
CHAPTER 5

The Plati Monoid

5.0. Introdution

Young tableaux have had a long history sine their introdution by A. Young at

the turn of the entury. It is only in the sixties that ame to the fore a monoid

struture on them, a struture taking into aount most of their ombinato-

rial properties, and having appliations to the di�erent �elds in whih Young

tableaux were used.

Summarizing what had been his motivation to spend so muh time on the

plati monoid, M.P. Sh�utzenberger detahed three reasons: (1) it allows to

embed the ring of symmetri polynomials into a nonommutative ring; (2) it is

the syntati monoid of a funtion on words generalizing the maximal length

of a noninreasing subword; (3) it is a natural generalization to alphabets with

more than two letters of the monoid of parentheses.

The starting point of the theory is an algorithm, due to C. Shensted, for

the determination of the maximal length of a nondereasing subword of a given

word. The output of this algorithm is a tableau, and if one deides to identify

the words leading to the same tableau, one arrives at the plati monoid, whose

de�ning relations were determined by D. Knuth.

The �rst signi�ant appliation of the plati monoid was to provide a om-

plete proof of the Littlewood-Rihardson rule, a ombinatorial algorithm for

multiplying Shur funtions (or equivalently, to deompose tensor produts of

representations of unitary groups, a fundamental issue in many appliations,

e.g., in partile physis), whih had been in use for almost 50 years before being

fully understood. In fat, as will be shown in Setion 5.4, the algebra of Shur

funtions an be lifted to the plati algebra, and even to the free assoiative

algebra. One this ruial step is realized, all the proofs beome straightforward.

Subsequent appliations, also onneted with group theory, physis and ge-

ometry, inlude a ombinatorial desription of the Kostka-Foulkes polynomials,

whih arise as entries of the harater table of the �nite linear groups GL

n

(F

q

),

as Poinar�e polynomials of ertain algebrai varieties, or in the solution of er-

tain lattie models in statistial mehanis. One an also mention a nonom-

mutative version of the Demazure harater formula, and the onstrution of

keys, leading to a better understanding of the standard bases of Lakshmibai

and Seshadri, and to a ombinatorial desription of the Shubert polynomials.
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Quite reently, the ombinatoris of Young tableaux has been illuminated by

the theory of quantum groups, and espeially by Kashiwara's theory of rystal

bases. Roughly speaking, quantum groups are deformations depending on a

parameter q of ertain algebras lassially assoiated with a Lie group G, whih

give bak the lassial objet for q = 1. With some are, it is possible to take the

limit q ! 0 in ertain formulas, and to reover in this way lassial bijetions

suh as the Robinson-Shensted orrespondene.

From a group-theoreti point of view, the ombinatoris of Young tableaux

is assoiated with root systems of type A. By means of quantum groups, it is

now possible to de�ne plati monoids for other root systems, and to use them

for desribing the orresponding Littlewood-Rihardson rules. There is also a

similar onstrution taking into aount the ombinatoris of quasi-symmetri

funtions (the hypoplati monoid).

Conventions. In this hapter, A will denote a totally ordered alphabet of

n letters a

1

< a

2

< : : : < a

n

. In the examples, we shall usually take A =

f1; 2; : : : ; ng.

5.1. Shensted's algorithm

Consider the following problem: given a word w 2 A

�

on the totally ordered

alphabet A, �nd the length of the longest nondereasing subwords of w.

C. Shensted has given an elegant algorithmi solution, whih does not

require the atual determination of a maximal nondereasing subword. His

method relies on the notion of Young tableau, a ombinatorial struture issued

from group theory.

A nondereasing word v 2 A

�

is alled a row. Let u = x

1

� � �x

r

and v =

y

1

� � � y

s

be two rows (x

i

; y

j

2 A). We say that u dominates v (u . v) if r � s

and for i = 1; : : : ; r, x

i

> y

i

. Clearly, every word w has a unique fatorization

w = u

1

� � �u

k

as a produt of rows of maximal length. A tableau is a word w

suh that u

1

.u

2

. : : :.u

k

. It is ustomary to think of tableaux as planar objets

and to represent w as the left justi�ed superposition of its rows. For instane,

taking A = f1 < 2 < : : : g,

t = 68 4556 223357 1112444

is a tableau whose planar representation is

6 8

4 5 5 6

2 2 3 3 5 7

1 1 1 2 4 4 4

Similarly, a stritly dereasing word is alled a olumn. Reading from bottom to

top the lengths of the rows of a tableau t, one obtains a noninreasing sequene



146 The Plati Monoid 5.1

� = (�

1

� �

2

� : : : � �

k

) whih is alled the shape of t. Suh a sequene is alled

a partition of the integer j�j = �

1

+ � � � + �

k

. On our example, � = (7; 6; 4; 2).

The graphial representation of a partition by a planar diagram of boxes is

alled its Ferrers (or Young) diagram. Thus, the Ferrers diagram of (7; 6; 4; 2)

is

The onjugate partition �

0

of � is obtained by reading the heights of the olumns

of the diagram of �. For example, the onjugate partition of (7; 6; 4; 2) is

(4; 4; 3; 3; 2; 2; 1).

Shensted's algorithm assoiates to eah w 2 A

�

a tableau t = P (w). The

elementary step of the algorithm onsists in the insertion of a letter into a row.

Given a row v = y

1

� � � y

s

and a letter x, the insertion of x into v is P (vx) = vx

if vx is a row, and P (vx) = y

i

v

0

otherwise, where y

i

is the leftmost letter of v

whih is stritly greater that x, and v

0

is obtained from v through replaing y

i

by x. To insert a letter x into a tableau t = v

1

� � � v

k

, one �rst inserts x into

the bottom row v

k

. Then, if v

k

x is not a row, P (v

k

x) = yv

0

k

and one inserts y

into v

k�1

, and so on. The proess terminates when one reahes the top row v

1

,

or when a letter has been inserted at the right end of a row. For example, the

insertion of 3 in the tableau t above goes through the following steps:

P (1112444 � 3) = 4 � 1112344 ;

P (223357 � 4) = 5 � 223347 ;

P (4556 � 5) = 6 � 4555 ;

P (68 � 6) = 8 � 66 ;

and the result is

P (t � 3) = 8 � 66 � 4555 � 223347 � 1112344 :

In a more formal way, the map P is de�ned reursively by

P (tx) =

�

tx if v

k

x is a row

P (v

1

� � � v

k�1

y)v

0

k

if P (v

k

x) = yv

0

k

for a tableau t with row deomposition t = v

1

� � � v

k

, and for an arbitrary word

w 2 A

�

, P (wx) = P (P (w)x).

