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Abstract. In this paper I will first review the combinatorial interpretation

of the Bressoud polynomials, then I will present a result which may be related

to cyclic sieving phenomenon of the combinatorial objects we considered.

1. Introduction

First we introduce some concepts related to partitions.

Definition 1.1. Let Π be a partition whose Ferrers graph has a node in the i-
th row and j-th column; we call this node the (i, j)th node. We define the hook
difference at the (i, j)th node to be the number of nodes in the ith row of Π minus
the number of nodes in the jth column of Π. We also define the diagonal number
of the (i, j)th node to be i− j.

To illustrate, let’s see an example.

Example 1.2. Let Π be 6+5+3+1, figure 1 shows the hook differences of nodes of
Π while figure 2 shows the diagonal number of nodes of Π.

Figure 1. Hook Difference

Figure 2. Diagonal Number

Key words and phrases. Bressoud polynomials, cyclic sieving phenomenon.

1



2 YUNCHENG LIN

For positive integers m,n, we consider partitions with at most m parts each ≤ n
with some property.

Definition 1.3. Let a, b be positive integers. Define pK,i(n, m; a, b;n) to be the
number of partitions of n into at most m parts each ≤ n such that the hook
differences on diagonal 1−b are ≥ −i+b+1 and on diagonal a−1 are ≤ K−i−a−1.
Define DK,i(n, m; a, b;n) to be the related generating function, or

(1.1) DK,i(n, m; a, b;n) =
∑
n≥0

pK,i(n, m; a, b;n)qn.

We can now state the main result in [1].

Theorem 1.4. We have
(1.2)

DK,i(n, m; a, b;n) =
∞∑

µ=−∞
qµ(Kµ+i)(a+b)−Kbµ

[
n + m
n−Kµ

]
q

−
∞∑

µ=−∞
qµ(Kµ−i)(a+b)−Kbµ+bi

[
n + m

n−Kµ + i

]
q

Proof. See [1]. �

Motivated by Theorem 1.4, we define the Bressoud polynomial br(n, m,K, i, a, b, q)
as

(1.3)

br(n, m,K, i, a, b, q) =
∞∑

µ=−∞
qµ(Kµ+i)(a+b)−Kbµ

[
n + m
n−Kµ

]
q

−
∞∑

µ=−∞
qµ(Kµ−i)(a+b)−Kbµ+bi

[
n + m

n−Kµ + i

]
q

2. Main result

Since Bressoud polynomials are generating functions of some combinatorial ob-
jects, naturally, we may consider the cyclic sieving phenomenon (CSP) of certain
objects. (Readers not familiar with CSP may refer to [2].) However, finding some
good operation to perform CSP seems hard. But we do find a numerical result
(originally suggested by Dennis Stanton and generalized by the author) which may
suggest some evidence.

Note that when K = 2i, or (K, i) = (2t, t) for some t ∈ Z, the double sum
becomes a single sum

(2.1) br(n, m, 2t, t, a, b, q) =
∞∑

s=−∞
(−1)sq

t(a+b)s2

2 +
t(a−b)s

2

[
n + m
n− ts

]
q

Now we can state the main

Theorem 2.1. We have the following two identities:
(i) When ta, tb are integers and ta− tb is not divisible by 2, then

(2.2) br(2n, 2m, 2t, t, a, b,−1) = br(n, m, 2t, t,−,−, 1),

here ’-’ means that the value does not depend on these two parameters, as can be
seen from the definition of Bressoud polynomials.

(ii) When ta, tb are even integers, then

(2.3) br(2n, 2m, 2t, t, a, b,−1) = br(n, m, t,
t

2
,−,−, 1)
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Proof. We need a

Lemma 2.2. Suppose q is an r-th root of unity, m,n are positive integers such
that m = rm1 + m′, n = rn1 + n′,m1, n1 ∈ Z, 0 ≤ m′, n′ ≤ r − 1. Then

(2.4)
[
m
n

]
q

=
(

m1

n1

) [
m′

n′

]
q

.

Proof. Recall that

(2.5)
[
m
n

]
q

=
∏m

i=1(1− qi)∏n
i=1(1− qi)

∏m−n
i=1 (1− qi)

.

Then we substitute q equals to an r-th root of unity into (2.5), we divide the
proof into 2 cases.

Case 1. m′ < n′. Then the multiplicity of 0 in the numerator is m1 while the

multiplicity of 0 in the denominator is m1 − 1. Hence
[
m
n

]
q

= 0 in this case. Note

that when m′ < n′,
[
m′

n′

]
q

= 0. Hence in this case the lemma is proved.

Case 2. m′ ≥ n′. Then

[
m
n

]
q

= lim
q′→q

∏m
i=1(1− q′i)∏n

i=1(1− q′i)
∏m−n

i=1 (1− q′i)
= lim

q′→q

∏m1
j=1(1− q′rj)∏n1

j=1(1− q′rj)
∏m1−n1

j=1 (1− q′rj)∏
1≤i≤m,r-i(1− qi)∏

1≤i≤n,r-i(1− qi)
∏

1≤i≤m−n,r-i(1− qi)
=

(
m1

n1

) [
m′

n′

]
q

Hence in this case the lemma is also proved. �

Suppose c, d are non-negative integers. By previous Lemma, when d is odd,

(2.6)
[
2c
d

]
−1

= 0,

when d is even,

(2.7)
[
2c
d

]
−1

=
(

c
d
2

)
.

By (2.1),

(2.8) br(2n, 2m, t, a, b,−1) =
∞∑

s=−∞
(−1)sq

t(a+b)s2

2 +
t(a−b)s

2

[
2n + 2m
2n− ts

]
−1

,

Combine (2.6), (2.7), when ta, tb are integers and ta − tb is odd, only even s in
(2.8) contributes to the sum, when s is even, write s = 2s′ and using (2.7), also
combine that 2 is not divisible by ta− tb, we obtain

br(2n, 2m, 2t, t, a, b,−1) =
∞∑

s=−∞
(−1)sq

t(a+b)s2

2 +
t(a−b)s

2

[
2n + 2m
2n− ts

]
−1

=
∞∑

s′=−∞
(−1)2t(a+b)s′2+t(a−b)s′

(
n + m
n− ts′

)
=

∞∑
s′=−∞

(−1)s′
(

n + m
n− ts′

)
= br(n, m, 2t, t,−,−, 1)
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Similarly, when ta, tb are even integers

br(2n, 2m, 2t, t, a, b,−1) =
∞∑

s=−∞
(−1)s(−1)

t(a+b)s2

2 +
t(a−b)s

2

[
2n + 2m
2n− ts

]
−1

=
∞∑

s=−∞
(−1)s

(
n + m
n− ts

2

)
= br(n, m, t,

t

2
,−,−, 1)

The proof is now complete. �
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