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Abstract

Fix two lattice paths P and Q from (0, 0) to (m, r) that use East and North
steps with P never going above Q. Bonin et al. in [1] show that the lattice paths
that go from (0, 0) to (m, r) and remain bounded by P and Q can be identified with
the bases of a particular type of transversal matroid, which we call it a lattice path
matroid.

In this paper, we consider properties of lattice path matroid polytopes. These
are the polytopes associated to the lattice path matroids. We investigate their face
structure, decomposition, triangulation, Ehrhart polynomial and volume.
Keywords:

1 Introduction

In this paper we discuss a special class of matroid polytopes which we call the Lattice
path matroid polytopes. With every pair of lattice paths P and Q that have a common
endpoints we associate a matroid in such a way that the bases of the matroid correspond
to the paths that remain in the region bounded by P and Q. These matroids, which we
call lattice path matroids, appear to have a wealth of interesting and striking properties.

For any matroid one can associate a matroid polytope by taking the convex hull
of the incidence vectors of the bases of the matroid. The last few years has seen a
flurry of research activities around matroid polytopes, in part because their combinatorial
properties provide key insights into matroids and in part because they form an intriguing
and seemingly fundamental class of polytopes which exhibit interesting geometric features.
The theory of matroid polytopes has gained prominence due to its applications in algebraic
geometry, combinatorial optimization, Coxeter group theory, and most recently, tropical
geometry. In general matroid polytopes are not well understood.

In this paper we investigate properties of the lattice path matroid polytopes which
are the polytopes associated to the lattice path matroids. This class of matroid polytopes
have many interesting properties and they are belong to important class of polytopes
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such as Alcoved Polytopes, Generalized Permutahedron, Polypositroids [3], [11]. This
Polytope is also closely related to Stanley-Pitman Polytopes discussed by Stanley [10].

The combinatorial and structural properties of the Lattice Path Matroids are studies
by Bonin et. al. in [1] and [2]. In this paper we discover the face structure, decomposition,
triangulation, Ehrhart polynomial and volume of the lattice path matroid polytopes.

2 Definitions and Background

A Matroid M is a finite collection of subsets F of [n] = {1, 2, . . . , n} called independent

sets such that the following properties are satisfied:

1. ∅ ∈ F

2. If U ∈ F and V ⊆ U then V ∈ F

3. If U, V ∈ F and |U | = |V |+ 1 there exists x ∈ U \ V such that V ∪ x ∈ F

Bases are defined to be maximal independent sets of a matroid. Let B be the set of
bases of a matroid M. If B = {σ1, . . . , σr} ∈ B, the incidence vector of B is defined as
eB :=

∑r

i=1 eσi
, where ej is the standard elementary jth vector in R

n. We define matroid

polytope of M as P(M) := conv{ eB | B ∈ B }, where conv(·) denotes the convex hull.

The set system A = {Aj : j ∈ J} is a multiset of subsets of a finite set S. A transversal

of A is a set {xj : j ∈ J} of |J | distinct elements such that xj ∈ Aj for all j in J . A
partial transversal of A is a transversal of a set system of the form {Ak : k ∈ K} with K
a subset of J .

Edmonds and Fulkerson showed the following fundamental result:

Theorem 2.1. The partial transversals of a set system A = {Aj : j ∈ J} are the

independent sets of a matroid on S.

A transversal matroid is a matroid whose independent sets are the partial transversals
of some set system A = {Aj : j ∈ J}; we say that A is a presentation of the transversal
matroid. The bases of a transversal matroid are the maximal partial transversals of A

This paper studies the polytopes which arise from lattice paths. We consider two kinds
of lattice paths, both of which are in the plane. The lattice paths we consider use steps
E = (1, 0) and N = (0, 1). We will often treat lattice paths as words in the alphabets
{E,N}, and the notation αn denotes the concatenation of n copies of α, where α is a
letter or string of letters.

The lattice path matroids first defined by Bonin et al. [1] as follows:

Definition 2.2. Let P = p1p2 · · · pm+r and Q = q1q2 · · · qm+r be two lattice paths from
(0, 0) to (m, r) with P never going above Q. Let {pu1

, . . . , pur
} be the set of North steps

of P with u1, u2, . . . , ur; similarly, let {ql1 , . . . , qlr} be the set of North steps of Q with
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l1, l2, . . . , lr. Let Ni be the interval [li, ui] of integers. Let M[P,Q] be the transversal
matroid that has ground set [m + r] and presentation (Ni : i ∈ [r]); the pair (P,Q) is
a presentation of M[P,Q]. A lattice path matroid is a matroid that is isomorphic to
M[P,Q] for some such pair of lattice paths P and Q.

The fundamental connection between the transversal matroid M[P,Q] and the lattice
paths that stay in the region bounded by P and Q is the following theorem of Bonin et.
al. [1] which says that the bases of M[P,Q] can be identified with such lattice paths.

Theorem 2.3 (Bonin et. al.). A subset B of [m+ r] with |B| = r is a basis of M[P,Q]
if and only if the associated lattice path P (B) stays in the region bounded by P and Q,

where P (B) is a path which has its North steps on the set B positions and it has its East

steps on the set [m+ r]− B positions.

