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Abstract

The representation theory of finite groups is well studied; however, the representation theory of finite
monoids is not. We use the representation theory of the group of units in order to understand the
representations of monoids. We extend well-known results for groups to analogous results for monoids. In
particular, we prove an analog of the Borel-Matsumoto theorem and Froebnius Reciprocity for subgroups
of the group of units in a monoid using Godelle’s definition of convolution for monoids. We introduce
a new description of the symplectic rook monoid and provide an embedding of it into the better-known
rook monoid. We then investigate the specific nature of the symplectic rook monoid. The irreducible
representations are indexed both by partitions of at most n and by pairs of partitions whose sum is
exactly n. We use combinatorial techniques based on this to examine its character table and to develop
branching rules for decomposing its irreducible representations as representations of the group of units.
Using results from Solomon about the structure of the character table of the rook monoid, we determine a
new way of producing the character table for the Iwahori-Hecke algebra of the rook monoid. In the spirit
of Solomon and utilizing techniques from Geck and Pfeiffer, we provide a description of the character
table of the symplectic rook monoid. We then extend this to the Iwahori-Hecke algebra of the symplectic
rook monoid.

1 Introduction

1.1 Motivation

Let G be a split reductive group over a field F with Borel subgroup B. Recall that G has the Bruhat
decomposition:

G =
⊔
w∈W

BwB,

where W, the Weyl group, is a finite Coxeter group.
Now, we embed G into Mn(F), the monoid of n× n matrices, and take the Zariski closure of G. In the

process, we get a reductive monoid M sharing many important structural properties with G. For instance,
M has an extended Bruhat decomposition:

M =
⊔
r∈R

BrB,

where R, the Renner monoid of M, has factorization R = WE(T), where E(T) is a set of idempotents
along the closure of the maximal torus of G.
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By this construction, we generate two monoids associated with G through whose structure we can study
G’s representation theory. We generate a larger reductive monoid M = G and a smaller, finite Renner
monoid R that governs the structure much of the structure of M.

We begin with a case study. Let G = GLn(F). Recall that G has Weyl group W = Sn. Embed G into
Mn(F). Since G is Zariski-dense, M = G = Mn(F). We now consider the Renner monoid of M. We have
that R = Rn, where

Rn := {Matrices which represent at most n non-attacking rooks on an n× n chessboard}

where a rook is represented by a 1 and an empty space is represented by a 0. As an example,

M =

0 1 0
0 0 0
1 0 0

 ∈ R3(R), N =

1 0 0
0 1 0
0 1 0

 6∈ R3(R)
Formally, let R be the set of all one-to-one maps σ with domain and range I(σ), J(σ) ⊆ {1, . . . , n}. Then we
can define στ : I(σ)∩τ−1(J(σ))→ J(τ) by i(στ) = (iσ)τ ∈ J(τ) for i ∈ {1, . . . , n}, where the action considered
is a right action. This forms a monoid isomorphic to a submonoid of Mn(F) such that

R 3 σ 7→ ∑
i∈I(σ)

Ei,iσ

with Ei,j being the n × n matrix of 1’s and 0’s with a single 1 at entry (i, j). It is easy to see that the the
size of the rook monoid is:

n∑
i=0

(
n

i

)2
i! (1)

For further definitions, see Solomon [8]. Turning to applications, monoids are abundant in computer
programming, and even implemented in languages like Haskell. Gondran and Minoux [5] provide an extensive
listing of applications of monoids in data analysis and searching. Monoids (respectively reductive moniods)
are extensions of groups (respectively reductive groups) and can shed new light on old groups that we know
well. Solomon does so with his analysis of irreducible representations of Sn [9] by looking at those of the
rook monoid.

1.2 Results

In this paper, we extend some well known results for groups to analogous results for monoids and then
investigate the specific nature of the symplectic rook monoid, along with its character table and rules
for decomposing its irreducible representations. In section 2, we prove the Borel-Matsumoto theorem for
monoids. In section 3 we introduce the symplectic rook monoid and provide an embedding of it into the rook
monoid. In section 4, we provide the character table for the symplectic rook monoid, RSp2n, when n = 3,
as calculated according to results from Li, Li, Cao [7]. In section 5, we recall results from Solomon [9] about
the structure of the character table of the rook monoid. Then using techniques from Geck and Pfeiffer’s
text on the characters of finite Coxeter Groups and Iwahori-Hecke algebras [3], we provide an analogous
decomposition of the character table of the symplectic rook monoid.

1.3 Essential Definitions

• Let M be a monoid with group of units G(M). We call M algebraic if it is a Zariski-closed subset of
Matn(F) for some n ∈ Z and F a field. We callM reductive ifM is an irreducible algebraic monoid with
G(M) a reductive group under the usual definition. If M is reductive, M has the Renner decomposition

M =
⊔
r∈R

BrB (2)
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where B is a Borel subgroup of G(M), R is the Renner monoid of M, and r is a choice of lift of r ∈ R.

• The symplectic rook monoid and symplectic Renner monoid will be taken to be synonymous due to
them being isomorphic as shown in [7]. We define the symplectic rook monoid RSp2n in terms of the
admissible sets definition, again as below.

• Let N = {1, 2, ..., 2n − 1, 2n}. As in [7], let θ : N → N be the involution given by θ(t) = 2n + 1 − t.
A subset P of N is admissible if, for all t ∈ N, then θ(t) /∈ N. Define RSp2n to be the monoid of all
injective partial transformations on N sending admissible sets to admissible sets. The Bn Weyl group
embeds as G(RSp2n), the group of full injective transformations on N.

• Let Qn = SPn t
⋃n
r=0 Sr be the union of signed partitions of size n and the union of partitions of r for

all 0 ≤ r ≤ n. This is an indexing set for the collection of irreducible representations of the symplectic
rook monoid, as well as its conjugacy classes. Furthermore, it has a standard ordering as described on
p. 847 of [7].

2 The Borel-Matsumoto Theorem for Finite Monoids

Let M be a finite monoid, G(M) the group of units of M, and K a subgroup of G(M), and F a field of
characteristic not dividing |K|.

For φ,ψ :M→ F, define φ ∗ψ as in Godelle [4] by

φ ∗ψ(m) =
∑
yz=m

φ(y)ψ(z) (3)

Similarly, for (π, V) a representation of M and φ as above define π(φ) by

π(φ)v =
∑
x∈M

φ(x)π(x)v (4)

Proposition 1. For φ,ψ ∈ H, π(φ ∗ψ) = π(φ) ◦ π(ψ).