As an example of the general ase, the suessive steps of the alulation of

P (132541) are

1 1 3

3

1 2

3

1 2 5

3 5

1 2 4

3

2 5

1 1 4
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Theorem 5.1.1. The maximal length of a nondereasing subword of w is equal

to the length of the bottom row of P (w).

Similarly, the maximal length of a dereasing subword of w is equal to the

height of the �rst olumn of P (w).

For example, the maximal nondereasing subwords of w = 132541 are 125,

124, 135 and 134. Note that 114, the bottom row of P (w) is not a subword of

w.

Shensted's theorem will be proved in the forthoming setion. Atually, we

will prove a more general result due to C. Greene, whih gives an interpretation

of the lengths of all rows and the heights of all olumns of P (w).

5.2. Greene's invariants and the plati monoid

For w 2 A

�

, let l

k

(w) be the maximum of the sum of the lengths of k disjoint

nondereasing subwords of w. Similarly, let l

0

k

(w) be the maximum of the sum

of the lengths of k dereasing subwords of w.

Let � = (�

1

; : : : ; �

r

) be the shape of P (w), and let �

0

= (�

0

1

; : : : ; �

0

s

) be the

onjugate partition.

Theorem 5.2.1. For k = 1; : : : ; r, �

k

= l

k

(w)� l

k�1

(w), and for k = 1; : : : ; s,

�

0

k

= l

0

k

(w) � l

0

k�1

(w) (where l

0

(w) = l

0

0

(w) = 0).

To prove this theorem, it is natural to investigate the relationship between

two words having the same Shensted tableau. Therefore, we introdue an

equivalene relation � on A

�

de�ned by

u � v () P (u) = P (v) :

For words of length � 2, one has u � v , u = v, sine eah suh word is either

a row or a olumn. The �rst nontrivial relations our in length 3, and ome

from the tableaux of shape (2; 1). With three letters x < y < z we have four

non monotoni words whose P -symbols are

P (xzy) = P (zxy) =

z

x

y

; P (yzx) = P (yxz) =

y

x z

; (5.2.1)

and similarly, with two distint letters x < y

P (xyx) = P (yxx) =

y

x x

; P (yxy) = P (yyx) =

y

x

y

: (5.2.2)

We will prove in the sequel that � is in fat the ongruene on A

�

generated by

the relations implied by (5.2.1), (5.2.2). It is the quotient of the free monoid by

these relations that will be the main objet of this hapter.
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Definition 5.2.2. The plati monoid on the alphabet A is the quotient

Pl (A) = A

�

= �, where � is the ongruene generated by the Knuth relations

xzy � zxy (x � y < z) ; (5.2.3)

yxz � yzx (x < y � z) : (5.2.4)

The �rst step in proving Greene's theorem is

Proposition 5.2.3. Every word is ongruent to its Shensted tableau, that

is,

w � P (w) :

Proof. By de�nition of �, the proposition is true for jwj � 3. We proeed by

indution on jwj. Assume that for a word w we have P (w) � w, and let x be a

letter. We have to show that P (wx) � wx, or equivalently P (wx) � P (w) � x.

The de�nition of the map P allows us to redue this veri�ation to the ase

where w is a row. Assuming this, if wx is a row then P (wx) = wx, and

otherwise, P (wx) = yw

0

where y is the leftmost letter in w whih is > x, and

w

0

is obtained from w by replaing y by x. Then, writing w = uyv, we have

wx � uyxv by a sequene of appliations of (5.2.4), and uyxv � yuxv by a

sequene of appliations of (5.2.3).

Next, we show that

Proposition 5.2.4. If w � w

0

, then l

k

(w) = l

k

(w

0

) for all k.

Proof. We an assume that w

0

is obtained from w by a single Knuth transfor-

mation. Let us write, for instane,

w = uxzyv ; w

0

= uzxyv (x � y < z) :

Clearly, all nondereasing subwords of w

0

are also subwords of w. Hene,

l

k

(w) � l

k

(w

0

). Conversely, let (w

1

; : : : ; w

k

) be a k-tuple of disjoint nonde-

reasing subwords of w. Then, w

i

is also a subword of w

0

, unless w

i

= u

0

xzv

0

,

where u

0

and v

0

are subwords of u and v. If y does not our in any of the

remaining w

j

, then w

i

an be replaed by w

0

i

= u

0

xyv

0

, whih is a nondereas-

ing subword of w

0

. Otherwise, if some w

j

= u

00

yv

00

, then, one replaes the pair

(w

i

; w

j

) by w

0

i

= u

0

xyv

00

and w

0

j

= u

00

zv

0

. The ase of a Knuth transformation

of type (5.2.4) is similar. Therefore, we have l

k

(w) � l

k

(w

0

).

Thus the integers l

k

(w) are not modi�ed by Knuth's transformations (5.2.3)

(5.2.4). They are alled Greene's plati invariants. Two other important pla-

ti invariants, the harge and oharge, will be studied in Setion 5.6.

Proof of Theorem 5.2.1. Using Propositions 5.2.3 and 5.2.4, the only thing

to prove is that for a tableau t of shape �, l

k

(t) = �

1

+ � � � + �

k

. Taking for

w

1

; : : : ; w

k

the k longest rows of t, we see that l

k

(t) � �

1

+ � � �+�

k

. Conversely,

a nondereasing subword w of t uses at most one letter from eah olumn of the
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planar representation of t, therefore k disjoint nondereasing subwords an use

at most �

1

+ � � �+ �

k

letters of t.

We are now in a position to prove the ross-setion theorem:

Theorem 5.2.5. The equivalene � oinides with the plati ongruene. In

partiular, eah plati lass ontains exatly one tableau.

Proof. Let us assume that w � w

0

. Then, by Proposition 5.2.3,

w � P (w) = P (w

0

) � w

0

:

Conversely, suppose that w � w

0

. Then, from Proposition 5.2.4 and Theo-

rem 5.2.1 we see that P (w) and P (w

0

) have the same shape. Now, let z be

the greatest letter of w and w

0

, and write w = uzv, w

0

= u

0

zv

0

, where z does

not our neither in v nor in v

0

. Then, we laim that uv � u

0

v

0

. Indeed, we

an assume that w and w

0

di�er by a single Knuth transformation. If z is not

involved in this transformation, then either u � u

0

and v = v

0

, or u = u

0

and

v � v

0

. And if z is involved, erasing z in (5.2.3) or (5.2.4) leaves us with xy = xy

or yx = yx, so that uv = u

0

v

0

.

By indution on the length of w, we an assume that P (uv) = P (u

0

v

0

).

From the desription of Shensted's algorithm, sine z is the greatest letter, it

is lear that after erasing z in P (uzv), one is left with P (uv). Therefore, P (w)

is obtained from P (uv) by adding a box z at a plae imposed by the shape of

P (w), and sine the same is true for w

0

, we onlude that P (w) = P (w

0

).