A special class of the lattice path matroids are the generalized Catalan matroids
defined as follows:

Definition 2.4. A lattice path matroid M is a generalized Catalan matroid if there is a
presentation (P,Q) of M with P = EmN r. In this case we simplify the notation M[P,Q]
to M[Q]. If in addition the upper path Q is (EkN l)n for some positive integers k, l, and n,
we say that M[(EkN l)n, EmN r] is the (k, l)-Catalan matroid Mk,l

n . In place of Mk,1
n we

write Mk
n; such matroids are called k-Catalan matroids. In turn, we simplify the notation

M1
n to Mn; such matroids are called Catalan matroids.

The generalized Catalan matroids were discovered by Crapo and rediscovered in var-
ious contexts; they have been called shifted matroids , PI-matroids [6], and freedom
matroids.

Throughout this paper we investigate lattice path matroid polytopes.

3 Faces and Dimensions of Lattice Path Matroid Poly-

topes.

In this section, we study the faces and dimensions of the lattice path matroid polytopes. In
general the faces of matroid polytopes are not well understood. The following is the main
fundamental result in this area. Edmonds [5] as well as Gel′fand, Goresky, MacPherson
and Serganova [12, Thm 4.1] show the following characterization of matroid polytopes.

Let M be a matroid, then we have the following:

Lemma 3.1. Two vertices eB1
and eB2

are adjacent in P(M) if and only if eB1
− eB2

=
ei − ej for some i and j.

The circuit exchange axiom gives rise to the following equivalence relation on the
ground set [n] of the matroid M: We say i and j are equivalent if there exists a circuit
C with {i, j} ⊆ C. The equivalence classes are the connected components of M. Let
c(M) denote the number of connected components of M. We say that M is connected if
c(M) = 1. The following proposition has been shown in [4] by Feichtner and Sturmfels.
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Proposition 3.2 (Feichtner, Sturmfels). The dimension of the matroid polytope P(M)
equals n− c(M).

Let P = p1p2 . . . pm+r and Q = q1q2 . . . qm+r be two lattice paths from (0, 0) to (m, r)
with P never going above Q. The following result explain the number of connected
components in the lattice path matroid polytopes.

Proposition 3.3 (Bonin et al.). The class of lattice path matroids is closed under the
direct sums. Furthermore, the lattice path matroid M[P,Q] is connected if and only if
the bounding lattice paths P and Q meet only at (0, 0) and (m, r).

Applying Propositions 3.2 and 3.3, we have the following lemma:

Lemma 3.4. The dimension of the lattice path matroid polytope P(M[P,Q]) is m+ r−
k + 2, where k is the number of intersection vertices of the paths P and Q.

Corollary 3.5. The Catalan matroid polytope P(Mn), for any n > 2, has c(Mn) = 3
connected components and its dimension is 2n− 3.

In the following lemma, we give a combinatorial interpretation of the number of edges
of the generalized Catalan matroid polytopes as follows:

Lemma 3.6. Consider the lattice path matroid polytope P(M[EmN r, Q]) = P(M[Q]).
The number of edges of this polytope is equal to the sum of areas between the paths from

(0, 0) to (m, r) which do not go above Q or below the path EmN r.

Proof. We know that the vertices of the generalized Catalan matroid polytope
P(M[EmN r, Q]) are the paths withm East steps and r North steps which does not exceed
Q. By Lemma 3.1, the number of edges of this polytope is equal to the number of paths
P and P

′

in this region which differ in one N step and one E step consecutively. Without
lose of generality, we may assume that P = P1NP2EP3 and P

′

= P1EP2NP3.

For each path P in [EmN r, Q], we can always switch ordered pairs of N step and E
step to one other pair of E step and N step and obtain the other path P

′

in [EmN r, Q].
Clearly, the vertices associated P and P

′

in M[EmN r, Q] are adjacent to each other. We
only need to count the number of all pairs of paths P and P

′

which only different in N
and E steps consequently. For any consecutive pair of N and E steps in the path P , we
can construct a path P

′

which is different by P only in those position. For any path P ,
these pairs of N and E steps are in bijection with squares below path P . We can conclude
that the number of all pairs of paths P and P

′

which only different in N and E steps
consequently is equal to the sum of the areas between all the paths in [EmN r, Q] and the
path EmN r consisting of N and E steps.

Lemma 3.7. The number of edges, a(n), of the Catalan matroid polytope

P(Mn) = P(M[EnNn, (EN)n]) = P(M[En−1Nn−1, (NE)n−1]), a(n), is the the total

area below paths consisting of E, (1, 0), and N , (0, 1), steps from (0, 0) to (n, n), that stay
weakly below y = x. So we can calculate a(n) as follows:

a(n) =
n2

2

1

n+ 1

(

2n

n

)

− 4n

2
− 1

4

(

2n+ 2

n+ 1

)

. (3.1)
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Proof. Let a(n) denote the total area below paths consisting of steps E and N from (0, 0)
to (n, n) that stay weakly below y = x. Furthermore, let An be the total area between
the paths consisting of steps E and N from (0, 0) to (n, n) and the line x = y. The nth
Catalan number, Cn, is the number of paths from (0, 0) to (n, n) that stay weakly below
y = x.