Proof. Consider π(φ) ◦ π(ψ). We have the following:

(π(φ) ◦ φ(ψ))v =
∑
x∈M

φ(x)π(x)
∑
y∈M

ψ(y)π(y)v) (5)

=
∑
x,y∈M

φ(x)ψ(y)π(x)π(y)v (6)

=
∑
x,y∈M

φ(x)ψ(y)π(xy)v (7)

=
∑
z∈M

∑
xy=z

φ(x)ψ(y)π(z)v (8)

=
∑
z∈M

(φ ∗ψ)(z)π(z)v (9)

= π(φ ∗ψ)v (10)

Thus π(φ) ◦ π(ψ) = π(φ ∗ψ).

Let H be the F-algebra of functions from M to F under addition and convolution. Define, for v ∈ V,

Hv = {π(φ)v | φ ∈ H}. (11)
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Define an action of M on Hv by m · (π(φ)v) = π(m)π(φ)v. Notice that, since for fm : M → F defined
by fm(m) = 1, fm(x) = 0 for x 6= m, π(fm)v = π(m)v, Hv is closed under action by M. Thus, it is a
subrepresentation.

Similarly, let HK be the F-algebra of functions from M to F under convolution that are constant on
double-cosets of K; i.e. φ such that φ(m) = φ(k1mk2) for all k1, k2 ∈ K. Also let

Vk = {v ∈ V | π(k)v = v ∀k ∈ K}

as in Bump.

Theorem 2.1. Let (π, V) be an irreducible representation of M with VK 6= {0}. Then VK is irreducible as
an HK-module.

Proof. We follow Bump’s proof of the group case closely [1]. We claim that, for all nonzero u ∈ VK, that
HKu:= {π(φ)u|φ ∈ HK} equals VK. In other words, we wish to show that, for all v ∈ VK there exists
φ ∈ HK such that π(φ)u = v.

Since (π, V) is an irreducible representation of M, there are no proper non-trivial subrepresentations in
V. Because there is an M-action on Hu 6= {0}, then Hu = V. Thus there exists ψ ∈ H such that π(ψ)u = v.

Define φ ∈ H by, for x ∈M
φ(x) =

1

|K|2

∑
k1,k2∈K

ψ(k1xk2) (12)

Since φ must be invariant over left and right cosets of K, φ lies in HK. Now consider the following:

π(φ)u =
1

|K|2

∑
k1,k2∈K

∑
x∈M

ψ(k1xk1)π(x)u (13)

Notice that x 7→ k−11 xk
−1
2 is a bijection from M to M, as it has an inverse x 7→ k1xk2. Thus we can make

the following change of variables:

π(φ)u =
1

|K|2

∑
k1,k2∈K

∑
x∈M

ψ(x)π(k−11 xk
−1
2 )u (14)

=
1

|K|2

∑
k1,k2∈K

∑
x∈M

ψ(x)π(k1)
−1π(x)π(k2)

−1u. (15)

Since u ∈ VK, we have that π(k2)
−1u = u. Thus,

π(φ)u =
1

|K|

∑
k1∈K

∑
x∈M

ψ(x)π(k1)
−1π(x)u (16)

=
1

|K|

∑
k1∈K

π(k1)
−1
∑
x∈M

ψ(x)π(x)u (17)

=
1

|K|

∑
k1∈K

π(k1)
−1π(ψ)u. (18)

Since π(ψ)u = v and v ∈ VK,

π(φ)u =
1

|K|

∑
k1∈K

π(k1)
−1v = v. (19)

Thus, for all v ∈ VK there exists φ ∈ HK such that π(φ)u = v. Thus, VK is irreducible as an HK-
module.

4



Denote, for (π, V) a representation of M, let (π|G, V) be the restricted representation of G(M) defined by
π|G(g) = π(g) for g ∈ G(M). Define the contragredient representation of G(M) (π̂|G, V̂) by 〈π|G(g)v, v̂〉 =
〈v, π̂|G(g−1)v̂〉 for all g ∈ G(M).

Lemma 1. Let l: VK → F be a linear functional. Then there exists v̂ ∈ V̂K such that for all v ∈ VK, l(v) =
〈v, v̂〉. [1]

Proof. Let v̂0 be a linear functional on V that restricts to l on VK.
Define v̂ = 1

|K|

∑
k∈K π̂|G(k)v̂0. For v ∈ VK, then, we have the following equalities:

〈v, v̂〉 = 1

|K|

∑
k∈K

〈v, π̂|G(k)v̂0〉 (20)

=
1

|K|

∑
k∈K

〈π|G(k)−1v, v̂0〉 (21)

=
1

|K|

∑
k∈K

〈π(k)−1v, v̂0〉 (22)

=
1

|K|

∑
k∈K

〈v, v̂0〉 (23)

= l(v) (24)

Lemma 2. If VK 6= 0 then V̂K 6= 0. [1]

Lemma 3. Let R be an algebra over F, and N1, N2 simple R-modules that are finite-dimensional as vector
spaces over F. If there exist linear functionals Li : Ni → F and ni ∈ Ni such that Li(ni) 6= 0 and L1(rn1) =
L2(rn2) for all r ∈ R, then N1 ∼= N2 as R-modules. [1]

We particularly care about the case when two representations (πi, Vi) share matrix coefficients 〈πi(m)v, v̂0〉
for all m ∈M.

Lemma 4. Let (π, V) and (σ,W) be two irreducible representations of M with nonzero matrix coefficients
〈π(m)v, v̂0〉 = 〈σ(m)w, ŵ0〉 for some v, v0, w, w0, and all m ∈M. Then (π, V) ∼= (σ,W).

Proof. Define actions of F[M] on V and W by letting mv = π(m)v and mw = σ(m)w for all v ∈ V,w ∈W,
and m ∈ M respectively and then extending by linearity. Thus V and W become F[M]-modules. Because
the representations are each irreducible, V and W are simple as F[M]-modules. Since 〈mv, v̂0〉 = 〈mw, ŵ0〉
for all m ∈ M are two equal linear functionals on V and W, then V ∼= W as F[M]-modules by Lemma 4.
Equivalently, (π, V) ∼= (σ,W).

Now we prove the second half of the Borel-Matsumoto Theorem.

Theorem 2.2. If (π, V) and (σ,W) are two irreducible representations of M with VK and WK nonzero and
isomorphic as HK-modules, then (π, V) ∼= (σ,W).