5.3. The Robinson-Shensted-Knuth orrespondene

We have seen in the preeding setion that the set Tab (A) of all tableaux over

the alphabet A is a ross-setion of the anonial projetion � : A

�

! Pl (A) =

A

�

= �. It is now a natural question to investigate the struture of the plati

lasses �

�1

(t), t 2 Tab (A). As we will see, the elements of �

�1

(t) are also

parametrized by ertain tableaux.

Let us say that a tableau is standard if its entries are the integers 1; 2; : : : ; n,

eah of them ourring exatly one. The set of standard tableaux is denoted

by STab . For a partition �, we denote by Tab (�;A) (resp. STab (�)) the set of

tableaux over A (resp. of standard tableaux) of shape �.

By keeping trak of the suessive steps of the insertion algorithm, one an

de�ne a map Q : A

�

! STab suh that w 7! (P (w); Q(w)) is one-to-one. More

preisely, let w = y

1

� � � y

m

. Observe that a standard tableau t is nothing but

a hain of partitions �

(1)

� �

(2)

� : : : � �

(m)

suh that the diagram of �

(i+1)

is obtained from that of �

(i)

by adding one box, whih is the one labelled i+ 1

in t. Now, Q(w) is by de�nition the standard tableau enoding the hain of

shapes of P (y

1

); P (y

1

y

2

); : : : ; P (w). For example, the hain of insertions seen



150 The Plati Monoid 5.3

above gives

Q(132541) =

6

3 5

1 2 4

:

Clearly, Q(w) has the same shape as P (w).

Theorem 5.3.1. The map

� : A

�

�!

`

�

Tab (�;A)� STab (�)

w 7�! (P (w) ; Q(w))

is a bijetion, alled the Robinson-Shensted orrespondene.

Proof. The inverse map �

�1

an be expliitly onstruted. The idea is that,

given a row v and a letter y, there exists a unique row v

0

and letter x suh

that yv � v

0

x. This shows that the insertion proess desribed in Setion 5.1

an be reversed, provided that one spei�es the box to be erased. Given a

pair (t; t

0

) 2 Tab (�;A) � STab (�), one onstruts w = �

�1

(t; t

0

) by deleting

suessively in t the boxes labelled n; n� 1; : : : ; 1 in t

0

.

Corollary 5.3.2. Q indues a bijetion between the plati lass of eah

tableau t and STab (�), where � is the shape of t. In partiular, the ardinality

of the lass of t is equal to

f

�

:= jSTab (�)j :

Restriting � to the set of standard words on A = f1; 2; : : : ; ng, whih an

be identi�ed with the symmetri group S

n

, one obtains a bijetion

S

n

 !

a

�

STab (�)� STab (�) : (5.3.1)

It provides in partiular a bijetive proof of an identity of Frobenius:

n! =

X

j�j=n

f

2

�

;

a speial ase of the fat that the ardinality of a �nite group is equal to the

sum of the squares of the dimensions of its irreduible representations (over C ).

As shown by the next theorem, there is some ompatibility between the

Robinson-Shensted map and the group struture of S

n

.

Theorem 5.3.3. For � 2 S

n

, Q(�) = P (�

�1

).
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The original proof of Sh�utzenberger proeeded by indution on n. We give

below a simple derivation based on Greene's theorem.

To this aim, it will be onvenient to represent a permutation � by a biword

(or word in biletters, that is, pairs of letters (a; b) 2 A � B in the produt of

two alphabets, denoted here for onveniene by

�

a

b

�

).

� $

�

i

1

: : : i

n

j

1

: : : j

n

�

where eah j

k

= �(i

k

). Among the biwords representing �, we have two distin-

guished ones

�

id

�

�

and

�

�

�1

id

�

, whih are obtained by sorting one of them using

the lexiographi order on biletters with priority on the top or bottom row.

More generally, for a biword

�

u

v

�

where u; v 2 A

�

are not neessarily stan-

dard, we denote by

�

u

0

v

0

�

the nondereasing rearrangement of

�

u

v

�

for the lex-

iographi order with priority on the top row, and by

�

u

00

v

00

�

the nondereasing

rearrangement for the lexiographi order with priority on the bottom row.

Thus, for

�

u

v

�

=

�

21335424

13652414

�

;

we have

�

u

0

v

0

�

=

�

12233445

31156442

�

and

�

u

00

v

00

�

=

�

22514433

11234456

�

:

The ruial property is the following:

Lemma 5.3.4. For any biword

�

u

v

�

, the tableaux P (v

0

) and P (u

00

) have the

same shape.

Proof. Let

�

u

v

�

=

�

u

1

� � �u

m

v

1

� � � v

m

�

and onsider a nondereasing subword � =

v

i

1

� � � v

i

r

of v

0

. Then, by de�nition of

�

u

0

v

0

�

, � = u

i

1

� � �u

i

r

is also nondereasing,

and

�

u

i

1

v

i

1

�

� : : : �

�

u

i

r

v

i

r

�

for both lexiographi orders. Therefore, � is also a nondereasing subword of

u

00

. From this remark, we see that there is a bijetion between the k-tuples of

disjoint nondereasing subwords of v

0

and those of u

00

. By Theorem 5.2.1 the

onlusion follows.
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Proof of Theorem 5.3.3. Let � 2 S

n

and

�

u

0

v

0

�

=

�

id

�

�

,

�

u

00

v

00

�

=

�

�

�1

id

�

. The

left fators of � are enoded by the biwords

�

u(k)

0

v(k)

0

�

=

�

1 2 � � � k

�

1

�

2

� � � �

k

�

for whih we have

�

u(k)

00

v(k)

00

�

=

�

�

�1

j

[1;k℄

(�

1

� � ��

k

) "

�

where (�

1

� � ��

k

) " is the inreasing rearrangement of the left fator �

1

� � ��

k

,

and for a word w 2 A

�

and a subset B of A, wj

B

denotes the subword of w

obtained by erasing the letters whih are not in B. From Lemma 5.3.4, at eah

step of the insertion algorithm, we have that P (�

1

� � ��

k

) and P (�

�1

j

[1;k℄

) have

the same shape. So at the end, P (�

�1

) = Q(�).

In fat, Theorem 5.3.3 an be readily generalized to give a similar result for

the insertion tableau Q(w) of an arbitrary word w 2 A

�

. To do this, we need

the notion of standardization.