We proceed by induction, it is not hard to verify that

An+1 = 2
n

∑

k=0

(k +
1

2
)CkCn−k +

n
∑

k=0

AkCn−k +
n

∑

k=0

An−kCk. (3.2)

Therefore, we have:

An+1 = 2

n
∑

k=0

AkCn−k +
1

2

n
∑

k=0

CkCn−k +

n
∑

k=0

kCkCn−k. (3.3)

Let C(t) and A(t) be the generating functions for Cn and An, we have

A(t)

t
= 2A(t)C(t) +

1

2
C(t)2 + tC

′

(t)C(t). (3.4)

By differentiating, we obtain the following generating function for A(t)

A(t) =
1− 2t−

√
1− 4t

4t(1− 4t)
. (3.5)

Therefore, we obtain the value for An as follows:

An =
4n

2
− 1

4

(

2n+ 2

n + 1

)

. (3.6)

From the definition of An and a(n), we have,

a(n) =
n2

2

1

n+ 1

(

2n

n

)

− 4n

2
− 1

4

(

2n+ 2

n+ 1

)

. (3.7)

The number of edges of the Catalan matroid polytope P(Mn) is a(n).

Consider the connected lattice path matroid polytope P(M[P,Q]), where P and Q are
paths from (0, 0) to (m, r). We have P = Eα1Nα2 · · ·Nα2k and also Q = Nβ1Eβ2 · · ·Eβ2r .
As we know, any bases of the matroid M[P,Q] associated to the vector X = x1 · · ·xm+r,
where vector X is a base for M[P,Q] if and only if P (X) lies in the region [P,Q]. Let pi
and qi be the number of N steps which occur in the first i steps of paths P and Q, where
1 6 i 6 m+ r, so pm+r = qm+r = m. Therefore, P (X) lies in the region [P,Q] if and only
if pi 6 x1 + · · ·+ xi 6 qi for all 1 6 i 6 m+ r.

Lemma 3.8. The polytope P(M[P,Q]) can be determined by the following inequalities,

• pi 6 x1 + · · ·+ xi 6 qi for all 1 6 i 6 m+ r, where x1 + · · ·+ xm+r = m,
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• 0 6 xi 6 1.

where pi and qi be the number of N steps that occur in the first i steps of paths P and Q.

Proof. Every vertex of P(M[P,Q]) satisfy the conditions (1) and (2). Therefore, every
point in P(M[P,Q]) satisfy both of these conditions. Now we would like to show that
every point a = (a1 · · ·am+r) satisfying inequalities (1) and (2) is inside P(M[P,Q]). In
case there exists 1 6 i 6 m+ r so that ai = 0, we can proceed by induction on m+ r. In
this case, the point a is in convex hull of the vertices in P(M[P,Q]) whose ith vertices
are 0, so it lies in P(M[P,Q]). Similarly, we can proceed for the case ai = 1 Otherwise,
let ai be the minimum value of vector in a and let Xi be a vertex whose ith coordinate

is 1. We define the vector B =
a− aiXi

1− ai
. This vector satisfies the inequalities conditions

and it has zero entries. By the previous case, the point B lies inside the polytope and so
the point a. Therefore, we can proceed with induction.

Lemma 3.9. Consider the connected lattice path matroid polytope P(M[P,Q]), where

P and Q are paths from (0, 0) to (m, r) so that P = Eα1Nα2 · · ·Nα2l and also Q =
Nβ1Eβ2 · · ·Eβ2s. The affine hull of this polytope is x1 + · · ·+ xm+r = r.

We have the following facets:

(a) x1 + · · ·+ xβ1+···+β2k
6 β1 + β3 + · · ·+ β2k−1 for 1 6 k < s.

(b) x1 + · · ·+ xα1+···+α2k
> α2 + α4 + · · ·+ α2k for 1 6 k 6 l − 1.

In case β1 > 1 and α2l > 1, the facets in the affine hull x1 + · · · + xm+r = r can be

described as follows:

1. xi > 0 for i = 1, . . . , m+ r, except for i’s so that we have the facets x1+ · · ·+xi > j

and x1 + · · ·+ xi−1 6 j in (a) and (b) descriptions.

2. xi 6 1 for i = 1, . . . , m+ r, except for i’s so that we have the facets x1+ · · ·+xi > j

and x1 + · · ·+ xi+1 6 j + 1 in (a) and (b) descriptions.

In case β1 = 1 and α2l > 1, the facets in the affine hull x1 + · · · + xm+r = r can be

described as follows:

1. xi > 0 for all i = 1, . . . , m+r except for i’s so that we have the facets x1+· · ·+xi > j

and x1 + · · ·+ xi−1 6 j in (a) and (b) descriptions.

