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1. Introduction

Here we list a few attempted approaches to solving Borwein’s conjecture, namely that the poly-
nomials defined by

AN (q) =
∑
l

(−1)lql(9l−1)/2

[
2N

N − 3l

]
q

BN (q) =
∑
l

(−1)lql(9l−5)/2

[
2N

N + 1− 3l

]
q

CN (q) =
∑
l

(−1)lql(9l−7)/2

[
2N

N + 1− 3l

]
q

have nonnegative integer coefficients. This is a special case of the following conjecture by Bressoud
[2]:

Conjecture 1.1. Let M , N and k be positive integers with k ≥ 2, and α and β be positive rational
numbers such that kα and kβ are integers. If 1 ≤ α + β ≤ 2k − 1, with strict inequalities when
k = 2, and −k + β ≤ N −M ≤ k − α, then the polynomial

Dk(M,N,α, β; q) =
∑
l

(−1)lql(k(α+β)l−k(α−β)/2)

[
M + n

M − kl

]
q

has nonnegative integer coefficients.

In particular, An(q) = D3(N,N, 5/3, 4/3; q), Bn(q) = D3(N + 1, N − 1, 7/3, 2/3; q), and Cn(q) =
D3(N + 1, N − 1, 8/3, 1/3; q).

2. Related polynomials

Conjecture 1 has been proven for integer values of α, β; in fact, in this case, Andrews et al. [1]
proved that Dk(M,N,α, β; q) is the generating function for partitions with certain prescribed “hook
differences.” Given a partition λ, label the box in the i-th row and j-th column of λ as (i, j). Define
the hook difference at (i, j) to be the size of row i minus the size of column j; that is, λi − λ′j . Let
the c-th diagonal of λ be the set of boxes (i, j) such that i− j = c. The theorem is as follows

Theorem 2.1. For α, β positive integers, Dk(M,N,α, β; q) is the generating function for partitions
with at most M parts each of size at most N , and such that the hook differences on diagonal α− 1
are at most k − α− 1 and the hook differences on diagonal 1− β are at most −k + β + 1. If α = 0
and β 6= 0, Dk(M,N,α, β; q) is the generating function for partitions satisfying the above conditions
with the additional condition that the number of parts is at least N − k+ 1. If β = 0 and α 6= 0, the
additional condition is that the largest part is at least M − k + 1.

1



2 GAKU LIU

The hope is that by better understanding what occurs in the integer case, we might be able to
extend this understanding to cases with non-integer values of α and β. In particular, we look at the
following two polynomials, which seem related to AN :

XN (q) = D3(N,N, 2, 1; q) =
∑
l

(−1)lq
l(9l−3)

2

[
2N

N − 3l

]
q

YN (q) = D3(N,N, 3, 0; q) =
∑
l

(−1)lq
l(9l−9)

2

[
2N

N − 3l

]
q

.

Proposition 2.1. We have the factorizations

XN (q) = (1 + qN )
N−1∏
i=1

(1 + qi + q2i)

YN (q) = qN−2(1 + qN )(1 + q + q2)
N−2∏
i=1

(1 + qi + q2i).

Proof. We will provide a bijective proof of these two identities using Theorem 2.1. First consider
XN (q) = D3(N,N, 2, 1; q). Every partition λ has an associated Frobenius representation(

a1 a2 · · · at
b1 b2 · · · bt

)
where ai = λi − i, and bi = λ′i − i, t is the largest integer such that λt ≥ t, and the number being
partitioned is t +

∑t
i=1(ai + bi). The hook difference condition for k = 3, α = 2, β = 1 can be

written as
a1 + 1 ≥ b1 ≥ a2 + 1 ≥ b2 ≥ · · · ≥ at + 1 ≥ bt.

We also have the original Frobenius representation conditions N ≥ a1 +1 > a2 +1 > · · · > at+1 ≥ 1
and N − 1 ≥ b1 > b2 > · · · > bt ≥ 0. Thus, there is a bijection between the partitions counted by
XN (q) and weakly decreasing positive integer sequences a1 + 1 ≥ b1 ≥ a2 + 1 ≥ . . . ≥ at + 1 ≥ bt
(where we leave out bt if bt = 0), such that the first term is at most N , the number N appears at
most once, and all other numbers appear at most twice. In addition, the weight of the partition is
simply the sum of the terms of its associated sequence. The generating function of such sequences
(with the weight being the sum of its terms) is clearly

(1 + qN )
N−1∏
i=1

(1 + qi + q2i).

which proves the identity for XN .
The proof for YN (q) = D3(N,N, 3, 0; q) is similar. For k = 3, α = 3, β = 0, the hook difference

condition can be restated as requiring the largest part to be at least N − 2, and that when the
largest part is removed, the partition remaining satisfies the hook difference conditions for D3(N −
1, N, 2, 1; q). If we let p be the largest part and(

a1 a2 · · · at
b1 b2 · · · bt

)
be the Frobenius representation for the partition formed by removing the largest part, then we
have a bijection between the desired partitions and weakly decreasing positive integer sequences
p ≥ a1 +1 ≥ b1 ≥ . . . ≥ at+1 ≥ bt (where we leave out bt if bt = 0) with N−2 ≤ p ≤ N , b1 ≤ N−2,
no number appearing more than twice in the subsequence a1 + 1 ≥ b1 ≥ . . . ≥ at + 1 ≥ bt, and
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the sum of the terms being the weight of the associated partition. The generating function for such
sequences is

(qN−2 + qN−1 + qN + qN−1qN−1 + qN−1qN + qNqN )
N−2∏
i=1

(1 + qi + q2i)

which equals the product given in the Proposition. �

Guo and Zhang give another combinatorial proof of this result in [3].

