w. Define

FC(u) := FC(v) FC(w) FC(x).

Necessarily, FC(u) is in the form ∆i∆j∆k for some i < j < k.
Case 3.4’ Suppose that only m22 is in the transpose DRH. Starting at u,

we go down until we meet a Step-1 point v, and go right until we meet a
Step-1 point w. Let x be the lower-right corner of m22. Define FC(u) :=
FC(v) FC(w) FC(x).

We note that in all steps, except Cases 3.1 and 3.1’ (the special points),
the frozen coefficients we associate to the lattice points are monomials of
∆0,∆1, . . . ,∆l+2 with the degree of ∆i being either 0 or 1 for each i. Only in

Cases 3.1 and 3.1’ do we associate a frozen coefficient of the form
∆i∆j

∆k
to the

lattice point. See Table 1 for a summary.

An example of frozen coefficients for the lattice points inside NENNEE-
DRH staircase is given in Figure 17. Notice the resemblance between our
staircase diagram and Auslander-Reiten quivers.

The special points are exactly the centers of 2 × 2-squares inside the DRH
staircase whose determinant is non-homogeneous. Inside Wλ, every 2 × 2-
square has homogeneous determinant. This reflects the fact that the special
points only occur on the boundary between Wλ and the DRH (or the DRH
transpose). Away from the special lattice points, there is a generalization to
Corollary 8.4.

Proposition 9.5. Suppose that [cij]1≤i,j≤3 is a 3 × 3 square inside the DRH
staircase. If all the four vertices of c22 are non-special, then

det

e(c11) e(c12) e(c13)
e(c21) e(c22) e(c23)
e(c31) e(c32) e(c33)

 = 0.
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258 58 ∆8

25 ∆5 ∆6 ∆7

024
24
3 ∆4

46
5 47

∆2 ∆3 36 357 358

∆1
13
2 136 1357 1358 135

∆0 0236 02357 02358 0235 024 ∆0

257 258 25
24
3 ∆2 ∆1

58 ∆5 ∆4 ∆3
13
2

∆6
46
5 36 136

∆7 47

∆8

Figure 17. Frozen coefficients for lattice points inside
NENNEE-DRH staircase. Here, the digit i denotes the frozen
variable ∆i. For example, 24

3
denotes ∆2∆4

∆3
. Recall that ∆0 :=

a11 and ∆l+2 = apq. Special lattice points are marked with dia-
monds.

Proof. The case when the 3 × 3-square is in Wλ was done in Corollary 8.4.
From now, suppose that the 3 × 3-square has some cells from the DRH or
the DRH transpose. Recall from Corollary 6.2 that the 3 × 3-square cannot
simultaneously have both cells from the DRH and the DRH transpose. By
symmetry, we may assume that it contains a cell from the DRH. As long as
all the four vertices of c22, the middle cell, are non-special, there are eight
following cases.

1) 2) 3) 4) 5) 6) 7) 8)
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In each diagram above, the white cells denote cells inWλ and the cyan cells
denote cells in the DRH. (Compare Figure 17.)

Let u11, u12, u21, and u22 be the upper-left, upper-right, lower-left, and lower-
right vertices, respectively, of c22. Also, let qij denote the quadruple centered
at uij. Since all uij are non-special, we have that |qij| = FC(uij). Therefore,
it suffices to show in each case that FC(u11) FC(u22) = FC(u12) FC(u21).

Case 1. In this case, FC(u11) = ∆i and FC(u12) = ∆i+1 for some i. The
frozen coefficients FC(u21) and FC(u22) were defined in Case 3.2 in Section
9.2. Following the description, if we let w be the closest Step-1 lattice point to
the left to u21, we obtain FC(u21) = ∆i · FC(w) and FC(u22) = ∆i+1 · FC(w).
Hence, FC(u11) FC(u22) = ∆i∆i+1 FC(w) = FC(u12) FC(u21).

Case 2. We write the row and column labels for the six squares as follows.

α α
+

1

α
+

2

β

γ

w

∆α+2 ∆α+3

Let w be the closest Step-1 lattice point to the left of u11. Note that
FC(u11) = ∆α+2 · FC(w) and FC(u12) = ∆α+3 · FC(w). Recall the notations
B, E, I, χX , and χY we used in the proof of Corollary 8.4. We will use these
functions again. For convenience, we will use [r, s] to denote the subskeleton
(λ, r, s) = W rW r+1 · · ·W s of λ. The main decomposition theorem gives

FC(u21) = B([β ∨ γ, α])E([β ∧ γ, α + 1])I([β ∨ γ, α])χX(q21)χY (q21),

where β ∧ γ := min{β, γ} and β ∨ γ := max{β, γ}, and also

FC(u22) = B([β ∨ γ, α + 1])E([β ∧ γ, α + 2])I([β ∨ γ, α + 1])χX(q22)χY (q22).

Note that [β∨γ, α] and [β∨γ, α+1] share the same bends. Thus, B([β∨γ, α]) =
B([β ∨ γ, α + 1]). Also, since the α-th, (α + 1)-st, and (α + 2)-nd letter in λ
are all E’s, the end points of both [β ∨ γ, α] and [β ∨ γ, α+ 1] are not bends in
λ. Thus, I([β ∨ γ, α]) = I([β ∨ γ, α + 1]). On the other hand, by considering
the ending vertices of [β ∧ γ, α + 2] and [β ∧ γ, α + 3], we have

E([β ∧ γ, α + 2])

E([β ∧ γ, α + 1])
=

∆α+3

∆α+2

.

Note also that χY (q21) = 1 = χY (q22), since both q21 and q22 are not split by
the vertical DRH axis, and that χX(q21) = χX(q22). This gives

FC(u11) FC(u22) = FC(u12) FC(u21).