2. xi 6 1 for all i = 1, . . . , m + r, except i 6 1 + β2 and also for i’s so that we have

the facets x1 + · · ·+ xi > j and x1 + · · ·+ xi+1 6 j + 1 in (a) and (b) descriptions.

In case β1 = 1 and α2l = 1 the facets in the affine hull can be described as follows:

1. xi > 0 for i = 1, . . . , m+ r, except for i’s so that both facets x1 + · · ·+ xi > j and

x1 + · · ·+ xi−1 6 j in the above descriptions (a) and (b).
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2. xi 6 1 for i = 1, . . . , m+ r, except i 6 1+ β2 and for i > α1 + · · ·+ α2l−2. and also

for i’s so that we have the facets x1 + · · ·+ xi > j and x1 + · · ·+ xi+1 6 j + 1, in
the above descriptions (a) and (b).

In case β1 > 1 and α2l = 1 the facets in the affine hull x1 + · · · + xm+r = r can be

described as follows,

1. xi > 0 for all i = 1, . . . , m+ r except for i’s so that both facets x1+ · · ·+xi > j and

x1 + · · ·+ xi−1 6 j in the above descriptions (a) and (b).

2. xi 6 1 for all i = 1, . . . , m + r except for i’s so that both facets x1 + · · · + xi > j

and x1 + · · · + xi+1 6 j + 1 in the above descriptions (a) and (b), and also for

i > α1 + · · ·+ α2l−2.

Proof. Let us recall the fact that each polytope is the intersection of a finite family of
half spaces in its affine hull. The minimal such family determines the facets of polytope.
The polytope P(M[P,Q]) lies on the affine hull x1 + · · ·+ xm+r = r. So we only need to
verify that the polytope P(M[P,Q]) obtained by the described half spaces in the affine
hull x1 + · · · + xm+r = r and this set is minimal. As we described in Lemma 3.8, the
polytope P(M[P,Q]) can be described as the intersection of the following hyperplanes,

1. 0 6 xi and xi 6 1 for 1 6 i 6 m+ r,

2. x1 + · · ·+ xβ1+···+β2k+t 6 β1 + β3 + · · ·+ β2k−1 + t for 1 6 k < s and t 6 β2k+1,

3. x1 + · · ·+ xβ1+···+β2k−1+t 6 β1 + β3 + · · ·+ β2k−1 for 1 6 k 6 s, where t 6 β2k,

4. x1+ · · ·+xα1+···+α2k−1+t > α2+α4+ · · ·+α2k−2+t, where 0 6 t 6 α2k and 1 6 k 6 l,

5. x1+ · · ·+xα1+···+α2k−2+t > α2+α4+ · · ·+α2k−2, where 0 6 t 6 α2k−1 and 1 6 k 6 l.

It is easy to verify that the hyperplanes xi 6 1 and xi > 0 for i = 1, . . . , m + r,
x1 + · · · + xβ1+···+β2k

6 β1 + β3 + · · · + β2k−1 for 1 6 k < s and x1 + · · · + xα1+···+α2k
>

α2+α4+ · · ·+α2k for 1 6 k 6 l−1 generate all the hyperplanes stated above. In addition
we have the following facts:

1. The hyperplanes x1 + · · ·+ xi > j and x1 + · · ·+ xi−1 6 j implies that xi > 0, so
we can omit the hyperplane xi > 0 for such i’s.

2. The hyperplanes x1 + · · ·+ xi−1 > j and x1 + · · ·+ xi 6 j + 1 implies that xi 6 1,
so we can omit the hyperplane xi 6 1 for such i’s.

3. In case β1 = 1, the hyperplame x1+· · ·+x1+β2
6 1 implies that xi 6 1 for i 6 β2+1.

4. In case α2l = 1, the equality x1 + · · · + xm+r = r implies that xi 6 1 for i >

α1 + · · ·+ α2l−2.
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Therefore, the hyperplanes stated on the theorem generate P(M[P,Q]) in the affine
hull x1 + · · ·+ xm+r = r. It is not hard to verify that the generating set is minimal and
none of hyperplanes generate by others.

Lemma 3.10. The Catalan matroid polytope P(Mn+1) = P(M[EnNn, (NE)n]), for any
n > 2, has 5n− 5 facets which lies in the following hyperplanes:

• x3, . . . , x2n−1, x2n 6 1,

• x1, x2, . . . , x2n > 0,

• ∑2k−2
i=1 xi 6 k − 1 for 2 6 k 6 n,

Lemma 3.11. The Generalized Catalan matroid polytope

P(Mr
n) = P(Er(n−1)Nn−1, (NEr)n−1), for any n > 2 has (r+1)(2n−3)+n−2 facets

which lies in the following hyperplanes:

• xr+2, . . . , x(r+1)(n−1) 6 1,

• x1, x2, . . . , x(r+1)(n−1) > 0,

• ∑k(r+1)
i=1 xi 6 k for 1 6 k 6 n− 2.

Theorem 3.12. All the faces of lattice path matroid polytope are lattice path matroid

polytopes.