3. A possible combinatorial approach

By the Jacobi triple product formula, we can write∑
l

(−1)lql(9l−1)/2 =
∏

n≡0,4,5 mod 9
n>0

(1− qn).

But we can re-expand the product on the right side, giving a sum with many more terms than the
original sum ∑

l

(−1)lql(9l−1)/2 =
∑
r≥0

∑
0<n1<n2<···<nr

n1,...,nr≡0,4,5 mod 9

(−1)rqn1+···+nr .

While at first it does not seem helpful to add in so many new terms, this can be helpful in interpret-
ing things combinatorially; for example, if P (q), is the generating function for partitions (without
restriction), it is not immediately clear how to interpret∑

l

(−1)lql(9l−1)/2P (q).

However, if we rewrite this as∑
r≥0

∑
0<n1<n2<···<nr

n1,...,nr≡0,4,5 mod 9

(−1)rqn1+···+nrP (q)

then we see that qn1+···+nrP (q) is the generating function for partitions which contain at least one
part each of sizes n1, . . . , nr, and thus the sum is an inclusion-exclusion that counts the number of
partitions with no parts congruent to 0, 4, or 5 modulo 9. Following this example, if we were to
construct a family of generating functions Pn(q) such that

Pl(9l−1)/2 = ql(9l−1)/2

[
2N

N − 3l

]
for integer l, then we would have

AN (q) =
∑
r≥0

∑
0<n1<n2<···<nr

n1,...,nr≡0,4,5 mod 9

(−1)rPn1+···+nr
(q).

For an appropriate choice of the Pn(q), we might obtain a sum more easily recognizable as an
inclusion-exclusion or involution.
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4. Recurrences and “finite differences”

We wish to prove that the coefficients of AN (q) are nonnegative, but more seems to be true: the
coefficient of each qr appears to weakly increase as N increases. We thus might try to prove that
appropriately defined “finite differences” of the AN (q) have nonnegative coefficients, which is the
approach in this section.

For simplicity, we abbreviate AN (q) as AN , and similarly for other polynomials. The polynomials
AN , BN , and CN satisfy the recurrences

AN = (1 + q2N−1)AN−1 + qNBN−1 + qNCN−1

BN = (1 + q2N−1)BN−1 + qN−1AN−1 − qNCN−1

CN = (1 + q2N−1)CN−1 + qN−1AN−1 − qN−1BN−1.

Solving these relations for AN gives

AN = (1 + q + q2)(1 + q2N−3)AN−1 − q(1 + q + q2)(1 + q2N−4 + q4N−8)AN−2

+ q3(1− q3N−8 − q3N−7 + q6N−15)AN−3.

This seems complicated, but we can simplify the relation by considering successive “finite differences”
of AN , which we define as follows:

KN = AN − (1 + q2N−1)AN−1

LN = KN − (q + q2N−2)AN−1

RN = LN − (q2 + q2N−3)LN−1.

Using the recurrence for AN , we have the following relations:

KN = q(1 + q)(1 + q2N−4)KN−1 − q3(1− q2N−5 + q4N−10)KN−2 − (q3N−5 + q3N−4)AN−3

LN = (q2 + q2N−3)LN−1 + 3q2N−2KN−2 − (q3N−5 + q3N−4)AN−3

RN = 3q2N−2KN−2 − (q3N−5 + q3N−4)AN−3.

In the end, we have been able to remove all negative terms except (q3N−5 + q3n−4)AN−3. Because
of the way KN , LN , and RN are defined, the fact that any one of them has nonnegative coefficients
(along with some easily verifiable base cases) would imply that AN has nonnegative coefficients.
This in fact seems to be true for KN and LN , and it seems true for RN with the excepton of its first
and last coefficients, which appear to be −1. We state this as a conjecture:

Conjecture 4.1. KN and LN have nonnegative coefficients, while RN has nonnegative coefficients
with the exception of the coefficients of q3N−5 and qN

2−3N+5, which are −1.

Because of the simplicity of the expression for RN , one might be able to tackle the problem by
inductively proving appropriate bounds on the coefficients RN , which would translate into bounds
on LN , KN , and AN .

It might also be of interest to note that the polynomial XN , which we defined in Section 2 and
whose factorization and combinatorial interpretation are known, satisfies a similar recurrence as AN
does, with identical initial conditions:

XN = (1 + q + q2)(1 + q2N−3)XN−1 − q(1 + q + q2)(1 + q2N−4 + q4N−8)XN−2

+ q3(1− q3N−9 − q3N−6 + q6N−15)XN−3.

The only difference is that we have −(q3N−6 + q3N−3)XN−3 instead of −(q3N−5 + q3n−4)AN−3.
Recall that when we took finite differences, −(q3N−5 + q3n−4)AN−3 was the only negative term
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that remained in the end; and indeed, if we were to employ the same strategy of finite differences
on XN , we would get the same relations except with the term −(q3N−6 + q3N−3)XN−3 instead of
−(q3N−5+q3n−4)AN−3. Understanding why theXN that arise from this recurrence have nonnegative
coefficients might help us understand why the AN do.
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