Case 3. This case is analogous to Case 1.
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Case 4. Let v be the closest Step-1 lattice point above u12 and w be the
closest Step-1 lattice point to the left of u21. As u11 is a lattice point inside
the DRH, write FC(u11) = ∆i. We have FC(u12) = ∆i FC(v), FC(u21) =
∆i FC(w), and FC(u22) = ∆i FC(v) FC(w). It is clear that FC(u11) FC(u22) =
FC(u12) FC(u21).

Case 5. We write the row and column labels and define v and w as in the
following diagram.

α α
+

1

β

α + 2

γ

δ

w

v

∆α+1 ∆α+2

Note that we have β ≥ α+ 2 and α ≥ γ, δ. Using a similar analysis to Case 2,
we find that FC(u11) = ∆α+2 FC(w) and FC(u12) = ∆α+2 FC(v) FC(w). The
main decomposition theorem gives

FC(u21) = B([γ ∨ δ, α])E([γ ∧ δ, α + 1])I([γ ∨ δ, α])χX(q21)χY (q21)

and

FC(u22) = B([γ ∨ δ, α + 1])E([γ ∧ δ, β])I([γ ∨ δ, α + 1])χX(q22)χY (q22).

Therefore,

FC(u22)

FC(u21)
=
B([γ ∨ δ, α + 1])

B([γ ∨ δ, α])

E([γ ∧ δ, β])χY (q22)

E([γ ∧ δ, α + 1])χY (q21)

I([γ ∨ δ, α + 1])

I([γ ∨ δ, α])

= 1 · FC(v)

∆α+2

·∆α+2 = FC(v) =
FC(u12)

FC(u11)
.

Case 6. This case is analogous to Case 2.
Case 7. This case is analogous to Case 5.
Case 8. We give the row and column labels and define v and w in the diagram

below.
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α β γ

α + 1

δ

ε

w

v

∆α+1

Note that β, γ ≥ α+1 and α ≥ δ, ε. We have FC(u11) = ∆α+1 FC(v) FC(w).
The main decomposition theorem gives

FC(u12) = B([α + 1, β ∧ γ])E([δ, β ∨ γ])I([α + 1, β ∧ γ])χX(q12)χY (q12),

FC(u21) = B([δ ∨ ε, α])E([δ ∧ ε, β])I([δ ∨ ε, α])χX(q21)χY (q21),

and

FC(u22) = B([δ ∨ ε, β ∧ γ])E([δ ∧ ε, β ∨ γ])I([δ ∨ ε, β ∧ γ])χX(q22)χY (q22).

Hence,
FC(u21)

FC(u22)
=

1

∆α+1 ·B([α + 1, β ∧ γ])
· FC(v)

FC(v̂)
· ∆α+1

η
,

where v̂ denotes the lattice point inside the DRH corresponding to β∨γ, while
η denotes the frozen coefficient at the lattice point corresponding to β ∧ γ if
the point is a bend in λ and denotes 1 if it is not.

Note that we have

FC(u12) = B([α + 1, β ∧ γ]) · (FC(w) FC(v̂)) · (∆α+1 · η) .

Therefore,

FC(u12) FC(u21)

FC(u22)
= ∆α+1 FC(v) FC(w) = FC(u11).

We have finished the proof. �

9.3. Description of the quiver of each worm inside the DRH staircase.
In this section, we will use the frozen coefficients defined at the lattice points
inside the DRH staircase to propose the quivers for the worms inside the DRH
staircase. Our strategy of the proof of our main theorem (Theorem 9.1) is as
follows.

(1) Propose, for every worm w inside the DRH staircase, a quiver Qw.
(2) Show that the proposed quiver agrees with the description for the initial

worm (w0, Qw0).
(3) Prove that if a worm operation sends the worm w to the worm w′,

then the corresponding quiver mutation sends the proposed quiver Qw

to the quiver Qw′ .
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Once the steps above are finished, we conclude that the description of the
proposed quiver at each worm is the correct description of the desired quiver
for the cluster algebra, and therefore we obtain all the cluster variable of the
DRH algebra.

We now propose the quivers. Although the amount of casework that will
follow may look daunting, the idea of how we will propose the quivers Qw is
simple: since we have proposed all the cluster variables e(c) in every cell c
inside the staircase, we will propose the quiver Qw so that it is compatible
with worm operations. Namely, suppose c is a bend or an endpoint of w and
let w′ be the resulting worm once we perform the worm operation on w at c.
Then, we want the quiver Qw to be such that the exchange relation changes
the variable e(c) to the variable e(c′).

Let w = c1c2 · · · cl+1 be a worm inside the staircase. To describe the quiver
Qw, we need to propose (1) the arrows between the mutable vertices c1, . . . , cl+1

and (2) the frozen coefficients fcQw(ci) for all i = 1, . . . , l + 1. The arrows
between the mutable vertices are easy to describe. Since we would like the
quivers Qw to be the correct quivers we would observe when we mutate from
the original worm to w, the arrows between the mutable vertices in Qw must
still follow the same rule we gave in the construction of the initial DRH quiver.
Namely, there is a unique arrow between ci and ci+1 for i = 1, . . . , l and the
arrow goes ci → ci+1 if the cell ci+1 is to the right of ci while it goes ci ← ci+1

if the cell ci+1 is above ci. It is direct to verify that this rule respects quiver
mutations.