Let x

1

< x

2

< : : : < x

r

be the letters ourring in w, with respetive

multipliities m

1

; : : : ;m

r

. By labelling from 1 to m

1

the ourrenes of x

1

,

reading from left to right, then from m

1

+ 1 to m

1

+m

2

the ourrenes of x

2

,

and so on, we get a standard word, denoted by std (w). For example

std (31156442) = 41278563 :

This de�nes in partiular the standardization of a tableau. It is immediate to

hek from Knuth's relations that

Lemma 5.3.5. If w � w

0

, then std (w) � std (w

0

). In partiular, P (std (w)) =

std (P (w)).

It is also lear from the desription of the Robinson-Shensted algorithm

that

Lemma 5.3.6. Q(w) = Q(std (w)).

We an now state:

Corollary 5.3.7. For any w 2 A

�

, Q(w) = P (std (w)

�1

).

Proof. By Theorem 5.3.3, P (std (w)

�1

) = Q(std (w)), whih is equal to Q(w)

by Lemma 5.3.6.

In the Robinson-Shensted orrespondene for non standard words, there is a

dissymmetry between the left tableau P (w) and the right tableau Q(w). Lemma

5.3.4 shows the way to restore the symmetry, by extending the orrespondene

to ommutative lasses of biwords, i.e. monomials in ommutative biletters
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�

x

y

�

. Given two words u = u

1

: : : u

m

and v = v

1

: : : v

m

of the same length, we

denote by

�

u

v

�

=

�

u

1

v

1

�

� � �

�

u

m

v

m

�

the assoiated monomial in ommutative

biletters (not to be onfused with the biword

�

u

v

�

).

Definition 5.3.8. Let

�

u

v

�

be a monomial, and

�

u

0

v

0

�

,

�

u

00

v

00

�

be the two

biwords assoiated as above to the biword

�

u

v

�

. The Knuth orrespondene �

is de�ned by

�

�

u

v

�

= (P (v

0

); P (u

00

)) :

By orollary 5.3.7, we reover the Robinson-Shensted orrespondene by

enoding w = y

1

� � � y

m

as the monomial

�

1

y

1

�

� � �

�

m

y

m

�

. By Lemma 5.3.4,

we know that P (v

0

) and P (u

00

) have the same shape. It will follow from the

alternative desription given below that � is a bijetion between monomials in

biletters and pairs of tableaux of the same shape. Reall that the evaluation of

a word is the vetor ev (w) = (jwj

a

1

; jwj

a

2

; : : : ; jwj

a

n

), where A = fa

1

; : : : ; a

n

g.

Proposition 5.3.9. P (u

00

) is the unique tableau of evaluation ev (u

00

) suh

that std (P (u

00

)) = Q(v

0

).

Proof. By lexiographi sorting of

�

std (u)

std (v)

�

we have (std (v)

0

)

�1

= std (u)

00

.

Sine lexiographi sorting obviously ommutes with standardization, it follows

that (std (v

0

))

�1

= std (u

00

). Hene,

Q(v

0

) = P ((std (v

0

)

�1

) (Corollary 5.3.7)

= P (std (u

00

))

= std (P (u

00

)) (Lemma 5.3.5) :

Therefore, to ompute the inverse image of a pair of tableaux (t; t

0

) under

the Knuth orrespondene, we an apply the inverse Robinson-Shensted map

to (t; std (t

0

)) to get v

0

= �

�1

(t; std (t

0

)). Then, �

�1

(t; t

0

) =

�

t

0

"

v

0

�

.

Note that the symmetry

�

�

u

v

�

= (t; t

0

)() �

�

v

u

�

= (t

0

; t) ;

whih generalizes Theorem 5.3.3 is inorporated in the de�nition of �. In par-

tiular, taking t

0

= t, � establishes a bijetion between Tab (A) and the set of
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symmetri monomials in biletters, i.e. those suh that

�

u

v

�

=

�

v

u

�

(whih

amounts to say that for any x; y 2 A,

�

x

y

�

and

�

y

x

�

our with the same mul-

tipliity). As an immediate onsequene of this observation, we an ompute

the generating series of the numbers

d

�

:= jft 2 Tab (A) j ev (t) = �gj (� 2 N

A

)

whih are the ardinalities of the multihomogeneous omponents of the plati

monoid.

Theorem 5.3.10. Let �

1

; �

2

; : : : be ommuting indeterminates. Then,

X

�2N

A

d

�

�

�

=

Y

i

1

1� �

i

Y

i<j

1

1� �

i

�

j

:

Proof. The ommutative image t of a tableau t under a

i

7! �

i

is obtained

from

�

u

v

�

= �

�1

(t; t) by mapping eah biletter

�

i

j

�

to (�

i

�

j

)

1=2

. Now, the

generating series of all symmetri monomials in biletters is learly

Y

i

1

1�

�

i

i

�

Y

i<j

1

1�

�

i

j

��

j

i

�

:

Corollary 5.3.11. For jAj = n, the ardinality of the homogeneous ompo-

nent of degree k of Pl (A) is equal to the oeÆient of z

k

in

1

(1� z)

n

�

1

(1� z

2

)

n(n�1)=2

:

5.4. Shur funtions and the Littlewood-Rihardson rule

Let �

1

; �

2

; : : : ; �

n

be ommuting indeterminates as in the preeding setion, and

retain the notation w 7! w for the ommutative image a

i

7! �

i

of a word w 2 A

�

.

Definition 5.4.1. Let � be a partition. The generating funtion

s

�

(�

1

; : : : ; �

n

) =

X

t2Tab (�;A)

t

is alled a Shur funtion.
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Although not obvious from this de�nition, s

�

is a symmetri polynomial in

�

1

; : : : ; �

n

(this will be proved in Setion 5.6). Most of the ombinatorial on-

strutions of Setion 5.3 imply interesting and lassial Shur funtion identities.

For example, Shur's identity 5.3.10 an be rewritten as

X

�

s

�

(�

1

; : : : ; �

n

) =

Y

i

1

1� �

i

Y

i<j

1

1� �

i

�

j

:

From Theorem 5.3.1 we get

1

1� (�

1

+ � � �+ �

n

)

=

X

�

f

�

s

�

(�

1

; : : : ; �

n

) :

Indeed, the left-hand side is learly the generating funtion of A

�

.

Finally, from the bijetivity of Knuth's orrespondene, we obtain a lassial

and fundamental identity whih an be traked bak to Cauhy. To state it, we

need a seond set �

1

; : : : ; �

n

of ommuting variables. Sending the biletter

�

a

i

a

j

�

onto �

i

�

j

and the pair (t; t

0

) to the produt of the ommutative image of t in

the variables � and of t

0

in the variables �, we get

Theorem 5.4.2.