Proof. Without lost of generality, we may assume that the lattice path matroid polytope
P(M[P,Q]) is connected, where P and Q are paths from (0, 0) to (m, r), so that P =
Eα1Nα2 · · ·Nα2k and also Q = Nβ1Eβ2 · · ·Eβ2s.

We wish to show that all the facets of this polytope are the lattice path matroid
polytopes. Clearly, the vertices in facet of the form x1+ · · ·+xi 6 qi, x1+ · · ·+xi > pi are
the paths which go through the ith vertex of the paths Q and P , respectively. Thus, these
facets are the lattice path matroid polytopes which are direct sums of two other lattice
path matroid polytopes. We only need to show that facets which obtain by equalities
xi = 0 and xi = 1 are also the lattice path matroid polytopes.

Consider the facet xi = 1 of the polytope. The vertices of this facet are paths with N
step on their ith step. We just delete ith element of the matroid M[P,Q] and as discussed
in [2] the resulting matroid is a lattice path matroid. See in Figure 3. The result is lattice
path matroid associated to this facet. Similarly, the vertices with xi = 0, form a lattice
path matroid polytope.
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Figure 1: Faces of lattice path matroid polytope

Figure 2: Faces of lattice path matroid polytope

4 Decomposition of Lattice Path Polytope

In this section, we study the decomposition of the lattice path matroid polytope into
lattice path matroid polytopes.

Billera, Jia and Reiner [13] defined a matroid polytope decomposition of P(M) to
be a decomposition P(M) =

⋃t

i=1P(Mi) where each P(Mi) is also a matroid polytope
for some matroid Mi and all P(Mi)’s have the same dimension as P(M). and for each
1 6 i 6= j 6 t, the intersection P(Mi)∩P(Mj) is a face of both P(Mi) and P(Mj). The
polytope P(M) is said to be decomposable if it has a matroid polytope decomposition
for t > 2, and it is indecomposable otherwise.

A decomposition is called hyperplane split if t = 2. We notice that if P(M) =
P(M1) ∪ P(M2) is a nontrivial hyperplane split then P(M1) ∩ P(M2) must be a facet
of both P(M1) and P(M2), and the dimension of P(Mi) for i = 1, 2 is the same as that
of P(M).

Let M = (E ,B) be a matroid of rank r and let A ⊆ E . We recall that the independent
set of the restriction matroid of M to A, denoted by M|A, is given by I(M|A) = {I ⊆
A : I ∈ I(M)}. Let (E1, E2) be a partition of E , that is, E = E1 ∪ E2 and E1 ∩ E2 = ∅. Let
ri > 1, i = 1, 2 be the rank of M|Ei. We say that (E1, E2) is a good partition if there exist
integers 0 < a1 < r1 and 0 < a2 < r2 with the following properties:

(P1) r1 + r2 = r + a1 + a2

(P2) For all X ∈ I(M|E1) with |X| 6 r1 − a1 and all Y ∈ I(M|E2) with |Y | 6 r2 − a2,
we have X ∪ Y ∈ I(M).

Lemma 4.1 (Alfonsin, Chatelain). Let M = (E ,B) be a matroid of rank r and let

(E1, E2) be a good partition of E. Let B(M1) = {B ∈ B(M) : |B ∩ E1| 6 r1 − a1} and
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B(M2) = {B ∈ B(M) : |B ∩ E2| 6 r2 − a2}. Where ri is the rank of matroid M|Ei for

i = 1, 2 and a1 and a2 are integers verifying properties (P1) and (P2). Then B(M1) and
B(M2) are the collections of bases of matroids M1 and M2, respectively. As a conclusion,

P(M) = P(M1) ∪ P(M2) is a hyperplane split.

In the following lemma we use the work of Alfonsin and Chatelain to explain the lattice
path matroid polytope decompositions.

Lemma 4.2. Let M[P,Q] be a lattice path matroid the transversal matroid on {1, . . . , m+
r} and presentation (Ni : i ∈ {1, . . . , r}) where Ni denotes the interval [si, ti] of integers.
Suppose that there exists integer x such that sj < x < tj and sj+1 < x + 1 < tj+1

for some 1 6 j 6 r − 1. Then, P(M[P,Q]) has a nontrivial hyperplane split. In fact

this decompose the lattice path matroid polytope P(M[P,Q]) into two lattice path matroid

polytopes P(M[P,Q1]) and P(M[P1, Q)

(0,0)

(8,6)

(0,0)

(0,0)

(8,6)

(8,6)