Proof. Let λ : VK → WK be an isomorphism of HK-modules and l : WK → F be a linear functional not
equal to zero. Then by Bump’s Lemma 2, there exist v̂ ∈ V̂K and ŵ ∈ ŴK such that (l ◦ λ)(v) = 〈v, v̂〉 and
l(w) = 〈w, ŵ〉 for all v ∈ V̂K, w ∈ ŴK. Furthermore, there exist w0 ∈ WK, v0 ∈ VK such that 〈w0, w〉 6= 0
since l is nontrivial and v0 = λ

−1(w0) since λ is an isomorphism.
Then for φ ∈ HK, we have that

〈σ(φ)w0, ŵ〉 = 〈σ(φ)λ(v0), ŵ〉 = 〈λ(π(φ)v0), ŵ〉 = (l ◦ λ)(π(φ)v0) = 〈π(φ)v0, v̂〉. (25)
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We show that equation 23 holds for all φ ∈ H as well as HK. For φ ∈ H, define φK ∈ HK by

φK(x) =
1

|K|2

∑
k1,k2∈K

φ(k1xk2) (26)

for all x ∈M. By equation 23, then 〈π(φK)v0, v̂〉 = 〈σ(φK)w0, ŵ〉. Furthermore, we have that

〈π(φK)v0, v̂〉 = 〈
1

|K|2

∑
k1,k2∈K

∑
x∈M

φ(k1xk2)π(x)v0, v̂〉 (27)

=
1

|K|2
〈
∑

k1,k2∈K

∑
x∈M

φ(x)π(k1)
−1π(x)π(k2)

−1v0, v̂〉 (28)

=
1

|K|2
〈
∑

k1,k2∈K

π(k1)
−1 ◦ (

∑
x∈M

φ(x)π(x)) ◦ π(k2)−1v0, v̂〉 (29)

=
1

|K|2
〈
∑

k1,k2∈K

π(k1)
−1π(φ)π(k2)

−1v0, v̂〉 (30)

=
1

|K|2

∑
k1,k2∈K

〈π(k1)−1π(φ)π(k2)−1v0, v̂〉 (31)

=
1

|K|2

∑
k1,k2∈K

〈π|G(k1)−1π(φ)π|G(k2)−1v0, v̂〉 (32)

=
1

|K|2

∑
k1,k2∈K

〈π(φ)π|G(k2)−1v0, π̂|G(k1)v̂〉. (33)

=
1

|K|2

∑
k1,k2∈K

〈π(φ)v0, v̂〉 (34)

= 〈π(φ)v0, v̂〉. (35)

since v0 ∈ VK and v̂ ∈ V̂K.
Thus 〈π(φK)v0, v̂〉 = 〈π(φ)v0, v̂〉 for all φ ∈ H. Similarly, 〈σ(φK)w0, ŵ〉 = 〈σ(φ)w0, ŵ〉. With this

information, then, we have that 〈π(φK)v0, v̂〉 = 〈σ(φK)w0, ŵ〉 implies that 〈π(φ)v0, v̂〉 = 〈σ(φ)w0, ŵ〉.
Let φm ∈ H for all m ∈ M be the function that sends all x in M with x 6= m to 0 and m to 1. Then

π(φm)v = π(m)v and σ(φm)w = σ(m)w.
Thus, we have that 〈π(m)v0, v̂〉 = 〈σ(m)w0, ŵ〉 for all m ∈ M. By Lemma 5, then, (π, V) and (σ,W)

are equivalent.

Let M be a finite monoid, G(M) its group of units, N a submonoid of M, G(N) its group of units, and
(π, V) a representation of M. Define the vector space IndMN V as follows:

IndMN V = {f :M→ V | f(nm) = π(n)f(m) ∀n ∈ N, m ∈M} (36)

Define (πM, IndMN V) by πM(m)f(x) = f(xm) for all m.

Lemma 5. The pair (πM, IndMN V) is a representation of M.

Proof. First, we check that IndMN V is closed under the action of πM(m). Trivially, if f(nx) = π(n)f(x) then
πM(m)f(nx) = f(nxm) = π(n)f(xm) for all m ∈M,n ∈ N.

We check that πM(m) is linear for all m.

∀z ∈ F, ∀f, g ∈ IndMN zπM(m)f(x) = zf(xm) = πM(m)(zf)(x)

πM(m)(f+ g)(x) = (f+ g)(xm) = πM(m)(f)(x) + πM(m)(g)(x)
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Now, we check that πM is a homomorphism of monoids. Letm,x, y ∈M. Then πM(mx)f(y) = f(ymx) =
πM(x)f(ym) = πM(m)πM(x)f(y). Finally, πM(1)f(x) = f(x), implying that πM maps the identity to the
identity. Clearly, then, πM(mx) = πM(m)πM(x), and (πM, IndMN ) is a representation of M.

Thus we can call (πM, IndMN V) the induced representation of M.
We include, for completeness, a proof of Frobenius Reciprocity for monoids:

Theorem 2.3. If (π, V) is a representation of N, a submonoid of M, and (σ,W) a representation of M,
then HomM(W, IndMN V)

∼= HomN(W,V) as vector spaces.

Proof. For φ ∈ HomM(W, IndMN V), define F : HomM(W, IndMN V) → HomN(W,V) by F(φ), such that
F(φ)(w) = φ(w)(1), 1 being the identity element of M. We first show that F(φ) is linear. Because φ is
linear,

F(φ)(w+w0) = φ(w+w0)(1) = φ(w)(1) + φ(w0)(1) = F(φ)(w) + F(φ)(w0)

and for z ∈ F,
F(φ)(zw) = φ(zw)(1) = zφ(w)(1) = zF(φ)(w)

We now claim that F(φ) is a morphism of N-modules For n ∈ N,

F(φ)(σ(n)w) = φ(σ(n)w)(1) = πM(n)φ(σ(1)w)(1)

= φ(w)(n) = π(n)φ(w)(1) = π(n)F(φ)(w)

Thus F(φ) is an N-module homomorphism from W to V. Since

F(φ+ψ)(w) = (φ+ψ)(w)(1) = φ(w)(1) +ψ(w)(1) = F(φ)(w) + F(ψ)(w)

and F(z · φ)(w) = (zφ)(w)(1) = zF(φ)(w), then F is a vector space homomorphism. For τ ∈ HomN(W,V),
let G : HomN(W,V)→ HomM(W, IndMN V) such that

(G(τ)(w))(m) = G(τ)(w)(m) = τ(σ(m)w)

then, τ(σ(nm)w) = τ(σ(n)σ(m)w) = π(n)τ(σ(m)w), so G(τ)(w) is in IndMN . We check that G(τ)(−)(m)
is linear. This follows from the definition:

G(τ)(w+w0)(m) = τ(σ(m)(w+w0)) = τ(σ(m)w+ σ(m)w0)

