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Background

A matrix is totally nonnegative (TNN) if all of its
minors are nonnegative. It is k-nonnegative (kNN) if
all of its i×i submatrices with i ≤ k have nonnegative
determinant. The n × n invertible TNN matrices
(resp. kNN matrices for k ≤ n) form a semigroup.
• (1) The subsemigroup of invertible TNN upper
unitriangular matrices is generated by ei(a) for
i ∈ [n− 1] and a > 0:

ei(a) =
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• (2) Relations of ei generators are given by:
ei(a)ei(b) = ei(α)

ei(a)ei+1(b)ei(c) = ei+1(α)ei(β)ei+1(γ)
ei(a)ej(b) = ej(α)ei(β) |i− j| > 1

The expressions for parameters are
subtraction-free and, in the latter two, bijective.
We can perform any valid relation on a
factorization as long as it is reduced, i.e. it has
minimal length.

•Consider a word w from the free monoid
〈e1, . . . , en−1〉 subject to the above relations
(disregarding parameters). Let
xw : R`(w)

>0 → GLn(R) be defined by
xw(a1, . . . , a`(w)) = w1(a1) · · ·w`(w)(a`(w))

Let U(w) := Im(xw) (called Bruhat cells). The set
of U(w) for distinct, reduced words w stratify the
semigroup of TNN unitriangular n× n matrices.

•By noticing the identification ei 7→ (i, i + 1) ∈ Sn
(cycle notation), we see that (3) cells are naturally
indexed by elements in Sn, (4) the cells form a
CW-complex, and (5) the corresponding closure
poset is isomorphic to the Bruhat poset on Sn.

Poset Definitions

Subword order: v ≤ w iff we can achieve v by re-
placing sections of w with a subword (∅ is a subword
of everything).
The Bruhat order on Sn is equivalent to the subword
order on its generators (i, i + 1) (cycle notation).
Closure order: A ≤ B iff A ⊂ B. When cells form
a CW-complex, this means B = tAA for all A ≤ B.

Summary of Results

Goal: Generalize the Bruhat cell structure of totally nonnegative matrices to k-nonnegative matrices.
Results: Descriptions for cells for (n−1)NN and unitriangular (n−2)NN semigroups, and proof of desired
topological properties.

TNN unitriangular matrices (known) (n−2)NN unitriangular matrices (new)
Generating set {ei(a) | i ∈ [n− 1], a ∈ R>0} {ei(a)} ∪ {T (~x) | ~x ∈ R2n−5

>0 } (1)
Relations complete, subtraction-free complete, subtraction-free (2)

Cell indexing scheme Sn Sn ∪ Sn−2 × {0, 1}2 (3)
Cell topology Forms a regular CW-complex Forms a CW-complex (4)

Closure poset obeys subword order Closure poset obeys subword order (5)
Closure poset graded and Eulerian Closure poset graded, but not Eulerian
Homeomorphic to a ball ??? (6)

From Generators to Cells

(1) To generate the space of (n−2)NN unitriangular
matrices, add the parametrized T -generator to the
generating set:

T (~a,~b) =
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(2) This generating set is minimal and has the fol-
lowing relations (indices mod n− 1):
• ei(x)T (~a,~b) = T ( ~A, ~B)ei+2(x′)
• en−1en−2T = en−2en−1T t en−2 · · · e1en−1 · · · e2 t
en−2 · · · e1en−1 · · · e1

These relations are bijective and subtraction-free as
desired. Thus, we can naturally extend the definitions
of the map xw and of U(w) to define factorization cells
for our space.
(3) Let w0,[n−2] be the long word of Sn−2 embedded in
Sn such that w0,[n−2] = (n− 2, n− 3, . . . , 1, n− 1, n)
(one-line notation). Our relations give the following
list of reduced words; we prove that these are all the
possible factorizations, and thus the full list of cells,
for (n− 2)NN unitriangular matrices.



vλ v ≤ w0,[n−2]

λ ∈ {T, en−1T, en−2T, en−2en−1T}
w w ∈ Sn

Topology of Cells

(4) These cells form a CW-complex; namely,
•They partition the space of (n− 2)NN matrices
•They are homeomorphic to open balls (namely,
U(w) ∼= R`(w))

•The closure of a cell is the disjoint union of cells of
lower dimension

(5) We can still describe the cell closure poset with
a subword order. To do this, we extend the Bruhat
order on Sn by defining the subwords of T .
•m < λ ∈ {T, en−1T, en−2T, en−2en−1T} precisely
when m ≤ α = en−2 · · · e1en−1 · · · e1 and satisfies
the following:

•m(1) 6= n; if λ has no en−1, then m(2) 6= n is
relaxed; if λ has no en−2, then m(1) 6= n− 1.

This description still defines a valid subword order.

Proof Method

Finding generators and relations requires a variant of
the Loewner-Whitney theorem and careful examina-
tion of cell behavior. We prove topological properties
by examining our cells in the context of the decompo-
sition of GLn(R) into Bruhat cells. There can be as
many as five of our cells in one Bruhat cell, but distin-
guishing the topology of these five cells is straightfor-
ward. We describe the subwords of T by comparing
the Bruhat interval below α ∈ Sn to the algebraically
determined subwords.

Results on (n− 1)NN Matrices

Nearly all of the results shown here for the (n−2)NN
unitriangular semigroup also apply to the (n− 1)NN
semigroup. The generating set includes an additional
generatorK(~a,~b). We show similar relations and give
similar cells.
The only major difference is that the resulting cell
decomposition is not a CW-complex, since the space
has exactly two connected components: matrices with
positive determinant, and matrices with negative de-
terminant.

Discussion

TNN matrices are deep objects, appearing in stochas-
tic processes, planar networks, Pólya frequency se-
quences, etc. kNN matrices, a classical and natural
generalization, were introduced at the same time, and
we have shown evidence for very similar structure in
kNN matrices. Some further questions are:
• (6) What is the space of (n− 2)NN invertible
matrices topologically?

• Is the closure poset of cells of (n− 2)NN matrices
shellable or semi-Eulerian?

•What results can be generalized to k-nonnegative
matrices?
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