Figure 3: Decompositions of matroid polytopes

Proof. We can consider lattice path matroid as a transversal matroid on {1, ..., m + r}
and presentation (Ni : i ∈ {1, · · · , r}) where Ni denotes the interval [si, ti] of integers,
were si and ti are the location of ith N on paths P and Q respectively. Since the region
of M[P,Q] is not a border strip and this is not a border strip lattice path matroid, there
exists integer x such that sj < x < tj and sj+1 < x+1 < tj+1 for some 1 6 j 6 r− 1. Set
E1 = {1, · · · , x} and E2 = {x+1, · · · , m+r}. The partition (E1, E2) verifies property (P1)
by taking integers a1 and a2 such that r1 − a1 = and r2 − a2 = r − j. Moreover, the sets
B(M1) = {B ∈ B(M) : |B∩E1| 6 r1−a1} and B(M2) = {B ∈ B(M) : |B∩E2| 6 r2−a2}
are the collections of bases of matroids M1 and M2 respectively. Indeed, M1 is the

transversal matroid with representation (Ni
1
: i ∈ {1, · · · , r}) where Ni

1
= Ni for each

i = 1, · · · , j and Ni

1
= Ni ∩ E2 for each i = j + 1, · · · , r. M2 is the transversal matroid

with representation (Ni

2
: i ∈ {1, · · · , r}) where Ni

2
= Ni ∩ E1 for each i = 1, · · · , j and

Ni

1
= Ni for each i = j + 1, · · · , r. Finally, M1 ∩ M2 is the transversal matroid with

representation (Ni : i ∈ {1, · · · , r}) where Ni = Ni

1 ∩Ni

2
for each i = 1, · · · , r.

Let us consider M1 and M2 as lattice path matroid polytopes.
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Figure 4: Decompositions of matroid polytope to border strips

Consider the point (h + 1− j, j) on the region of lattice path matroid. It is not hard
to see that M1 and M2 are the lattice path matroids. The region of M1 is obtained by
removing boxes of M[P,Q] which are above the lines y = j and on the left hand side of
the line x = h + 1 − j. The region of M2 is also obtained by removing the boxes which
are on the right hand side of the vertical line x = x− j and below y = j.

Let k be the least positive integer so that tk − k > x− j. Let P1 be the path of length
m+r with the following set of r N steps: {t1, . . . , tj, m,m+1, . . . , m+k−j, tk, . . . , tr}. Let
be a path Q1 of length m+ r with r north steps {s1, . . . , sl, m− l+k, . . . , m, sk+1, . . . , sr}
where l is the greatest element so that sl−l 6 m−j. It is easy to see that M1 = M[P1, Q]
and M2 = M[P,Q1]. See Figure ??.

Definition 4.3. Let M[P,Q] be a connected lattice path matroid so that the region
between P and Q is a connected border strip and let p be a path whose vertices are boxes
of border strip and its edges are connected boxes. We call M[P,Q] a border strip matroid

and we denote it by S(p).

Lemma 4.4. Let P(M[P,Q]) be a connected lattice path matroid of rank r on {1, . . . , m+
r} which is not a border strip matroid. It can be decomposed into connected lattice path

matroid polytope using hyperplane split. Moreover, P(M[P,Q]) can be decomposed into

P(S(p)) where p ranges over all paths contained in M[P,Q].

Proof. By induction we know that P(M[P1, Q]),P(M[P,Q1]) can be decomposed to bor-
der strip matroid polytopes P(S(p)) for all

p ∈ [P1, Q] and P(S(p)) for all p ∈ [P1, Q] , respectively.
Since all the paths contain in region [P,Q] is either in their region [P,Q1] or in [P1, Q].

Therefore P(M[P,Q]) can decompose to border strip matroid polytopes P(S(p)) for all
p ∈ M[P,Q]

5 Triangulation and Ehrhart Series of Catalan Ma-

troid Polytope

The hypersimplex ∆k,n ⊂ R
n is the convex polytope defined as the convex hull of the

points ǫI , for I ∈
(

[n]
k

)

. All these
(

n

k

)

points are actually vertices of the hypersimplex
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because they are obtained from each other by permutations of the coordinates. This
(n− 1)-dimensional polytope can also be defined as

∆k,n = {(x1, . . . , xn) | 0 6 x1, . . . , xn 6 1; x1 + · · ·+ xn = k} .

The following unimodular triangulation of hypersimplex introduced by Sturmfels.

5.1 Another Combinatorial Interpretation of the Volume of the

Lattice Path Matroid Polytopes

We consider the integers 0 < k < n. We set [n] := {1, . . . , n},
(

[n]
k

)

denotes the collection
of k-element subsets of [n].

Clearly for each k-subset I ∈
(

[n]
k

)

we cab associate the 0, 1-vector eI = (e1, . . . , en)
such that ei = 1 for i ∈ I; and ǫi = 0 for i 6∈ I.

The hypersimplex ∆k,n ⊂ R
n is a convex polytope defined as the convex hull of the

points ǫI , for I ∈
(

[n]
k

)

. All these
(

n

k

)

points are actually vertices of the hypersimplex
because they are obtained from each other by permutations of the coordinates. This
(n− 1)-dimensional polytope can also be defined as

∆k,n = {(x1, . . . , xn) | 0 6 x1, . . . , xn 6 1; x1 + · · ·+ xn = k}.

The hypersimplex is linearly equivalent to the polytope ∆̃k,n ⊂ R
n−1 given by

∆̃k,n = {(x1, . . . , xn−1) | 0 6 x1, . . . , xn−1 6 1; k − 1 6 x1 + · · ·+ xn−1 6 k}.