Y

i;j

1

1� �

i

�

j

=

X

�

s

�

(�)s

�

(�) :

Group theoretial arguments show that a produt of Shur funtions is equal

to a positive sum of Shur funtions:

s

�

(�)s

�

(�) =

X

�



�

��

s

�

(�) (5.4.1)

where 

�

��

2 N. The alulation of the oeÆients 

�

��

is of interest in many

�elds. A ombinatorial interpretation of these numbers implying an eÆient

algorithm for their omputation has been given without proof by Littlewood

and Rihardson.

The most illuminating proof of this rule proeeds by lifting the alulus of

Shur funtions to the algebra Z[Pl(A)℄ of the plati monoid, introduing the

plati Shur funtion

S

�

(A) =

X

t2Tab (�;A)

t ;

where tableaux are evaluated in the plati monoid. This plati Shur funtion

an be seen as the projetion in Z[Pl(A)℄ of anyone of the free Shur funtions

S

t

(A) =

X

Q(w)=t

w 2 ZhAi

indexed by t 2 STab (�). In fat the Littlewood-Rihardson rule will be dedued

from a statement in the free algebra ZhAi.
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Theorem 5.4.3. Let A

0

and A

00

be two subalphabets suh that a

0

< a

00

, for

all a 2 A

0

, a

00

2 A

00

. For t

0

2 Tab (A

0

) and t

00

2 Tab (A

00

) we have

0

�

X

P (w

0

)=t

0

w

0

1

A

0

�

X

P (w

00

)=t

00

w

00

1

A

=

X

t2Sh (t

0

;t

00

)

X

P (w)=t

w

where Sh (t

0

; t

00

) is the set of all tableaux t suh that tj

A

0

= t

0

and P (tj

A

00

) = t

00

,

that is, of all tableaux t ourring in the shu�e produt of t

0

and a word in the

plati lass of t

00

.

Thus the shu�e of a plati lass of A

0

and a plati lass of A

00

is a union

of plati lasses of A (identifying a lass and the sum of its elements). It is in

fat a diret onsequene of the following

Lemma 5.4.4. Let I be an interval of A. Then

w � w

0

) wj

I

� w

0

j

I

Proof. It is enough to hek the lemma in the ase when w

0

di�ers from w by a

single Knuth transformation, and this amounts to the observation that erasing

x or z in 5.2.3 or 5.2.4, we are left with xy = xy or yz = yz.

Proof of Theorem 5.4.3. The words ourring in the shu�e are exatly those

w suh that wj

A

0

� t

0

and wj

A

00

� t

00

. By Lemma 5.4.4 , this set of words is

saturated with respet to the plati ongruene, hene is a union of plati

lasses.

We an now state the plati version of the Littlewood-Rihardson rule.

Theorem 5.4.5. The plati Shur funtions span a ommutative subalgebra

of Z[Pl(A)℄ and we have

S

�

(A)S

�

(A) =

X

�



�

��

S

�

(A) ;

where the 

�

��

are the same as in (5.4.1). In partiular 

�

��

is equal to the number

of fatorizations in Pl (A) of any tableau t 2 Tab (�;A) as a produt t

0

t

00

with

t

0

2 Tab (�;A) and t

00

2 Tab (�;A).

Proof. We �rst work in the free assoiative algebra ZhAi and onsider a produt

S

t

0

(A)S

t

00

(A) where t

0

; t

00

are arbitrary standard tableaux of respetive shapes

� and �, with p = j�j, q = j�j. We identify as above a word w

0

of length p with

a monomial in ommutative biletters:

w

0

=

�

1 � � � p

w

0

�

:

Then, by reordering biletters, we an write in view of Proposition 5.3.9

S

t

0

=

X

Q(w

0

)=t

0

�

1 � � � p

w

0

�

=

�!

X

P (u)=t

0

�

u

r

0

�

;
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where the notation means that the seond sum is over all words u and r

0

suh

that the biword

�

u

r

0

�

is inreasing for the lexiographi order with bottom

priority, and that P (u) = t

0

. Similarly, using for w

00

of length q the identi�ation

w

00

=

�

(p+ 1) � � � (p+ q)

w

00

�

we an express S

t

00

as

S

t

00

=

�!

X

P (v)=t

00

[p℄

�

v

r

00

�

;

where t

00

[p℄ denotes the tableau obtained from t

00

by adding p to all its en-

tries. Now sorting lexiographially (with bottom priority) any of the biwords

�

u

r

0

� �

v

r

00

�

, one gets a biword

�

w

r

�

suh that w ours in u v. Conversely,

all inreasing biwords

�

w

r

�

suh that w ours in u v arise in this way from

the sorting of a unique produt

�

u

r

0

� �

v

r

00

�

of inreasing biwords. Thus, by

Theorem 5.4.5,

S

t

0

S

t

00

=

X

t

�!

X

P (w)=t

�

w

r

�

;

where the outer sum is over all standard tableaux t whih our in the shu�e

of t

0

and a of a word ongruent to t

00

[p℄. Hene

S

t

0

S

t

00

=

X

t

S

t

; (5.4.2)

sum over the same tableaux t, and taking the plati image we obtain

S

�

S

�

=

X

�



�

��

S

�

(5.4.3)

where 

�

��

is the number of standard tableaux of shape � whih our in the

shu�e of t

0

and of a word in the lass of t

00

[p℄. Taking the ommutative image

of (5.4.3), we see that the 

�

��

are the same as in (5.4.1), whih implies that

the plati Shur funtions span a subalgebra of Z[Pl(A)℄ isomorphi to the

ommutative algebra spanned by the ordinary Shur funtions. Finally the

interpretation of 

�

��

in terms of fatorizations in Pl (A) follows diretly from

the de�nition of plati Shur funtions.

As an illustration of (5.4.2), one an hek that for

t

0

= t

00

=

3

1 2

;
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the produt S

t

0

S

t

00

is equal to

P

t

S

t

where t ranges over the following tableaux:

3 6

1 2 4 5

3 4 6

1 2 5

6

3

1 2 4 5

4

3 6

1 2 5

6

3 4

1 2 5

4 6

3 5

1 2

6

4

3

1 2 5

6

4

3 5

1 2

Corollary 5.4.6. Let R(�; k) (resp. C(�; k)) be the set of partitions whose

diagram is obtained by adding k boxes to the diagram of �, no two of them

being added in the same olumn (resp. in the same row). Then,

S

�

S

(k)

=

X

�2R(�;k)

S

�

S

�

S

(1

k

)

=

X

�2C(�;k)

S

�

:

Proof. Let m = j�j. To alulate S

t

� S

12���k

, we have to look for the standard

tableaux in the shu�e of the plati lass of t with the one element lass

(m+ 1)(m+ 2) � � � (m+ k) :

Clearly, these tableaux an only be obtained by dispathing at the periphery

of t the letters (m + 1); : : : ; (m + k) from left to right and in this order, and

the resulting shapes are exatly those of R(�; k). The seond formula is proved

similarly.