Next, we propose fcQw(ci) for all i. We consider whether ci is a bend in w.
Case 1.1. If ci is an EN-bend (that is, there are arrows from the two mutable
vertices ci−1 and ci+1), then we propose

fcQw(ci) := FC(u)

where u is the upper-left corner of the cell ci. Case 1.2. If ci is an NE-bend
(that is, there are arrows from ci to the two mutable vertices ci−1 and ci+1),
then we propose

fcQw(ci) :=
1

FC(v)

where v is the lower-right corner of the cell ci.
When ci is not a bend in w, we consider whether ci is an endpoint of w (that

is, i = 1 or i = l + 1). When ci is an endpoint, say i = 1, it is straightforward
to see what fcQw(c1) must be. This is because we know that the mutation at c1

must change c1 to another cell on the lower zigzag path where the associated
variable has a relatively simple formula. Case 2.1. Suppose that ci is the
starting point of the worm w (That is, i = 1). Case 2.1.1. Suppose that c2 is
to the right of c1 (That is, there is a mutable arrow c1 → c2). Let γ denote the
cell immediately below c2. In this case, a mutation at c1 should move c1 to γ.
Note that γ is on the lower zigzag line of the DRH staircase. We will consider
the degrees of the polynomials e(c1), e(c2), and e(γ). Evidently, there are only
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a few possibilities for the triple of degrees:(
deg(e(c1)), deg(e(c2)), deg(e(γ))

)
.

Since both c1 and γ are on the lower zigzag path, the degrees deg(e(c1)) and
deg(e(γ)) can only be 1 or 2. The degree of such a cell is 1 precisely when the
cell is inside the DRH or the DRH transpose; otherwise, the degree is 2 when

the cell is in Wλ. The triple
(

deg(e(c1)), deg(e(c2)), deg(e(γ))
)

may be one

of the following eight possibilities: (1, 1, 1), (1, 1, 2), (1, 3, 2), (2, 1, 1), (2, 3, 1),
(2, 2, 2), (2, 4, 2), and (1, 2, 1).

Case 2.1.1.1. Either all of c1, c2, γ are in the DRH or they are in the DRH
transpose. Let ζ be the frozen variable in the cell below c1 and let u be the
lower-right corner of c1. Note that necessarily

FC(u) =

∣∣∣∣e(c1) e(c2)
ζ e(γ)

∣∣∣∣ .
We propose

fcQw(c1) :=
ζ

FC(u)
.

In other words, we propose that there is an arrow from c1 to ζ and an arrow
from FC(u) to c1.

Case 2.1.1.2.
(

deg(e(c1)), deg(e(c2)), deg(e(γ))
)

= (1, 1, 2). This happens

when both c1 and c2 are inside the DRH or the DRH transpose and γ is
outside. Let u and v, respectively, denote the upper-left and the upper-right
corners of the cell c1. Let ζ be the frozen variable in the cell to the left of c1

(which is a11 if c1 is in the DRH and which is apq if c1 is in the DRH transpose).
We propose

fcQw(c1) :=
FC(u)

ζ · FC(v)
.

Case 2.1.1.3.
(

deg(e(c1)), deg(e(c2)), deg(e(γ))
)

= (1, 3, 2). Let ζ be the

frozen cell to the left of c1 and let w be the upper right corner of c1. From
w, go upwards until we find the first lattice point which is the center of a
2×2-square inside the DRH or the transpose DRH, and call that lattice point
u. We propose

fcQw(c1) :=
1

ζ · FC(u)
.

Case 2.1.1.4.
(

deg(e(c1)), deg(e(c2)), deg(e(γ))
)

= (2, 1, 1). This case is

similar to Case 2.1.1.2. Let ζ be the frozen variable right below γ. Let u
and v, respectively, be the lower-right and upper-right corners of γ. Then, we
propose

fcQw(c1) :=
FC(u)

ζ · FC(v)
.
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Case 2.1.1.5.
(

deg(e(c1)), deg(e(c2)), deg(e(γ))
)

= (2, 3, 1). This case is

similar to Case 2.1.1.3. Let ζ be the frozen variable in the cell right below
γ. Let w be the upper-right corner of γ. From w, go right until we find the
first lattice point which is the center of a 2× 2-square inside the DRH or the
transpose DRH, and call that lattice point u. We propose

fcQw(c1) =
1

ζ · FC(u)
.

The two cases 2.1.1.6 and 2.1.1.7 concern the situation in which deg(e(c1))
and deg(e(γ)) are both 2. This happens when c1 and γ are insideWλ. Consider
the columns of cells inside Wλ that c1 and γ are in. Let c∗1 and c∗2 ∈ Wλ,
respectively, be the highest cells inside Wλ that are in the same column as c1

and γ. It is evident that the cell c∗2 is always higher or at the same height as
the cell c∗1. If c∗1 and c∗2 are at the same height (that is, c∗2 is the next cell to
the right of c∗1), then deg(e(c2)) is 2. Otherwise, deg(e(c2)) = 4.

Case 2.1.1.6.
(

deg(e(c1)), deg(e(c2)), deg(e(γ))
)

= (2, 2, 2). Let w be the

upper-right corner of the cell c1. From w, go upwards until we find the first
lattice point which is the center of a 2 × 2-square inside the DRH or the
transpose DRH, and call that lattice point u1. Let u2 be the lattice point one
unit to the left of u1, and let u3 be the lattice point one unit to the left of u2.
Necessarily, all of u1, u2, and u3 are the centers of some 2 × 2-squares inside
the DRH or the DRH transpose. In particular, FC(u1), FC(u2), and FC(u3)
are frozen cluster variables. We propose

fcQw(c1) :=
FC(u2)

FC(u1) FC(u3)
.

Case 2.1.1.7.
(

deg(e(c1)), deg(e(c2)), deg(e(γ))
)

= (2, 4, 2). Let w1 and w2,

respectively, be the upper-left corners of c1 and c2. For each i = 1, 2, starting
from wi, we go upwards until we find the first lattice point that is the center
of a 2× 2-square inside the DRH or the transpose DRH, and call that lattice
point ui. For each i = 1, 2, let vi be the lattice point one unit to the left of ui.
Necessarily, vi is also the center of a 2× 2-square inside the DRH or the DRH
transpose. We propose

fcQw(c1) :=
1

FC(v1) FC(u2)
.