= τ(σ(m)w) + τ(σ(m)w0) = G(τ)(w)(m) +G(τ)(w0)(m)

and for z ∈ F, we have
G(τ)(zw)(m) = τ(σ(m)(zw)) = zτ(σ(m)(w))

Next, we check that G(τ) respects M. We have that for x ∈M,

G(τ)(σ(x)w)(m) = τ(σ(m)σ(x)w) = τ(σ(mx)w)

= (πM(x) ◦ τ)(σ(m)w) = πM(x)(G(τ)(w)(m))

Thus G(τ) ∈ HomM(W, IndMN V). Finally, we check that G itself is linear:

G(τ+ η)(w)(m) = (τ+ η)(σ(m)w)

= τ(σ(m)w) + η(σ(m)w) = G(τ)(w)(m) +G(η)(w)(m)

and for k ∈ K, G(kτ)(w)(m) = k(τ(σ(w)m)) = k · G(τ)(w)(m). Thus G is a homomorphism of vector
spaces.
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Now, we show that F and G are inverses. First, we check the mapping G ◦ F : HomM(W, IndMN ) →
HomM(W, IndMN ). Let φ ∈ HomM(W, IndMN ). Then G ◦ F(φ) works as follows. Since F(φ) is the map
sending w to φ(w)(1),

(G ◦ F)(φ)(w)(m) = G(F(φ))(w)(m) = F(φ)(σ(m)w)

= F(φ)(σ(1 ∗m)w) = πM(m)F(φ)(w)

= πM(m)φ(w)(1) = φ(w)(m)

by definition of the induced representation. Since (G ◦ F)(φ)(w)(m) = φ(w)(m), G ◦ F is the identity
morphism on HomM(W, IndWN ).

Next, we check F ◦G : HomN(V,W)→ HomN(V,W). Let τ ∈ HomN(V,W). Then

(F ◦G)(τ)(w)(n) = F(G(τ))(w)(n)
= G(τ)(w)(1 · n) = τ(π(n)w) = σ(n)τ(w) = τ(w)(n)

Thus F◦G is the identity morphism on HomN(V,W). Since we have that both G◦F and F◦G are identity mor-
phisms on their respective domains, they are inverses. Thus, we have that HomM(W, IndMN ) ∼= HomN(W,V)
as vector spaces over F.

3 Matrix Presentation for the Symplectic Renner Monoid

In this section, we give a classification for the symplectic rook monoid as a replacement for the previously
established classification (see Li, Li, and Cao [7] p. 843, Corollary 2.3):

RSpn = {A ∈ Rn | APAt = AtPA = 0 or P}

for

P =

(
0 Jm

−Jm 0

)
, Jm =


0 . . . 0 1
0 . . . 1 0
. . . . . .

1 0 . . . 0


where n = 2m, Jm is the m ×m anti-diagonal matrix of 1’s, and Rn is the rook monoid, a submonoid of
Matn. Yet note that for m = 1, the symplectic Renner monoid is the entirety of the rook monoid (see p.
842 of [7]),

RSp2 =

{(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)}
However note that

A =

(
0 1
1 0

)
, P =

(
0 1
−1 0

)
, =⇒ APAt =

(
0 −1
1 0

)
indicating that the description given in the corollary is not accurate, and indeed, there is no immediate proof
of this proposition in the same paper. Proposition 2.4 of the same paper gives the following classification

R = {A ∈ Rn | APAt = AtPA = 0} ∪W

we will take [7]’s definition of the symplectic Weyl group as the collection of “injective partial transformations
of n that map all admissible sets of n to admissible sets” ([7], p.841). With the knowledge that {1, . . . , n}
is an admissable set, we see that elements of the Weyl group are full rank, and also elements of the rook
monoid, so that the Weyl group is a submonoid of Sn ⊆ Rn. With this, we establish:
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Theorem 3.1.

RSpn ∼= {A ∈ Rn | AtJnA = AJnA
t = 0 or AtJnA = AJnA

t = Jn}

Proof. We first show that

M ∈ {A ∈ Rn | AtPA = APAt = 0} ⇐⇒ M ∈ {A ∈ Rn | AtJnA = AJnA
t = 0}

Indeed, note that JnA
t = (bij) is still an element of Rn by nature of having at most one entry in every row

and column that is non-zero (and hence = 1), so that the condition that

AJnA
t = 0 ⇐⇒ ∀i, j, (AJnA

t)ij = cij =

n∑
k=1

aikbkj = 0

means that there is at most one non-zero summand in the evaluation of cij, forcing that summand to be 0.
Clearly, if dij := (APAt)ij, then cij = ±dij, so that cij = 0 ⇐⇒ dij = 0. Thus AJnA

t = 0 ⇐⇒ APAt = 0,
and the non-full rank components of these sets coincide.

It suffices to show that
W = {A ∈ Rn | AtJnA = AJnA

t = Jn}

Let i = n+ 1− i. For A ∈W, we have that

A(k) = ik =⇒ A(k) = ik

for if not, then using our first definition of the symplectic rook monoid, {k,A−1(ik)} would be an admissible
set mapped to a non-admissible set. Yet note that

AtJnA = AJnA
t = Jn ⇐⇒ AJn = JnA ⇐⇒ JnAJn = A

having used the fact that At = A−1 and J−1n = Jn, but JnAJn = A is exactly the condition that A(k) =
ik ⇐⇒ A(k) = ik, as Jn is the permutation corresponding to (1 1)(2 2) · · · (m m) and hence conjugating a

permutation matrix by Jn makes it so that k 7→ A(k), thus

A = JnAJn ⇐⇒ A(k) = A(k) ⇐⇒ A(k) = A(k)

so every A ∈ W satisfies A = JnAJn. Similarly, matrices A ∈ Rn satisfying A = JnAJn are full rank and
map admissible sets to admissible sets. For if not, then there would exist

k, s 6= k, k s.t. A(k) = ik, A(s) = ik

contradicting the condition that JnAJn = A.

With this presentation in mind, we obtain the same formula for the size of this monoid:

|RSp2n| = 2
nn! +

n∑
i=0

(
n

i

)2
2i (37)

Remark This correction should not invalidate the rest of [7]’s results, as the authors make use of the
symplectic Renner monoid in terms of admissible sets. That being said, this correction is useful for readers
who would want to calculate the elements of the symplectic rook monoid as a submonoid of the rook monoid.
Moreover, it has been difficult for the authors of this paper to find other characterizations of the symplectic
rook monoid that describe the symplectic weyl group as a submonoid of Rn, so the authors hope that this
presentation will be computationally practical.
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4 Example: Character Table for RSp6

Below we present the character table for the symplectic rook monoid, as calculated via the method of Li, Li,
Cao [7]. The matrix is presented in the transpose form as their convention dictates, with different row and
column labellings.