To reover the lassial formulation of Littlewood and Rihardson, we need

the notion of a Yamanouhi word. We say that w is a Yamanouhi word on

A = f1; 2; : : : ; ng if any right fator v of w satis�es jvj

1

� jvj

2

� : : : � jvj

n

.

Lemma 5.4.7. The Yamanouhi words of a given evaluation � = (�

1

; : : : ; �

n

)

form a single plati lass whose representative tableau is the Yamanouhi

tableau

� � �

2 2

� � �

2

1 1

� � � � � �

1

;

that is, the unique tableau with shape and evaluation �.

Proof. It is immediate to hek that if w is a Yamanouhi word, and if w

0

is

obtained from w by a single Knuth transformation, then w

0

is also a Yamanouhi
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word. Therefore, a plati lass whih ontains a Yamanouhi word ontains

only Yamanouhi words. Now, a tableau is a Yamanouhi word if and only if its

bottom row ontains only 1's, the next row ontains only 2's, and so on. Hene

there is a unique Yamanouhi tableau, namely, the unique tableau of shape �

and evaluation �, and the lemma follows from Theorem 5.2.5.

We an now see that the lassial version of the Littlewood -Rihardson rule

is a diret onsequene of (5.4.2). Indeed, to alulate 

�

��

, we an hoose for

t

0

and t

00

the standard tableaux of respetive shapes � and � in whih eah

row onsists of onseutive integers. These tableaux are the standardized of the

Yamanouhi tableaux of the same shapes, so that the words w

00

in the plati

lass of t

00

[p℄ are preisely the shifted standardized of the Yamanouhi words y

00

of evaluation �. Hene, if one erases in the tableaux t the entries of t

0

, whih

are irrelevant, and replaes the word w

00

by the unique Yamanouhi word y

00

of whih it is the standardized, one obtains the lassial Littewood-Rihardson

tableaux, i.e., the skew Yamanouhi tableaux of shape �=� and evaluation �.

Continuing the preeding example, one would obtain

2

1 1

1 2

1

2

1 1

1

2

1

2

1

1

1 2

1

2

1

1

2

1

1

Another useful formulation of the rule is the following:

Corollary 5.4.8. Let y

�

denote the unique Yamanouhi tableau of shape �.

Then 

�

��

is equal to the number of tableaux t of shape � suh that t � y

�

is a

Yamanouhi word of evaluation �.

Proof. By Theorem 5.4.5, 

�

��

is the number of fatorizations y

�

= t �t

0

in Pl (A),

with t 2 Tab (�;A) and t

0

2 Tab (�;A). Equivalently, by Lemma 5.4.7, 

�

��

is

the number of Yamanouhi words w of weight � suh that w = t � t

0

in A

�

, for

some t 2 Tab (�;A) and t

0

2 Tab (�;A). Then the right fator t

0

must be a

Yamanouhi tableau, that is t

0

= y

�

.

For example, the oeÆient 

(4;3;1)

(3;2);(2;1)

is equal to 2, orresponding to the

following two tableaux t:

2 3

1 1 2

2 2

1 1 3
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5.5. Coplati operations

The set of words w having a given insertion tableau t = Q(w) is alled a oplati

lass. In the preeding setion we have seen that the sum S

t

of the elements

of a oplati lass is a pertinent lifting of a Shur funtion to the free algebra

ZhAi. In this setion, we show that oplati lasses an be endowed with a

struture of olored graph.

We introdue linear operators e

i

; f

i

; �

i

, i = 1; : : : ; n � 1, ating on ZhAi

in the following way. Consider �rst the ase of the two-letters subalphabet

A

i

= fa

i

; a

i+1

g. Let w = x

1

� � �x

m

be a word on A

i

. Braket every fator a

i+1

a

i

of w. The letters whih are not braketed onstitute a subword w

1

of w. Then

braket every fator a

i+1

a

i

of w

1

. There remains a subword w

2

. Continue this

proedure until it stops, giving a word w

k

of type w

k

= a

r

i

a

s

i+1

= x

j

1

� � �x

j

r+s

.

The image of w

k

under e

i

, f

i

or �

i

is given by

e

i

(a

r

i

a

s

i+1

) =

�

a

r+1

i

a

s�1

i+1

(s � 1)

0 (s = 0)

f

i

(a

r

i

a

s

i+1

) =

�

a

r�1

i

a

s+1

i+1

(r � 1)

0 (r = 0)

�

i

(a

r

i

a

s

i+1

) = a

s

i

a

s

i+1

Let w

0

k

= x

0

j

1

� � �x

0

j

r+s

denote the image of w

k

. The image of the initial word w

is then w

0

= y

1

� � � y

m

, where y

i

= x

0

i

if i 2 fj

1

; : : : ; j

r+s

g and y

i

= x

i

otherwise.

For example, if w = (a

2

a

1

)a

1

a

1

a

2

(a

2

a

1

)a

1

a

1

a

1

a

2

, we have

w

1

= a

1

a

1

(a

2

a

1

)a

1

a

1

a

2

and w

2

= a

1

a

1

a

1

a

1

a

2

:

Thus,

e

1

(w) = a

2

a

1

a

1

a

1

a

2

a

2

a

1

a

1

a

1

a

1

a

1

f

1

(w) = a

2

a

1

a

1

a

1

a

2

a

2

a

1

a

1

a

1

a

2

a

2

�

1

(w) = a

2

a

1

a

1

a

2

a

2

a

2

a

1

a

1

a

2

a

2

a

2

;

where the underlined letters are those of the subword w

0

2

. Finally, the general

ation of the operators e

i

; f

i

; �

i

on w is de�ned by the previous rules applied to

the subword wj

A

0

i

, the other letters remaining unhanged.

Theorem 5.5.1. Let h be anyone of the operators e

i

; f

i

; �

i

.

(i) Let w 2 A

�

and suppose that h(w) 6= 0. Then Q(h(w)) = Q(w).

(ii) Let w

0

be ongruent to w. Then h(w) � h(w

0

).

Proof (i) Suppose �rst that A = fa

1

; a

2

g, and let us give the proof in the ase

h = f

1

. Let w 2 A

�

be suh that f

1

w 6= 0. This means that w = ua

1

v where

u � (a

2

a

1

)

k

a

r�1

1

(r � 1), v � a

s

2

(a

2

a

1

)

l

and that we have f

1

(w) = ua

2

v. Clearly,

Q(ua

2

) = Q(ua

1

). Next, the insertion of v into P (ua

2

) will produe the same
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sequene of shapes as the insertion of v into P (ua

1

). Indeed, write v = v

1

� � � v

k

and assume by indution that P (ua

1

v

1

� � � v

r�1

) and P (ua

2

v

1

� � � v

r�1

) have the

same shape. If v

r

= a

2

, then learly P (ua

1

v

1

� � � v

r

) and P (ua

2

v

1

� � � v

r

) will

also have the same shape. If v

r

= a

1

, then sine v � a

s

2

(a

2

a

1

)

l

, we see that

r � 2 and that the tableau P (ua

1

v

1

� � � v

r�1

) has at least one a

2

in its bottom

row. Thus the insertion of a

1

in both tableaux will produe again two tableaux

of the same shape.