Case 2.1.1.8.
(

deg(e(c1)), deg(e(c2)), deg(e(γ))
)

= (1, 2, 1). This is a rather

exceptional case, when one of c1 and γ is in the DRH and the other is in the
DRH transpose. This only happens when λ = NN · · ·N . We define

fcQw(c1) :=
1

a11apq
.
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Now that we have proposed the quiver in all the subcases of Case 2.1.1,
the rest of Case 2 are straightforward: either each of the remaining cases is
analogous to or it is one step away from some case in Case 2.1.1.

Case 2.1.2. Suppose that c2 is above c1 (That is, there is a mutable arrow
c1 ← c2). Let ξ be the cell to the left of c2. Note that a mutation at c1 in w
changes c1 to ξ. Let w̃ be the resulting worm after the mutation. That is, w̃
has ξ as the starting cell instead of c1, while all other l cells remain the same
as those in w. Case 2.1.1 has proposed the quiver Qw̃. Thus, we may propose
Qw to be the resulting quiver when we mutate Qw̃ at ξ.

Case 2.2. Suppose ci is the final cell. That is, i = l+1. This case is analogous
to Case 2.1. We may conjugate the whole λ-DRH staircase to obtain the λt-
DRH staircase. The cell cl+1 inside the worm w will become the starting cell
inside wt. Describe the quiver at the cell analogously.

The remaining case of our description is when ci is neither an endpoint
nor a bend. The mutable arrows near ci are either ci−1 → ci → ci+1 or
ci−1 ← ci ← ci+1.

Case 3.1. Suppose that ci−1, ci, and ci+1 are on the same row. That is, the
arrows go as ci−1 → ci → ci+1. Let c∗ and c∗, respectively, be the cell above
and the one below ci. Let c∗∗ be the cell to the right of c∗ and let c∗∗ be the
cell to the left of c∗. Consider any worm w∗ which has ci−1 → ci → c∗(→ c∗∗)
inside, and any worm w∗ which has (c∗∗ →)c∗ → ci → ci+1 inside. (The
parentheses about c∗∗ and c∗∗ indicate that the parts of the worm may not be
there if c∗ or c∗ is already the endpoint of the worm.) In Cases 1 and 2, we
have given the description of the quiver Qw∗ locally at c∗ and ci and the quiver
Qw∗ locally at ci and c∗. We can mutate Qw∗ at c∗ to obtain a quiver Q′w∗ .
We can also mutate Qw∗ at c∗ to obtain a quiver Q′w∗ . Note that both quivers
Q′w∗ and Q′w∗ has ci−1 → ci → ci+1 inside their underlying worms.

To describe the quiver Qw at ci, we claim that both quivers have the same
local data of arrows at ci, and therefore, we can use these local data to propose
the arrows at ci in Qw. If ci is not next to an endpoint of the worm, this follows
as a result of Lemma 9.6 below. On the other hand, ci−1 is the starting cell
or if ci+1 is the finishing cell. If it is the former case but not the latter, that
is i = 2, then this follows as a result of Lemma 9.7. If it is the latter but not
the former, then we can argue analogously. Finally, if both ci−1 is the starting
cell and ci+1 is the finishing cell, then l = 2, which is a small case where we
can write down all the quivers and cluster variables explicitly.

Case 3.2. Suppose that ci−1, ci, and ci+1 are on the same column. That is,
the arrows go as ci−1 ← ci ← ci+1. We can define the quiver Qw locally at ci
analogously to Case 3.1.

We have now given a complete description of the quiver for every worm.

Lemma 9.6. Suppose that [cij]1≤i,j≤3 is a 3×3 square of cells inside the DRH
staircase. Let w1 be a worm that contains c21 → c22 ← c12 → c13. Let w2 be a
worm that contains c31 → c32 ← c22 → c23. For a worm w, let Qw denote its
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proposed quiver. Let (w′1, Qw′1
) be the resulting quiver when mutating (w1, Qw1)

at c12. Let (w′2, Qw′2
) be the resulting quiver when mutating (w2, Qw2) at c32.

Then,
fcQw′1

(c22) = fcQw′2
(c22).

Before proving the lemma, let us discuss the motivation behind this result.
Let v11, v12, v21, and v22, respectively, be the upper-left, upper-right, lower-left,
and lower-right corners of c22. The result is complicated when some of the vij
are special points. On the other hand, when all the four points are non-special,
the proof is rather straightforward. If all four are non-special, then the frozen
coefficients at the lattice points are the corresponding 2 × 2 determinants at
the points. Namely,

FC(vij) :=

∣∣∣∣ e(ci,j) e(ci,j+1)
e(ci+1,j) e(ci+1,j+1)

∣∣∣∣ .
Inside the worm w1, the cell c22 is an EN-bend, while the cell c12 is an NE-bend.
From the description in the beginning of this section, we have

fcQw1
(c22) = FC(v11)

and

fcQw1
(c12) =

1

FC(v12)
.

When all vij are non-special, FC(vij) are products of frozen variables of non-
negative degrees. Hence, all the arrows at c22 in w1 are out-arrows, while all
the arrows at c12 in w1 are in-arrows. In this situation, Corollary 9.4 applies.
We have

fcQw′1
(c22) = fcQw1

(c22) · fcQw1
(c12) =

FC(v11)

FC(v12)
.

Analogously, in w2, Lemma 9.3 gives

fcQw′2
(c22) =

FC(v21)

FC(v22)
.

Lemma 9.6 says that FC(v11)
FC(v12)

= FC(v21)
FC(v22)

and therefore we can define the quiver

locally at c22 either from “above” or from “below”. To see why the lemma is
true in this case, note that the FC(vij) are 2× 2-minors inside the matrixe(c11) e(c12) e(c13)

e(c21) e(c22) e(c23)
e(c31) e(c32) e(c33)

 .
By Dodgson condensation, we have

FC(v11) FC(v22)− FC(v12) FC(v21) = e(c22) ·

∣∣∣∣∣∣
e(c11) e(c12) e(c13)
e(c21) e(c22) e(c23)
e(c31) e(c32) e(c33)

∣∣∣∣∣∣
which is zero by Proposition 9.5. Therefore, FC(v11)

FC(v12)
= FC(v21)

FC(v22)
as desired.
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As mentioned earlier, the result becomes more complicated when some vij
are special points. We now finish the proof of Lemma 9.6 below.