C(RSp6) =



W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 (1,1,1) (2,1) (1,1,1) (2) (1,1) (1) (0)

C1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
C2 1 1 1 −1 −1 −1 −1 1 1 −1 0 0 0 0 0 0 0
C3 1 1 −1 −1 1 −1 1 1 −1 1 0 0 0 0 0 0 0
C4 1 1 −1 1 −1 1 −1 1 −1 −1 0 0 0 0 0 0 0
C5 2 2 0 0 −2 0 1 −1 0 −2 0 0 0 0 0 0 0
C6 2 2 0 0 2 0 −1 −1 0 2 0 0 0 0 0 0 0
C7 3 −1 −1 1 −1 −1 0 0 1 3 0 0 0 0 0 0 0
C8 3 −1 1 1 1 −1 0 0 −1 −3 0 0 0 0 0 0 0
C9 3 −1 1 −1 −1 1 0 0 −1 3 0 0 0 0 0 0 0
C10 3 −1 −1 −1 1 1 0 0 1 −3 0 0 0 0 0 0 0

(1,1,1) 8 0 0 0 0 4 0 2 0 0 1 1 1 0 0 0 0
(2,1) 16 0 0 0 0 0 0 −2 0 0 2 0 −1 0 0 0 0
(3) 8 0 0 0 0 −4 0 2 0 0 1 −1 1 0 0 0 0

(1,1) 12 0 2 0 4 2 0 0 0 0 3 1 0 1 1 0 0
(2) 12 0 −2 0 4 −2 0 0 0 0 3 −1 0 1 −1 0 0
(1) 6 2 0 0 4 2 0 0 2 0 3 1 0 2 0 1 0
(0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


where Ci stands for the ith irreducible character of indexed by a signed partition, (λ, µ), such that |λ|+|µ| = n
and Wi stands for the ith conjugacy class of the Weyl group, with the same indexing convention. By [7],
we know that the Munn classes and irreps of RSp2n are both indexed by elements of Qn. In this case, the
conjugacy class representatives for the Weyl group are

{W1,W2,W3} = {


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 ,

0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0

}

{W4,W5,W6} = {


0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0

 ,

0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0

 ,

0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0

}

{W7,W8,W9} = {


0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 ,

0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0

 ,

0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0

}
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W10 =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


{W1,W2,W3,W4,W5,W6,W7,W8,W9,W10} =

{((1)3 | ∅), ((1) | (1)2), ((2) | (1)), (∅ | (1, 2)), ((1)2 | (1)), ((2, 1) | ∅), (∅ | (3)), ((1) | (2)), (∅ | (1)3)}

where the correspondence between 2n×2n matrices and signed partitions (also known as pairs of partitions)
of n is explained in the subsequent section. Taking the transpose of the above yields

M := C(RSp6) =



1 1 1 1 2 2 3 3 3 3 8 16 8 12 12 6 1
1 1 1 1 2 2 −1 −1 −1 −1 0 0 0 0 0 2 1
1 1 −1 −1 0 0 −1 1 1 −1 0 0 0 2 −2 0 1
1 −1 −1 1 0 0 1 1 −1 −1 0 0 0 0 0 0 1
1 −1 1 −1 −2 2 −1 1 −1 1 0 0 0 4 4 4 1
1 −1 −1 1 0 0 −1 −1 1 1 4 0 −4 2 −2 2 1
1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 −1 −1 0 0 0 0 2 −2 2 0 0 0 1
1 1 −1 −1 0 0 1 −1 −1 1 0 0 0 0 0 2 1
1 −1 1 −1 −2 2 3 −3 3 −3 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 2 1 3 3 3 1
0 0 0 0 0 0 0 0 0 0 1 0 −1 1 −1 1 1
0 0 0 0 0 0 0 0 0 0 1 −1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Note that we can write M = YB = AY where Y is the block diagonal matrix of the Weyl Group, B3, and
then S3, S2, S1, S0. From here,

Y =



1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 −1 −1 −1 −1 1 1 −1 0 0 0 0 0 0 0
1 1 −1 −1 1 −1 1 1 −1 1 0 0 0 0 0 0 0
1 1 −1 1 −1 1 −1 1 −1 −1 0 0 0 0 0 0 0
2 2 0 0 −2 0 1 −1 0 −2 0 0 0 0 0 0 0
2 2 0 0 2 0 −1 −1 0 2 0 0 0 0 0 0 0
3 −1 −1 1 −1 −1 0 0 1 3 0 0 0 0 0 0 0
3 −1 1 1 1 −1 0 0 −1 −3 0 0 0 0 0 0 0
3 −1 1 −1 −1 1 0 0 −1 3 0 0 0 0 0 0 0
3 −1 −1 −1 1 1 0 0 1 −3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


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and

B = Y−1M =



1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



A =MY−1 =



1 0 0 0 0 0 0 0 0 0 8 0 0 12 0 6 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 4 1
0 0 0 0 0 1 0 0 0 0 0 4 0 0 2 2 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 3 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


5 Finding the A matrix of C(RSp2n)

Let M = C(RSp2n) as in the previous example. Let λ ` r for 0 ≤ r ≤ n, let σ be a representative of the
Munn class indexed by α ∈ Qn, let σK ∈ Sr be the “conjugate” of σ, and let C(r, σ) := C(r), all as on p.
849 of [7], except note that here we make the dependence of C(r) on σ more explicit by writing C(r, σ). The
value of χ∗λ(σ) is independent of which representative of the Munn class is chosen by theorem 4.3 of [7], and
it corresponds the matrix entry Mλ,α using our index notation

(M)λ,α = χ∗λ(σ) =
∑

K∈C(r,σ)

χλ(σK)
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Partition C(r, σ) into a disjoint union as follows

C(r, σ) =
⊔
µ`r

{K ∈ C(r, σ) | K = {i1, . . . , im(1), j1, . . . , jm(2), . . . , l1, . . . , lm(e)}

s.t. µ = (m(1),m(2), . . . ,m(e))}

=
⊔
µ`r

Sµ,σ

i.e. we organize the K by the cycle types of Sr that they imitate (again, see p. 849 of Li, Li, and Cao for
reference). Given a fixed µ ` r, we know that

∀K ∈ Sµ,σ, σµ := σK = (1 · · ·m(1)) (m(1) + 1 · · ·m(1) +m(2)) · · ·

([
e−1∑
i=1

m(i)

]
+ 1 · · ·

[
e∑
i=1

m(i)

])

The independence of σµ is immediate from having the same cycle type and Corollary 4.1 of [7]. From this,
we can write