Indeed, the projection p : (x1, . . . , xn) 7→ (x1, . . . , xn−1) sends ∆k,n to ∆̃k,n. The hypersim-
plex ∆̃k,n can be thought of as the region (slice) of the unit hypercube [0, 1]n−1 contained
between the two hyperplanes

∑

xi = k − 1 and
∑

xi = k.
Recall that a descent in a permutation w ∈ Sn is an index i ∈ {1, . . . , n−1} such that

w(i) > w(i+ 1). Let des(w) denote the number of descents in w. The Eulerian number

Ak,n is the number of permutations in Sn with des(w) = k − 1.
Let us normalize the volume form in R

n−1 so that the volume of a unit simplex is 1
and, thus, the volume of a unit hypercube is (n − 1)!. It is a classical result, implicit
in the work of Laplace that the normalized volume of the hypersimplex ∆k,n equals the
Eulerian number Ak,n−1. One would like to present a triangulation of ∆k,n into Ak,n−1 unit
simplices. Such a triangulation into unit simplices is called a unimodular triangulation.

In this section we discuss Stanley’s triangulation of hypersimplex as follows:

5.2 Stanley’s triangulation

The hypercube [0, 1]n−1 ⊂ R
n−1 can be triangulated into (n−1)-dimensional unit simplices

∇w labelled by permutations w ∈ Sn−1 given by

∇w =
{

(y1, . . . , yn−1) ∈ [0, 1]n−1 | 0 < yw(1) < yw(2) < · · · < yw(n−1) < 1
}

.
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Stanley [15] defined a transformation of the hypercube ψ : [0, 1]n−1 → [0, 1]n−1 by
ψ(x1, . . . , xn−1) = (y1, . . . , yn−1), where

yi = (x1 + x2 + · · ·+ xi)− ⌊x1 + x2 + · · ·+ xi⌋.

The notation ⌊x⌋ denotes the integer part of x. The map ψ is piecewise-linear, bijective
on the hypercube (except for a subset of measure zero), and volume preserving.

Since the inverse map ψ−1 is linear and injective when restricted to the open sim-
plices ∇w, it transforms the triangulation of the hypercube given by ∇w’s into another
triangulation.

Theorem 5.1 (Stanley [15]). The collection of simplices ψ−1(∇w), w ∈ Sn−1, gives a

triangulation of the hypercube [0, 1]n−1 compatible with the subdivision of the hypercube

into hypersimplices. The collection of the simplices ψ−1(∇w), where w−1 varies over

permutations in Sn−1 with k − 1 descents, gives a triangulation of the k-th hypersimplex

∆̃k,n. Thus the normalized volume of ∆̃k,n equals to the Eulerian number Ak,n−1.

Definition 5.2. The standard Young tableau of the shape λ, where |λ| = n is a filling
of Λ with the numbers 1, · · · , n which is increasing in the rows. and decreasing in the
columns.

We know the following facts:

Remark 5.3. • The number of Standard Young tableaux of the shape λ is fλ, which
can calculated by hook length formula. []

• The number of border strip Young Tableaux’s of the shape S(p) is denoted by fS(p).
It is not hard to see that fS(p) is exactly the number of permutations of 1, · · · , n
which has descents when the step from i to i+ 1 is a horizontal step.

Using Stanley’s triangulation, we show another combinatorial interpretation of the
volume of polytope.

Lemma 5.4. The volume of the border strip matroid polytope P(S(p)) is fS(p) which is

the number of standard young tableaus of the shape S(p).

Proof. Consider a border strip shape Young tableaux of λ, where |λ| = n. As we discussed
before, the standard young tableaux’s of the shape λ = S(p) is in bijection with permu-
tations of size n which have a descent on ith positions, when there is a box i + 1 above
box i on the border strip young tableaux of the shape λ = S(p).

Considering Stanley’s triangulation, recall that this triangulation occurs in the space
R

n−1. To be more precise, in order to obtain Stanley’s triangulation we need to apply
the projection p : (x1, . . . , xn) 7→ (x1, . . . , xn−1). Let us identify a permutation w =
w1 · · ·wn−1 ∈ Sn−1 with k − 1 descents with the permutation w1 · · ·wn−1n ∈ Sn.

Recall the map ψ−1 : (y1, . . . , yn−1) 7→ (x1, . . . , xn−1) restricted to the simplex ∇w =
{

0 < yw(1) < · · · < yw(n−1) < 1
}

is given by x1 = y1 and

xi+1 =

{

yi+1 − yi if w−1(i+ 1) > w−1(i),
yi+1 − yi + 1 if w−1(i+ 1) < w−1(i)
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So the image of the map ψ−1 for ∇w lies in the polytope described by the following
hyperplanes des(w−1)i 6 x1+ · · ·+xi 6 des(w−1)i+1. Applying Lemma 3.8 each border
strip tableaux of shape λ can be described by the hyperplanes des(w−1)i 6 x1+ · · ·+xi 6
des(w−1)i + 1. It is not hard to see that all the simplexes ∇w, where w

−1 have the same
descent sets are map to their associated border strip matroid polytope PS(p), where the
horizontal steps of p are the same as the descent sets of w−1 . This map is injective on
the interior of simplexes and the interior of the border strip matroid polytope is covered
by them.