Proof. Recall that there are two types of special points: the ones on the bound-
ary of the DRH and the ones on the boundary of the DRH transpose. We
observe that both types of special points cannot occur in {v11, v12, v21, v22}
simultaneously. By symmetry of quiver mutation, we may in fact assume that
the only special points that occur are on the boundary of the original DRH. In
the following, when we refer to a special point, we shall mean the one which
is on the boundary of the original DRH.

If none of the four vij are special, then the analysis above yields the result.
The following casework considers which of the points are special. Note that
v12 and v21 may be simultaneously special. Aside from this pair, no two of
vij’s can be special at the same time.

Case 1. v11 is special. This means that c11, c12, and c21 are all in the DRH,
while c22, c23, c32, and c33 are not in the DRH. It depends on the shape of the
DRH to tell whether c13 and c31 are in the DRH.

Case 1.1. Both c13 and c31 are not in the DRH.

Case 1.1

Extend the labels cij to include c00, c10, c20, c01, and c02 in the natural way.
Also, let vij be the lower right corner of cij. Note that the five cells c00, c10,
c20, c01, and c02 are in the DRH. From v12, we go upwards until we meet the
first Step-1 lattice point, and call it ν. From v21, we go to the left until we
meet the first Step-1 lattice point, and call it τ . Referring to the description
of frozen arrows earlier in this section, we find

fcQw1
(c22) = FC(v11) =

FC(v10) FC(v01)

FC(v00)

and

fcQw1
(c12) =

1

FC(v12)
=

1

FC(v01) FC(v10) FC(ν)
.

Corollary 9.4 yields

fcQw′1
(c22) = fcQw1

(c22) · fcQw1
(c12) =

1

FC(ν) FC(v00)
.

Similarly, we have

fcQw2
(c32) = FC(v21) = FC(τ) FC(v10) FC(v01)

and

fcQw2
(c22) =

1

FC(v22)
.
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To compute FC(v22), we use the main decomposition theorem. Let µij denote
the subskeleton corresponding to the cell cij and let qij denote the 2×2-square
centered at vij. Using the notations B, E, I, χX , and χY as before, we see
that the theorem gives

FC(v22) = B(µ22)E(µ33)I(µ22)χX(q22)χY (q22)

= B(µ22) ·
(
E(µ33)χX(q22)χY (q22)

)
· I(µ22)

= (FC(v00)) · (FC(τ) FC(ν)) · (FC(v10) FC(v01)) .

Therefore,

fcQw2
(c22) =

1

FC(v22)
=

1

FC(v00) FC(v10) FC(v01) FC(τ) FC(ν)
.

Lemma 9.3 yields

fcQw′2
(c22) = fcQw2

(c32) · fcQw2
(c22) =

1

FC(ν) FC(v00)
.

Thus, fcQw′1
(c22) = fcQw′2

(c22) as desired.

Case 1.2. c13 is in the DRH, but c31 is not.

Case 1.2

Extend cij and vij as we did in the previous case. (When there is no confu-
sion, we will continue to use this convention in other cases as well.) From v21,
go left until we find the first Step-1 lattice point and call it τ . Similar to the
case above, we can directly compute

fcQw1
(c22) = FC(v11) =

FC(v10) FC(v01)

FC(v00)

and

fcQw1
(c12) =

1

FC(v12)
=

1

FC(v02) FC(v10)
.

Thus, we have

fcQw′1
(c22) = fcQw1

(c22) · fcQw1
(c12) =

FC(v01)

FC(v00) FC(v02)
.

Also, the main decomposition theorem gives

fcQw2
(c32) = FC(v21) = FC(τ) FC(v10) FC(v01)

and

fcQw2
(c22) =

1

FC(v22)
=

1

FC(τ) FC(v10) FC(v00) FC(v02)
.



56 MICHAEL CHMUTOV, PAKAWUT JIRADILOK, AND JAMES STEVENS

Therefore,

fcQw′2
(c22) = fcQw2

(c32) · fcQw2
(c22) =

FC(v01)

FC(v00) FC(v02)
.

This shows that fcQw′1
(c22) = fcQw′2

(c22).

Case 1.3. c13 is not in the DRH, while c31 is.

Case 1.3

By considering the conjugate DRH, this case is analogous to Case 1.2.
Case 1.4. Both c13 and c31 are in the DRH.

Case 1.4

In this case, all of e(c22), e(c23), e(c32), and e(c33) are cubic polynomials. As
usual, we directly compute the frozen coefficients. Direct computations give

fcQw1
(c22) = FC(v11) =

FC(v10) FC(v01)

FC(v00)

and

fcQw1
(c12) =

1

FC(v12)
=

1

FC(v10) FC(v02)
.

We then have

fcQw′1
(c22) = fcQw1

(c22) · fcQw1
(c12) =

FC(v01)

FC(v00) FC(v02)
.

Next, we look at the worm w2. We have

fcQw2
(c32) = FC(v21) = FC(v20) FC(v01)

and

fcQw2
(c22) =

1

FC(v22)
=

1

FC(v20) FC(v00) FC(v02)
.

Therefore,

fcQw′2
(c22) = fcQw2

(c32) · fcQw2
(c22) =

FC(v01)

FC(v00) FC(v02)
.

This shows that fcQw′1
(c22) = fcQw′2

(c22).

Case 2. v12 is special. In this case, the cells c11, c12, c13, c21, and c22 are all
in the DRH. The cells c23 and c33 are in Wλ. Depending on the shape of the
DRH, c31 and c32 may be inside the DRH or in Wλ. Note that if c32 is in the
DRH, then c31 must also be in the DRH.
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Case 2.1. Both c31 and c32 are not in the DRH.