(M)λ,α =
∑

K∈C(r,σ)

χλ(σK) =
∑
µ`r

∑
K∈Sµ,σ

χλ(σK) =
∑
µ`r

|Sµ,σ| χλ(σK)

From here, we set

Aα,µ =

{
|Sµ,α| |µ| = |α|

0 |µ| 6= |α|

where we adopt the convention that the rows of A are indexed by conjugacy classes and columns are indexed
by the irreducible representations of RSp2n. To see that this is the correct definition of A, note that

(AY)λ,δ =
∑
β∈Qn

Aλ,βYβ,δ =
∑

β s.t. |β|=|λ|

|Sβ,λ|Yβ,δ

Because |β| 6= |δ| =⇒ Yβ,δ = 0. Let G be the corresponding group in which the Munn Class indexed by λ
and δ lies, and let σ be an element of that Munn class with r = |λ| = |δ|. Then

(AY)λ,δ =
∑
β∈G

|Sβ,λ|Yβ,δ =
∑
µ`r

|Sµ,σ|χλ(σK) = (M)λ,(σ) = (M)λ,δ

having noted that (σ) = δ as Munn classes.
In the particular case that both λ and δ are partitions of r ≤ n, then any element σ ∈ Cλ, the Munn

class corresponding to partition λ, has rank less than or equal to n. In particular, let MσK represent the
r× r matrix corresponding to σK as an element of Sr. Then from our knowledge of the conjugacy classes of
RSp2n, we know that

N =

(
MσK 0
0 0

)
∈ Cλ ⊆ RSp2n

is a valid representative, and hence any set, S ⊆ I◦(N) with |S| = r consisting of some cycles of N◦ (see p.
849 of Li, Li, Cao) will automatically be admissable. In particular, this means that

|Sβ,λ| =

(
β
λ

)
=

s∏
i=1

(
βi
λi

)
which is the same A-matrix entry as in Solomon’s “Representations of the Rook Monoid,” p. 321 [9]. This
shows that the character table of the symplectic rook monoid has the following form

C(RSp2n) =

(
C(Bn) ∗
0 C(Rn)

)
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where C(M) denotes the character table of the inputted monoid as a block matrix in our larger matrix.
Moreover,

A =

(
Id U
0 T

)
where Tβ,λ =

(
β
λ

)
= |Sβ,λ| for the β, λ described above. U is given by the values of |Sµ,λ| for µ ∈ SPm and

λ ∈ ∪mr=0Pr under the standard ordering of Qn.

5.1 Determining the U-block

To determine U, we consider elements of the Weyl group as described in Geck and Pfeiffer [3] propositions
1.4.1 (p. 21), 3.4.2 (p. 92− 93), and 3.4.7 (p. 96− 97). In particular, we can determine U by looking at the
representatives

wα,β = b−m1,e1 · · ·b
−
ml,el

· b+ml+1,el+1 , · · ·b
+
mr,er

where β = (e1, . . . , el) and α = (el+1, . . . , er) consist of a decreasing partition and increasing partition of
some r and n− r respectively, so that |α|+ |β| = n. We have that

b+m,e = sm+1sm+2 · · · sm+e−1 ∈Wn

b−m,e = tmsm+1sm+2 · · · sm+e−1 ∈Wn
where si is the matrix corresponding to the permutation (i, i + 1) ∈ Sn, also realized as a matrix group,
and tm for 0 ≤ m ≤ n− 1 is the identity matrix in Mat(n) except tm+1,m+1 = −1. We note that

b+m,e = sm+1 . . . sm+e−1
∼= (m+ 1, m+ 2)n · · · (m+ e− 1, m+ e)n ∈ Sn→ (m+ 1, m+ 2, · · · m+ e)2n (m+ 1, m+ 2, · · · m+ e)2n ∈ S2n

b−m,e = tmsm+1 . . . sm+e−1
∼= tm(m+ 1, m+ 2)n · · · (m+ e− 1, m+ e)n→ (m+ 1, m+ 2, · · ·m+ e− 1,m+ e, m+ 1, m+ 2 · · ·m+ e)2n ∈ S2n

Here we’ve included the correspondence between signed n×n matrices, which are demarcated by (· · · )n and
unsigned matrices of size 2n× 2n, demarcated by (· · · )2n. This correspondence is as follows: given a signed
matrix Mσ, then for the permutation matrix contained in Mat(2n), call it M ′, we have

(Mσ)ij = 1 =⇒ (M ′)ij = 1 = (M ′)ij = 1

(Mσ)ij = −1 =⇒ (M ′)ij = 1 = (M ′)ij

With this, the image of b+m,e inMat(2n) is justified. The image of b−m,e can be explained as follows: consider
the image of b−m,e and that of b+m,e as matrices in Mat(2n), denoted by M− and M+. These matrices are
very similar, in particular, rows m+ 2 through m+ e− 2 coincide. However M+

m+1,m+e = 1 =M
+
m+1,m+e

,

while M−
m+1,m+e

= 1 = M−
m+1,m+e

, which comes from the effect of multiplying by tm. This means that

instead of mapping m+ e to m+ 1 under the action of b−m,e, we have that m+ e is mapped to m+ 1. From
there, the cyclic permutation of m+ 1→ m+ 2→ · · ·→ m+ e occurs normally, as

M−
m+2,m+1

= · · · =M−
m+e,m+e−1

=M+
m+2,m+1

= · · · =M+
m+e,m+e−1

= 1

holds. However b−m,em+ e = m + 1, as M−
m+1,m+e

= 1, finishing the matrix description. As an example,
consider

b−0,3 = t0s1s2 = t0(1 2)(2 3) = t0(1 2 3)

=

−1 0 0
0 1 0
0 0 1

0 1 0
1 0 0
0 0 1

1 0 0
0 0 1
0 1 0

 =

−1 0 0
0 1 0
0 0 1

0 0 1
1 0 0
0 1 0

 =

0 0 −1
1 0 0
0 1 0


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7→

0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0

→ (1 2 3 6 5 4) = (1 2 3 1 2 3)

With this, we note that the representatives {wα,β} consist of blocks of disjoint signed permutations, i.e. each
block affects some distinct subset of n. In particular, this is because the subset in question is
{mi + 1, . . . ,mi + ei} for a given bmi,ei . Now consider the set

C(r) = C(r, σ) = {K ⊆ I◦(σ) | K admissable consists of all the elements of some cycles of σ◦ with |K| = r }

for which we sum over in
χ∗λ(σ) =

∑
K∈C(r,σ)

χλ(σK)

from pp. 848 − 849 of [7]. We note that no admissable set in C(r) can contain a cycle induced by a block
b−m,e, as such a cycle contains both m+ i and m+ i for 1 ≤ i ≤ e. Thus the cycles from which an admissible
K ∈ C(r) can be created are those coming from the b+m,e blocks.