Therefore, the volume of P(S(p)) is the number of permutations which has descent
on the step i if and only if the box i+ 1 is above the box i. This number is equal to the
number of Standard young tableaux’s of the shape S(p).

Theorem 5.5. Let P(M[P,Q]) be a connected lattice path matroid of rank r on {1, . . . , m+
r} which is not a border strip matroid. The volume of P(M[P,Q]) is sum over f(S(p))
where p is range over all paths contained in M[P,Q] and f(S(p)) is the number of Standard

young tableaux of shape S(p) .

Proof. As we know by Lemma 4.4, P(M[P,Q]) can be decomposed into the connected
lattice path matroid polytope using hyperplane splits. Moreover, P(M[P,Q]) can be de-
composed into P(S(p)) where p is range over all paths contained in [P,Q]. By Lemma 5.4,
the volume of P(S(p)) is the number of Standard young tableaux’s of shape S(p).

5.3 Formula for Ehrhart Polynomial and Volume of Lattice

Path Matroid polytopes

Consider the lattice path matroid polytope P(M[P,Q]) where P and Q are the paths
from (0, 0) to (m, r). Let pi and qi be the number of N steps occur in the first i steps
of paths P and Q, respectively, where 1 6 i 6 m + r, clearly, pm+r = qm+r = r. We
know that P(X) lies in the region [P,Q] if and only if pi 6 x1 + · · · + xi 6 qi for all
1 6 i 6 m+ r. Therefore, the polytope P(M[P,Q]) can be determined by the following
inequalities:

1. pi 6 x1 + · · ·+ xi 6 qi for all 1 6 i 6 m+ r, where x1 + · · ·+ xm+r = r,

2. 0 6 xi 6 1.

Let us denote x1, x1 + x2, . . . , x1 + · · · + xm+r by c1, . . . , cm+r so it is an increasing
sequence where pi 6 ci 6 qi and cm+r = r.

Consider a1, . . . , ar−1 and b1, . . . , br−1 so that ak +1 = min{i, pi > k+1} and bk +1 =
min{i, qi > k + 1}. We define the set of arrays of positive integers Γ(P,Q) as follows:

1. α1 + · · ·+ αr = m+ r,

2. ai 6 α1 + · · ·+ αi 6 bi for i 6 r − 1,
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3. αi > 1.

Consider the point x = (x1, . . . , xm+r) and ci = x1 + · · ·+ xi for i = 1, · · · , m+ 1. It
is easy to verify that the integer point x = (x1, . . . , xm+r) is in P(M[P,Q]) if and only if
for some α = (α1, . . . , αr) ∈ Γ(P,Q) we have:

0 6 c1 6 · · · 6 cα1
6 1 < cα1+1 6 · · · 6 cα1+α2

6 2

< · · · 6 cα1+···+αr−1
6 r − 1 < · · · 6 cα1+···+αr

= r. (5.1)

and cα1
> 1.

We conclude the following theorem.

Theorem 5.6. The number of lattice points in P(M[P,Q]) is |Γ(P,Q)|.

We define the set Sr(t) be the set of arrays (s1, s2, . . . , s2r−2) so that si + si+1 6 t for
all i = 1, · · · , 2r − 3 as well as s1 6 t and s2r−2 6 t. Considering the above observations,
the integer points in tP(M[P,Q]) are in bijection with the following set of sequences.

For any α ∈ Γ(P,Q)

1. 0 6 c1 6 c2 6 · · · 6 cα1
= t− s1, where ci− ci−1 6 t. The number of such sequences

is
(

(

t+1−s1
α1

)

)

.

2. For 1 < i < r, we have:
(i − 1)t 6 (i − 1)t + s2i−2 = cα1+···+αi−1+1 6 · · · 6 cα1+···+αi

= (i)t − s2i−1 6 (i)t.

The number of such sequences are
(

(

t−s2i−1−s2i−2

αi

)

)

.

3. For i = r, (r − 1)t 6 (r − 1)t+ s2r−2 = cα1+···+αr−1+1 6 · · · 6 cα1+···+αr
= (r)t. The

number of such sequences are
(

(

t−s2r−2

αr

)

)

.

Recall that we define Sr(t) as follows:

Sr(t) =
{

s = (s1, . . . , s2(r−1)) so that s1 6 t, s1 + s2 6 t,

. . . , s2(r−1)−1 + s2(r−1) 6 t, s2(r−1) 6 t
}

. (5.2)

Observing the above facts, we conclude that Ehrhart polynomial of the Lattice Path
Matroid Polytope can be computed as follows:

Theorem 5.7.

∑

α∈Γ(P,Q)

∑

s∈Sr(t)

((

t+ 1− s1

α1

))((

t− s2 − s3

α2

))

· · ·
((

t− s2r−2

αr

))

. (5.3)
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