Case 2.1

From v21, we go left until we meet the first Step-1 lattice point and call it
τ . We have

fcQw1
(c22) = FC(v11)

and

fcQw1
(c12) =

1

FC(v12)
=

FC(v01)

FC(v11) FC(v02)
.

Note that FC(v11) is already a frozen variable, because v11 is the center of a
2× 2 square inside the DRH. By quiver mutation, we find

fcQw′1
(c22) =

1

FC(v02)
.

We also have
fcQw2

(c32) = FC(v21) = FC(τ) FC(v11)

and

fcQw2
(c22) =

1

FC(v22)
=

1

FC(τ) FC(v11) FC(v02)
.

Therefore,

fcQw′2
(c22) =

1

FC(v02)
.

This implies fcQw′1
(c22) = fcQw′2

(c22).

Case 2.2. c31 is in the DRH, but c32 is not.

Case 2.2

This is the case in which both v12 and v21 are special. Similar to Case 2.1,
we have

fcQw′1
(c22) =

1

FC(v02)
.

Direct computations give

fcQw2
(c32) = FC(v21) =

FC(v20) FC(v11)

FC(v10)

and

fcQw2
(c22) =

1

FC(v22)
=

1

FC(v20) FC(v11) FC(v02)
.
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Therefore, we have

fcQw′2
(c22) =

1

FC(v02)
.

Thus, fcQw′1
(c22) = fcQw′2

(c22).

Case 2.3. Both c31 and c32 are in the DRH.

Case 2.3

Similar to Case 2.1, we have

fcQw′1
(c22) =

1

FC(v02)
.

We also have

fcQw2
(c32) = FC(v21)

and

fcQw2
(c22) =

1

FC(v22)
=

1

FC(v21) FC(v02)
.

Therefore,

fcQw′2
(c22) =

1

FC(v02)
.

Hence, fcQw′1
(c22) = fcQw′2

(c22).

Case 3. v21 is special. By considering the conjugate DRH, this case is anal-
ogous to Case 2.

Case 4. v22 is special.

Case 4

In this case, all cij with 1 ≤ i, j ≤ 3 except c33 are in the DRH. We have

fcQw1
(c22) = FC(v11)

and

fcQw1
(c12) =

1

FC(v12)
.

Thus,

fcQw′1
(c22) =

FC(v11)

FC(v12)
.

We also have

fcQw2
(c32) = FC(v21)
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1) 2) 3) 4) 5) 6) 7)

8) 9) 10) 11) 12) 13)

14) 15) 16) 17)

Figure 18. The seventeen possibilities in the proof of Lemma 9.7.

and

fcQw2
(c22) =

1

FC(v22)
=

FC(v11)

FC(v12) FC(v21)
.

Therefore,

fcQw′2
(c22) =

FC(v11)

FC(v12)
.

Hence, fcQw′1
(c22) = fcQw′2

(c22). We have finished the proof of the lemma. �

Next, we show a lemma similar to the previous one for the case when the
quiver mutation happens near the staircase zigzag lines.

Lemma 9.7. Suppose that [cij]1≤i,j≤3 is a 3× 3 square of cells, with all except
c31 inside the DRH staircase. Let w1 be a worm that starts as c21 → c22 ←
c12 → c13. Let w2 be a worm that starts as c32 ← c22 → c23. For a worm w,
let Qw denote its proposed quiver. Let (w′1, Qw′1

) be the resulting quiver when
mutating w1 at c12. Let (w′2, Qw′2

) be the resulting quiver when mutating w2 at
c32. Then,

fcQw′1
(c22) = fcQw′2

(c22).

Proof. There are four major possibilities: (1) no cells in the square are from
the DRH or the DRH transpose, (2) there are cells from the DRH, but not from
the DRH transpose, (3) there are cells from the DRH transpose, but not from
the DRH, and (4) there are cells from both the DRH and the DRH transpose.
Observe that (3) can be argued analogously to (2). Thus we will only consider
(1), (2), and (4). There are 17 cases to consider, as shown in Figure 18. Note
that in Cases 14 - 17, when there are cells from both the DRH and the DRH
transpose simultaneously, those cells cannot be in {c12, c13, c22, c23}. This is as
a result of Corollary 6.2.

We will deal with the first case by a similar analysis we have been doing
in the proofs of previous results. The other 16 cases, on the other hand, are
more straightforward. The fact that the lower DRH staircase path cuts out
c31 while there is a part of the DRH in the 3 × 3-square shows that we are
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looking at the starting portion of the worm. For these cases, we can compute
the frozen coefficients fcQw′1

(c22) and fcQw′2
(c22) directly.

Let us start with the first case. Note that because of the DRH staircase
path, we know that the middle row label coincides with the left column label
and the bottom row label coincides with the middle column label. We may
give the labels as follows.

γ

α

β

α β δ

Necessarily, δ > β > α > γ. We also have that the α-th and the β-th letter
in λ are both E. In fact, there are no other E’s between Eα and Eβ in λ.

Define qij, µij, vij, and [r, s] as before. We have that µ21 = [α, α] = Eα and
µ32 = [β, β] = Eβ.

Case 1.1. Suppose there are no other letters between Eα and Eβ. That is,
β = α + 1. Note that Eβ is not the final letter in λ, because at least there
is W δ with δ > β. Case 1.1.1. Suppose that the next letter after Eβ is also
an E. Then, that letter must be Eδ which gives δ = α + 2. Using the main
decomposition theorem, we can compute directly

fcQw′1
(c22) =

∆α+2

∆α+3

.

We also have, by the main decomposition theorem, that

fcQw2
(c22) =

1

∆α∆α+3

.