Now recall the Sµ,α notation. Let {µi} denote the number of i-cycles in the partition µ. Similarly, let
{αi} denote the number of admissible i-cycles produced by wα,β, which is equal to the number of {ek}k>l
such that ek = i. Then

|Sµ,σ| =

2n∏
i=1

(
αi
µi

)
· 2µi = 2

∑
i µi ·

2n∏
i=1

(
αi
µi

)

because if there are αi i-cycles, then we have

(
αi
µi

)
· 2µi ways of choosing them, as we could consider

choosing i cycles from the collection of cycles acting on {1, . . . , n} or from the disjoint collection of cycles
acting {n + 1, . . . , 2n} = {n, . . . , 1}. Note that such cycles come in pairs as shown by the image of b+m,e
in Mat(2n), and so for every chosen i cycle, we can choose that cycle or its admissible conjugate. This
determines the values of |Sµ,σ| = |Sµ,α| and hence the value of U, completing the description of the A matrix
.

6 Restricting Monoid Representations to Group Representations

Among many sources, Steinberg [10] tells us that the character table of any finite inverse semigroup is block
upper-triangular. Using this, Solomon decomposes the character table of Rn into the product of a block
diagonal matrix and a much simpler block-upper-triangular matrix [9]. In type An, he finds matrices A and
B such that the character table M = AY = YB where Y = diag(Xn, . . . , X0).

To explain his result, we first define

Definition 6.1. Given groups G,H and corresponding representations VG and VH, we define the box tensor
representation VG � VH to be the representation of G×H with the action (g, h) · (v1 � v2) = gv1 � hv2.

We can now describe Solomon’s restriction. He shows that given χ∗ an irreducible representation of Rn
corresponding to a partition of k, the restriction χ∗ |Sn= IndSnSk×Sn−k

(χ � ηn−k), where ηn−k is the trivial
representation. We show in general

Theorem 6.2. Let Wn be a Weyl group of type An, Bn, Cn, or Dn, with corresponding Renner monoids
RWn. Let χ be a character Sr, and χ∗ the associated character of Wn. Then

χ∗|Wn = IndWnSk×Wn−k
(χ� ηn−k)

15



Proof. By setting e = er we have W∗(e) is generated by roots {α ∈ ∆, sαe = esα 6= e}. Thus, W∗(e) is
generated by elements which involve the first r indices. We know what the Coxeter diagrams for these groups
look like, and the only generators which involve the first r indices are the transpositions (k k+ 1) for k ≤ r.
However, (r r+1)er 6= er(r r+1), so W∗(e) = 〈(1 2), · · · , (r−1 r)〉 = Sr. We now apply the general character
formula of Li, Li, and Cao. Given an irreducible character χ of W∗(e), we have that

χ∗(σ) =
∑

K∈F(e),Kσ=K

χ(µKσµ
−
K)

where F(e) = w · [r], w ∈W, for [r] = {1, . . . , r}.
Because K ∈ F(e), |K| = r and there exists a Weyl group element w that restricts to µk, so that µkσµ

−
k

is the restriction of wσw−1 to [r]. Therefore, χ(σ) = (χ⊗ ηn−r)(wσw−1), so that

χ∗(σ) =
∑

(χ� ηn−r)(wσw
−1)

summing over all |K| = r with wKσw
−1
K ∈ Sr ×Wn−r. The elements wK are a set of coset representatives

Wn/(Sr ×Wn−r), which implies

χ∗(σ) =
∑

(χ� ηn−r)(wσw
−1) = IndWnSr×Wn−r

(χ� ηn−r)(σ)

as desired.

6.1 Characters of the Type A Renner Monoid

The above gives us an explicit combinatorial interpretation in the type A case. For an irreducible represen-
tation of Sk indexed by λ = (λ1 ≥ λ2 ≥ λj ≥ 1) where

∑j
i=1 λi = k, the induced representation of λ in Rn

is
χ∗ =

⊕
λ⊆µ

χµ (38)

where µ is an irreducible representation of Sn and µ differs from λ by a horizontal strip. This is the Pieri
rule in the type A case, and it allows us to more easily compute the restriction of irreducible representations
of the Rook monoid to Sn. Further, we use this as motivation in the type B case.

6.2 Type B Case

We’ll now determine an analogue of the Pieri rule for Bn. We first highlight the two facts from Geck and
Pfeiffer.

Proposition 2 (Geck and Pfeiffer Page 178, Lemma 6.1.3). Let n ≥ 1 and k, l ≥ 0 be integers such that
n = k+ l. Let (λ1, λ2) and (µ1, µ2) be pairs of partitions with |λ1|+ |λ2| = k and |µ1|+ |µ2| = l. Then, using
the diagonal embedding Wk ×Wl ⊆Wn, we have

IndBnBk×Bl(χa1,a2 � χb1,b2) =
∑

(ν1,ν2)

cν1a1,b1c
ν2
a2,b2

χν1,ν2

where the sum runs over all pairs of partitions (ν1, ν2) for which |νi| = |λi|+ |νi| for i = 1, 2.

Proposition 3 (Geck and Pfeiffer Page 179, Lemma 6.1.4). Let n ≥ 1 and consider the subgroup Sn ⊂ Bn.
Let ν ` n and χν ∈ Irr(Sn) be the corresponding irreducible character. Then

IndBnSn =
∑
λ,µ

cνλµχ(λ,µ)
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We can now derive a more explicit formula for IndBnSk×Bl(χν � ηl) for a fixed partition ν ` k. Using
transitivity of induction, we have

IndBnSk×Bl(χν � ηl) = IndBnBk×Bl IndBk×BlSk×Bl (χν � ηl)

= IndBnBk×Bl

∑
λ,µ

cνλ,µχλ,µ � ηl


=
∑
λ,µ

cνλ,µ IndBnBk×Bl(χλ,µ � χ[l],∅)

=
∑
λ,µ

λ+µ`k

cνλ,µ
∑
ν1,ν2

|νi|=|λi|+|µi|
ν1+ν2`n

cν1
λ,[l]c

ν2
µ,∅χν1,ν2

Note that cν2µ, = 0 unless µ = ν2 in which case it is equal to 1. This sum reduces to

IndBnSk×Bl(χν � ηl) =
∑
λ,µ

λ+µ`k

cνλ,µ
∑
ν1

ν1+µ`n

cν1
λ,[l]χν1,µ

=
∑
γ,µ

γ+µ`n


∑

λ, λ+µ`k
γ−λ horiz. strip

of size l

cνλ,µc
γ
λ,[l]

χγ,µ

=
∑
γ,µ

γ+µ`n

 ∑
λ

γ−λ horiz strip
of size l

cνλ,µ

χγ,µ
The line comes from swapping the order of summation and noting that cνλ,[l] is an order type-A Pieri

coefficient, which is 1 if γ − λ is a horizontal strip and 0 otherwise by Geck and Pfeiffer p. 182 [3]. These
explicit formulas yield a nicer way to determine the character table.