The proof is similar in the ase h = e

1

, and this also implies the ase h = �

1

sine �

1

w is either of the form f

p

1

w or e

q

1

w.

Consider now the general ase A = fa

1

; : : : ; a

n

g, and suppose that h =

f

i

; e

i

or �

i

. By Corollary 5.3.7, we have to prove that P (std (h(w))

�1

) =

P (std (w)

�1

). Reall that std (w)

�1

is the word u

00

obtained from the repre-

sentation of w as the biword

�

u

v

�

=

�

id

w

�

(see Setion 5.3). Set w

1

= h(w) and

�

u

1

v

1

�

=

�

id

w

1

�

. Then, we an write v

00

= �a

r

i

a

s

i+1

� where a

i

and a

i+1

do not

our in � and �, v

00

1

= �a

r

0

i

a

s

0

i+1

� (r+s = r

0

+s

0

), u

00

= "Æ where j�j = jj and

j�j = jÆj, and �nally u

00

1

= "

1

Æ. By the above proof for a two letter alphabet,

"

1

� ". Therefore, u

00

1

� u

00

as required.

(ii) Suppose that w

0

di�ers from w by a single Knuth transformation, and

let us take for example h = f

i

. Write w = �xzy� and w

0

= �zxy�, where we

assume that x < y < z. Let a (resp. a

0

) be the letter a

i

of w whih is hanged

into a

i+1

by f

i

. We laim that if a is a letter of � (resp. �), then a

0

is the letter

oupying the same position in w

0

. This is lear beause the transformation

xzy ! zxy does not modify the relative positions of onseutive letters a

i

and

a

i+1

. Therefore, f

i

(w) � f

i

(w

0

) trivially if a is a letter of � or of �. Otherwise, a

is one of the letters x; y; z of w and a

0

is the same letter in w

0

. Hene, aording

to a = x; y or z, we have

f

i

(w) =

8

<

:

�a

i+1

zy�

�xza

i+1

�

�xa

i+1

y�

� f

i

(w

0

) =

8

<

:

�za

i+1

y�

�zxa

i+1

�

�a

i+1

xy�

:

Note that in the ase a = y, we must have z � a

i+2

, beause if z = a

i+1

,

y = a

i

, then zy would be put between brakets. In the ase w = �xyx� and

w

0

= �yxx�, the reasoning given above remains unhanged, exept when x = a

i

,

y = a

i+1

, and a does not belong to � or �. In this ase, we have

f

i

(w) = f

i

(�a

i

a

i+1

a

i

�) = �a

i+1

a

i+1

a

i

� ;

and

f

i

(w

0

) = f

i

(�a

i+1

a

i

a

i

�) = �a

i+1

a

i

a

i+1

� � f

i

(w) :

The ase of a Knuth transformation yxz � yzx (x < u � z) is treated similarly.

We shall now make use of the operators e

i

; f

i

to de�ne a graph � on A

�

.

The verties of this graph are all the words w 2 A

�

, and we put labelled arrows
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between words aording to the following rule:

(w

i

�! w

0

) () (f

i

w = w

0

) :

Note that if f

i

w = w

0

6= 0, then e

i

w

0

= w, hene at eah vertex w there is at

most one inident arrow of olor i (and also, by de�nition, at most one outgoing

arrow of olor i). Hene the subgraph obtained by erasing all arrows of olor

j 6= i is extremely simple: it is just a olletion of disjoint i-strings

w

1

i

�! w

2

�! � � �

i

�! w

k

of various lengths k � 0. However, when all the olors are onsidered simulta-

neously, a rih ombinatorial struture emerges. Let us all \onneted om-

ponents of �" the onneted omponents of the underlying non-oriented non-

labelled graph.

Proposition 5.5.2. (i) The onneted omponents of � are the oplati

lasses.

(ii) Two oplati lasses are isomorphi as subgraphs of � if and only if

they are indexed by two standard tableaux of the same shape.

Proof. (i) By Theorem 5.5.1 (i), any onneted omponent of � is ontained in

a oplati lass. Conversely, let w be a a non-Yamanouhi word. Then there

exists an index i suh that e

i

w 6= 0. If w

0

= e

i

w is not a Yamanouhi word,

we an again �nd j suh that e

j

w

0

= w

00

6= 0. Iterating this proedure, we

onstrut a hain of arrows onneting w to the unique Yamanouhi word in its

oplati lass. Hene any two words of the same oplati lass are onneted

by a sequene of arrows going through the same Yamanouhi word.

(ii) It follows from Theorem 5.5.1 (ii) that two oplati lasses indexed by

standard tableaux of the same shape are isomorphi as subgraphs. Conversely, if

two oplati lasses C;C

0

orrespond to two standard tableaux t; t

0

of respetive

shapes � 6= �

0

, then the Yamanouhi words of these lasses have evaluation �

and �

0

. It is easy to hek from the de�nition of f

i

that for a Yamanouhi word

of evaluation � = (�

1

; : : : ; �

k

), one has

maxfp j f

p

i

y 6= 0g = �

i

� �

i+1

:

Hene the unique verties of C and C

0

with no inident arrows have outgoing

strings of di�erent lengths, and C and C

0

are not isomorphi.

As an illustration Figure 5.1 shows the graph struture of the oplati lass

of t = 2211 for A = f1; 2; 3; 4g. These graphs are examples of rystal graphs in

the sense of Kashiwara.

5.6. Cylage and anonial embeddings

In this setion we investigate the behavior of the previous onstrutions under

irular permutations on words. We denote by � the bijetion on A

�

de�ned by

�(x

1

x

2

� � �x

n

) = x

2

� � �x

n

x

1

(x

i

2 A).
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Figure 5.1. The graph struture of the oplati lass of t = 2211.

Proposition 5.6.1. The yli shift � ommutes with the maps �

i

.

Proof. We have to prove that ��

i

(w) = �

i

�(w), w 2 A

�

. If the �rst letter

x

1

of w is di�erent from a

i

and a

i+1

there is nothing to prove. Otherwise we

distinguish 4 ases. Let us say that a letter x

k

of w is free if it does not our

inside a pair of mutually losing brakets at the end of the braketing proedure

desribed in Setion 5.5. We then have the following ases: (i) x

1

= a

i

and no

a

i+1

is free; (ii) x

1

= a

i

and at least one a

i+1

is free; (iii) x

1

= a

i+1

is free; (iv)

x

1

= a

i+1

is not free. In eah ase, the veri�ation is immediate.