By the description in Section 9.3, we have

fcQw2
(c32) =

∆α∆α+2

∆α+1

.

Hence, after mutating Qw2 at c32, we obtain

fcQw′2
(c22) =

∆α+2

∆α+3

= fcQw′1
(c22).

Case 1.1.2. Suppose that the next letter after Eβ is Nβ+1. In this case, δ ≥
α + 3. Like the previous case, we still have

fcQw2
(c32) =

∆α∆α+2

∆α+1
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from the description in Section 9.3. Using the main decomposition theorem,
we have

fcQw2
(c22) =

1

∆α∆α+2 (∆δ+1χY (q22))
.

Note that ∆δ+1χ
Y (q22) is either ∆δ+1 or ∆l+2 = apq by definition. This means

that ∆δ+1χ
Y (q22) is a single frozen cluster variable that is not adjacent to c32

in w2. Mutating w2 at c32 gives

fcQw′2
(c22) =

1

∆δ+1χY (q22)
.

On the other hand, we directly compute

fcQw′1
(c22) =

1

∆δ+1χY (q12)
= fcQw′2

(c22).

Case 1.2. Suppose there is at least one N between Eα and Eβ. In this case,
we have

fcQw2
(c32) = ∆α∆β+1.

Similar to Case 1, the letter Eβ is not the final one. Case 1.2.1. Suppose the
next letter after Eβ is an E. In this case,

fcQw2
(c22) =

1

∆α∆β (∆δ+1χY (q22))
.

Hence,

fcQw′2
(c22) =

∆β+1

∆β (∆δ+1χY (q22))
.

On the other hand, it is direct to compute

fcQw′1
(c22) =

∆β+1

∆β∆δ+1χY (q12)
= fcQw′2

(c22).

Case 1.2.2. Suppose the next letter after Eβ is an N . In this case,

fcQw2
(c22) =

1

∆α∆β∆β+1 (∆δ+1χY (q22))
.

Thus,

fcQw′2
(c22) =

1

∆β (∆δ+1χY (q22))
.

Using the main decomposition theorem, we see that

fcQw′1
(c22) =

1

∆β∆δ+1χY (q12)
= fcQw′2

(c22).

We have finished the analysis of Case 1, in which there are no cells from the
DRH or the DRH transpose in the 3× 3-square. The other 16 cases are much
more straightforward. For each 1 ≤ r ≤ l(λ), we write

E(λ, r) =

{
1 if the rth letter in λ is an E,

0 otherwise.
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Case The lattice path λ fcQw′1
(c22) and fcQw′2

(c22)

2 EN · · ·N︸ ︷︷ ︸
a

E · · ·︸︷︷︸
b

(a, b ≥ 1) ∆
E(λ,β+1)
β+1 ∆−1

β

(
∆δ+1χ

Y (q22)
)−1

3 EEN · · ·
(
∆δ+1χ

Y (q22)
)−1

4 EEE · · · ∆3∆−1
4

5 N · · ·N︸ ︷︷ ︸
a

E · · · (a ≥ 2) ∆
E(λ,β+1)
β+1 ∆−1

β

(
∆δ+1χ

Y (q22)
)−1

6 NEN · · · ∆−1
2

(
∆δ+1χ

Y (q22)
)−1

7 NEE · · · ∆−1
2 ∆3∆−1

4

8 ENN · · ·
(
∆δ+1χ

Y (q22)
)−1

9 ENE · · · ∆−1
4

10 EE · · ·︸︷︷︸
a

(a ≥ 1) ∆2∆−1
3

11 NNN · · ·
(
∆δ+1χ

Y (q22)
)−1

12 NNE · · · ∆−1
4

13 NE · · ·︸︷︷︸
a

(a ≥ 1) ∆2∆−1
3

14 EN · · ·N︸ ︷︷ ︸
a

E (a ≥ 1) ∆δ+2∆−1
δ+1a

−1
pq

15 EN · · ·N︸ ︷︷ ︸
a

(a ≥ 2) apq∆
−1
δ+2

16 N · · ·N︸ ︷︷ ︸
a

E (a ≥ 2) ∆δ+2∆−1
δ+1a

−1
pq

17 N · · ·N︸ ︷︷ ︸
a

(a ≥ 3) apq∆
−1
δ+2

Table 2. Computations of the frozen coefficients in Cases 2 -
17 in the proof of Lemma 9.7.

In Table 2, we directly compute the two frozen coefficients in each case and
observe that they are equal. Note that in each case, we know what the starting
letters in λ must be. When appropriate, we use the labels α, β, γ, and δ as in
the first case.

We have finished the proof. �
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The following observation is going to be useful in the proof of the main
theorem in the next section.

Observation 9.8. Let [cij]1≤i,j≤3 be as in Lemma 9.7. Let w1 be a worm that
starts with c21 ← c11 → c12. Let w2 be a worm that starts with c21 → c22 ←
c12. As before, let Qw denote the proposed quiver for the worm w. Let (w′, Q′)
be the resulting quiver after mutating Qw1 at c11. Then,

fcQ′(c21) = fcQw2
(c21).

Proof. This is a direct consequence the description of frozen coefficients in
Section 9.3 and the main decomposition theorem. �

9.4. Proof of the main theorem. In this section, we prove the main theo-
rem, which we restate here.

Theorem 9.1. Let λ be a North-East lattice path. The set of mutable cluster
variables of the DRH algebra Aλ is

{e(m) : m is a cell in the λ-DRH staircase.}.