6.3 A and B matrices in type A case

Solomon showed that the character table, M, of the rook monoid can be written as

M = AY = YB (39)

where Y is the block diagonal matrix, where the blocks are the character tables of Sn down to S0. It turns
out that the B matrix is simple to compute and is completely determined by the Pieri rule. We will show in
the Hecke algebra case, H(Rn), that if M is the Hecke algebra character table and Y is the block diagonal
matrix where the blocks are the character tables of H(Sn) down to H(S0), then M = YB where B is the
same matrix as in the regular monoid case. The A matrix can be described using binomial coefficients.
However, from the smallest cases, the A matrix is dependent upon q in the Hecke Algebra case, thus we do
not compute this here.

6.4 B matrix for H(Rn)

Let H(Rn) be the Hecke algebra of the Rook monoid. Let Mn be the character table of H(Rn) and let Hn
be the character table of the Hecke algebra H(Sn). Let Yn be the block diagonal matrix whose blocks are
Hi for i = 0, . . . , n where Hn is the top left block and H0 is the bottom right block.

17



Theorem 6.3. The character table, Mn, can be decomposed as Mn = YnBn where Bn is the B matrix
computed in Solomon [9].

Proof. In [2], the authors determine the character table is

Mn =

[
Hn ∗
0 Mn−1

]
(40)

Thus, by induction, assume Mn−1 = Yn−1Bn−1. Then it is clear that

Bn =

[
Id P
0 Bn−1

]
(41)

Thus, we need to show that P is determined in exactly the same way as the upper right part of the matrix
in [9]. Note that we already know what this P would be if we let q = 1. Further, let λ index an irreducible
representation of H(Rn), then it is clear that the matrix P encodes the restriction of Vλ to H(Sn).

In particular,

Vλ ↓ H(Sn) =
⊕
µ`n

αµW
µ (42)

where αµ ∈ N and ↓ denotes the restriction of a representation to the indicated subalgebra/submonoid. We
see that P encodes these αµ, and the αµ are independent of q. Thus, we can set q = 1, and our P matrix is
determined by the Pieri rule for Sn. As a result, Bn = B.

Here we see that computing the character table of H(Rn) is reduced to knowing the character tables of the
group case, and the character table of q = 1 case. We now extend this to the Hecke algebra H(RSp2n).

6.5 B Matrix in type B

Using inspiration of Solomon, we find the B matrix associated to RSp2n and the B matrix of the Hecke
algebra H(RSp2n). Note that the A matrix was computed in section 5. We show that the same B matrix
determines the character table for H(RSp2n). However, the A matrix is not the same when we extend to
the Hecke algebra.

Theorem 6.4. The B matrix of RSp2n is the same for H(RSp2n).

Proof. Note that we have an isomorphic copy of H(Rn) sitting inside of H(RSp2n). From the generators in [4]
of H(RSp2n), we see a subset is isomorphic to the generaotrs of H(Rn). These generators correspond to rows
in the character table indexed by partitions of k for k ∈ {0, . . . , n}. Thus the irreducible representations of
H(RSp2n) restrict to irreducible representations of H(Rn), or in other words, the irreducible representations
of H(Rn) extend to irreducible representations of H(RSp2n). In this case, we have the character table of
H(RSp2n) is

M2n =

[
H(Bn) P
0 H(Rn)

]
(43)

Thus, we clearly see the B matrix of H(RSp2n) is

B =

[
Id ∗
0 Bn

]
(44)

where Bn was determined in the type A case. However, just like in the type A case, we know exactly how to
compute P. In particular, the section of P in the matrix are sums of elements from H(Spn). We determined
that these must be integers because if λ indexes an irreducible representation of H(RSp2n), then we can
compute its restriction to H(Spn) as

Vλ ↓ H(Bn, B) =
⊕
µ+γ`n

αµ,γV
µ,γ (45)

18



As in the previous section, we know that αµ,γ are all positive integers or 0. In particular, they do not depend
on q. Since we know what these values are when q = 1, we also know these values for all q. Hence, the ∗
section of our B matrix is determined by our Bn Pieri rules. Thus, the B matrix for H(RSp2n) is the same
as the B matrix for RSp2n.

We now justify the form of M2n:

Lemma 6. The lower right section of the character table of H(RSp2n) is the character table of H(Rn)

Proof. Suppose Vλ is an irreducible representation of H(RSp2n). Further, suppose Vλ corresponds to a
representation that is not 0 on H(Rn), i.e. according to our index, it is a column of the right half of our
matrix. Then, since H(Rn) ⊆ H(RSp2n), we can compute the restriction of Vλ to H(Rn). If µi index the
irreducible representations of H(Rn) for i = 1, . . . , k, then

Vλ ↓ H(Rn, B) =

k⊕
i=1

αiW
µi (46)

where, αmui ≥ 0. Let χλ be the character of λ when restricted to H(Rn), and let χµi be the character of
µi in H(Rn). From the computation of our character table in the RSp2n case, we know that when q = 1,
χλ = χµj for some j. Thus, we know

χλ(q) =

k∑
i=1

αiχµi(q)
q=1−−−→ χλ =

k∑
i=1

αiχµi = χµj (47)

Thus, this implies that αj = 1 and αi = 0 for i 6= j. In particular, this tells us the lower half of the character
table of H(RSp2n, B) is just the character table of H(Rn, B).

We note that it turns out the A matrix is dependent upon q when we extend our monoid to the hecke algebra
case.

Example 6.5.1. The following is the character table of H(R2).
1 1 2 1
q −1 q− 1 q
0 0 1 1
0 0 0 1

 =


1 0 2 1
0 1 q− 1 q
0 0 1 1
0 0 0 1



1 1 0 0
q −1 0 0
0 0 1 0
0 0 0 1

 (48)

What we can see here is that the A matrix (the left matrix to the right of the equals sign) is dependent
upon q. Further, this is why we do not investigate the A matrix any further for H(Rn). Since the lower
right part of the character table of H(RSp2n) contains H(Rn), we see the A matrix here would also depend
on q. Thus, we believe the B matrix is more useful as there is no q dependence.
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