Proof. Following the strategy we outlined earlier, we first need to check that
for the initial worm w = M(λ), the described quiver Qw agrees with the
initial DRH quiver Qλ. Consider any cell c inside the initial worm M(λ). If
c is a bend or an endpoint, the quiver mutation at c brings the initial worm
to another worm with c replaced by another cell c′ close by that is still in the
DRH. We proposed fcQw(c) to be exactly the quiver which respects this worm
operation. Since we showed in Lemma 5.5 that the initial DRH quiver Qλ also
mutates this way, we see that

fcQw(c) = fcQλ(c)

when c is either a bend or an endpoint. When c is neither a bend nor an
endpoint, mutating Qw at c yields a quiver which does not correspond to any
worm inside the DRH staircase. However, we can get around this problem,
as we notice that there is a sequence of worm operations which sends w to a
worm w′ in which c is a bend adjacent to another bend ε in w′ and in which
w′ is still inside the DRH. We defined

fcQw(c) = fcQw′ (c) · fcQw′ (ε).

The right hand side of the above equation is of the form ∆i

∆j
, where i and j are

consecutive indices. It is direct to see that this description coincides with the
original description in Qλ. As a result, the quivers Qw and Qλ agree.

Now, let w be any worm inside the DRH staircase. We have to show that
if a worm operation sends w to w′, then the corresponding mutation sends
the quiver Qw to Qw′ . Let the resulting quiver be Q′. We will show that
Q′ = Qw′ . Worm operations can only transform the worm w at the bends
and the endpoints. Suppose we transform at a bend first. Let w contain an
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a25 a35

a14 a24 a34

a13 a23 a33

a12 a22

a11 a21

a12 a22

a23

a24

a25

a11

∆1 ∆2

∆3 ∆4

∆5

a35

Figure 19. The initial NNEN-DRH and the initial NNEN-
DRH quiver.

EN -bend at c1 → c2 ← c3. Mutating Qw at c2 sends the quiver to Q′ with
c1 ← c′2 → c3. Note that fcQ′(c

′
2) = fcQw(c2)−1. Recall that we proposed

fcQw′ (c
′
2) = FC(u)−1 = fcQw(c2)−1, where u is the shared vertex between c2

and c′2. Thus, fcQ′(c
′
2) = fcQw′ (c

′
2). Moreover, we have fcQ′(c1) = fcQw′ (c1) and

fcQ′(c3) = fcQw′ (c3), as a result of Lemmas 9.6 and 9.7. Therefore, Q′ = Qw′ .
If we mutate w at an endpoint instead, Observation 9.8 also ensures Q′ = Qw′ .

Therefore, the collection of all (w,Qw) correctly describes the mutation
behavior of the cluster algebra, and therefore, c(µ) (µ ≤ λ) together with all
aij that are not previously frozen are all the mutable cluster variables of the
cluster algebra Aλ. �

10. Example: the NNEN-DRH

In this final section, we illustrate an example when λ = NNEN . We start
by drawing the initial NNEN-DRH and its quiver in Figure 19, and we show
the NNEN-DRH staircase in Figure 20. We fill in the subskeleta corresponding
to all the cells in WNNEN in Figure 21.

To obtain all the mutable cluster variables, we standardize the subskeleta
as follows.

• N1 7→
∣∣∣∣a13 a23

a11 a21

∣∣∣∣, • N2 7→
∣∣∣∣a14 a24

a12 a22

∣∣∣∣, • E3 7→
∣∣∣∣a14 a34

a13 a33

∣∣∣∣,
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∆1

∆2

∆3 ∆4

∆5

Figure 20. The NNEN-DRH staircase.

• N4 7→
∣∣∣∣a25 a35

a23 a33

∣∣∣∣, • N1N2 7→
∣∣∣∣a14 a24

a11 a12

∣∣∣∣,
• N2E3 7→ −

∣∣∣∣∣∣
a14 a24 a34

a13 a23 a33

a12 a22 0

∣∣∣∣∣∣, • E3N4 7→ −

∣∣∣∣∣∣
0 a25 a35

a14 a24 a34

a13 a23 a33

∣∣∣∣∣∣,

• N1N2E3 7→ −

∣∣∣∣∣∣
a14 a24 a34

a13 a23 a33

a11 a21 0

∣∣∣∣∣∣,

• N2E3N4 7→ −

∣∣∣∣∣∣∣∣
0 0 a25 a35

a14 a24 a24 a34

a13 a23 a23 a33

a12 a22 0 0

∣∣∣∣∣∣∣∣, and
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E3

N1N2E3

N2E3

E3N4

N1N2E3N4

N2E3N4

N4

N2

N1N2 N1

3 4 2 1

3

1

2

4

Figure 21. Subsk (WNNEN)

• N1N2E3N4 7→ −

∣∣∣∣∣∣∣∣
0 0 a25 a35

a14 a24 a24 a34

a13 a23 a23 a33

a11 a21 0 0

∣∣∣∣∣∣∣∣.
Therefore, all the mutable cluster variables for the cluster algebra ANNEN

are a12, a13, a14, a21, a22, a23, a24, a25, a33, a34,

∣∣∣∣a13 a23

a11 a21

∣∣∣∣, ∣∣∣∣a14 a24

a12 a22

∣∣∣∣, ∣∣∣∣a14 a34

a13 a33

∣∣∣∣,∣∣∣∣a25 a35

a23 a33

∣∣∣∣, ∣∣∣∣a14 a24

a11 a12

∣∣∣∣, −
∣∣∣∣∣∣
a14 a24 a34

a13 a23 a33

a12 a22 0

∣∣∣∣∣∣, −
∣∣∣∣∣∣

0 a25 a35

a14 a24 a34

a13 a23 a33

∣∣∣∣∣∣, −
∣∣∣∣∣∣
a14 a24 a34

a13 a23 a33

a11 a21 0

∣∣∣∣∣∣,
−

∣∣∣∣∣∣∣∣
0 0 a25 a35

a14 a24 a24 a34

a13 a23 a23 a33

a12 a22 0 0

∣∣∣∣∣∣∣∣, and −

∣∣∣∣∣∣∣∣
0 0 a25 a35

a14 a24 a24 a34

a13 a23 a23 a33

a11 a21 0 0

∣∣∣∣∣∣∣∣.
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