Lemma 5.6.2. Let t 2 A

�

be a tableau and � be any produt of �

i

. Then the

following onditions are equivalent:

(i) �(t) = t

(ii) �(P (�(t))) = P (�(t)).
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Proof. Sine � is bijetive,

�(t) = t, �(�(t)) = �(t) :

By Proposition 5.6.1, �(�(t)) = �(�(t)), whih has the same Q-symbol as �(t)

by Theorem 5.5.1 (i). Thus

�(t) = t, P (�(�(t))) = P (�(t))

beause of Theorem 5.3.1. Now, again by Theorem 5.5.1, P (�(w)) = �(P (w))

for any w 2 A

�

and the statement follows.

Theorem 5.6.3. The operators �

i

satisfy the Moore-Coxeter relations

�

2

i

= 1 ; (5.6.1)

�

i

�

j

= �

j

�

i

(ji� jj > 1) ; (5.6.2)

�

i

�

i+1

�

i

= �

i+1

�

i

�

i+1

: (5.6.3)

In other words, the map � sending the elementary transposition (i; i+ 1) onto

�

i

is a linear representation of the symmetri group S

n

in ZhAi.

Proof. Relations (5.6.1) and (5.6.2) are obviously satis�ed. To prove (5.6.3), we

have to show that (�

i

�

i+1

)

3

(w) = w for any w 2 A

�

. From Theorem 5.5.1, it is

enough to hek this when w = t is a tableau. Let t = uv where v is the bottom

row of t. By Lemma 5.6.2, it is equivalent to show that (�

i

�

i+1

)

3

P (uv) = P (vu).

Now, in the tableau t

0

= P (vu) all the letters a

1

; a

2

lie in the bottom row.

Writing t

0

= u

0

v

0

and t

00

= P (v

0

u

0

), and iterating, we onstrut a sequene t

(k)

of tableaux suh that all the letters a

1

; : : : ; a

k+1

of t

(k)

are in its �rst row, and

suh that

(�

i

�

i+1

)

3

(t) = t() (�

i

�

i+1

)

3

(t

(k)

) = t

(k)

:

But t

(n�1)

is a row, and (�

i

�

i+1

)

3

(t

(n�1)

) has to be a row with the same evalu-

ation, hene (�

i

�

i+1

)

3

(t

(n�1)

) = t

(n�1)

.

Corollary 5.6.4. The free Shur funtions S

t

are invariant under the above

ation of S

n

. As a onsequene, the ommutative Shur funtions s

�

(�) are

symmetri in the usual sense.

We next investigate whih transformations on tableaux arise when the map

P is applied to irular permutations of words. Let Row (A) denote the subset

of Tab (A) onsisting of rows.

Definition 5.6.5. Let t be a tableau whih is not a row. We put

C(t) = P (�(t)) :

The map C : Tab (A) nRow (A)! Tab (A) is alled ylage.
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Figure 5.2. The alulation of the oharge of w = 23141213142 (labels

are written in small type)

To desribe properties of the ylage map, we need to use a plati invariant on

words alled oharge. Let w be a word. Let � be any permutation suh that

v = �(w) has a dominant evaluation, that is

jvj

a

1

� jvj

a

2

� � � � � jvj

a

n

:

Write v on a irle, adding a \point at in�nity" � (see Figure 5.2). Then label

eah letter of v aording to the following algorithm, reading the word lokwise.

1. start at � and label the �rst unlabelled a

1

with 0.

2. after labelling an a

i

with the number , label the �rst unlabelled a

i+1

with  + 1 if it is obtained without rossing �, and with  otherwise. If

there is no unlabelled a

i+1

, go to the �rst step again, while there are still

unlabelled letters.

The sum of all labels is alled the oharge of w, and is denoted by oh (w).

The omplementary statisti h (w) = maxfoh (v) j ev (v) = ev (w)g�oh (w)

is alled the harge of w. For example, the oharge of w = 23141213142 (whose

evaluation is dominant) is equal to 9, as shown in Figure 5.2.

Lemma 5.6.6. (i) If C(t) = t

0

, then for any � 2 S(A), C(�(t)) = �(t

0

).

(ii) If w � w

0

then oh (w) = oh (w

0

).

(iii) For t 2 Tab (A) nRow (A), we have oh (C(t)) = oh (t)� 1.

(iv) If C(t) = C(t

0

) and t 6= t

0

, then t and t

0

must have di�erent shapes.

Proof. (i) results learly from Theorem 5.5.1 and Proposition 5.6.1.

As to (ii), we note that by de�nition oh (�(w)) = oh (w) for � 2 S(A),

hene using Theorem 5.5.1 (ii) we an assume that w and w

0

have a dominant
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evaluation. For suh words, the above alulation of the harge proeeds by

extrating from w a sequene of standard subwords w

(i)

suh that

oh (w) =

X

i

oh (w

i

) :

Now, it is lear that replaing a fator a

i

a

j

by a

j

a

i

when ji� jj 6= 1, does not

hange these subwords, and thus does not hange the oharge. Similarly, one

heks that replaing a fator a

i+1

a

i

a

i

(resp. a

i+1

a

i+1

a

i

) by a

i

a

i+1

a

i

(resp.

a

i+1

a

i

a

i+1

) does not modify these standard subwords. Hene, oharge is in-

variant under plati relations.

Let now t = xw, x 2 A, be a tableau of dominant evaluation, whih is not

a row. Then x 6= a

1

, and the order in whih letters are labelled in the word xw

is the same as in wx. Thus, all labels are preserved exept the label of x whih

is dereased by 1, and

oh (P (wx)) = oh (wx) = oh (xw) � 1

whih proves (iii).

To prove (iv), assume that t and t

0

are two di�erent tableaux of the same

shape, and write t = xw, t

0

= x

0

w

0

with x; x

0

2 A. Then w and w

0

also are two

tableaux of the same shape, say �. By Corollary 5.4.6, S

�

S

(1)

is a multipliity-

free sum of tableaux in Z[Pl(A)℄, hene wx 6� w

0

x

0

, that is, C(t) 6= C(t

0

).

We shall now use the map C to de�ne a graph struture on the set Tab (A).

Namely, onsider the oriented graph with set of verties Tab (A) and edges

de�ned by:

t �! t

0

() C(t) = t

0

:

Sine the ylage map does not hange the evaluation of tableaux this graph de-

omposes into the disjoint union of the subgraphs with sets of verties Tab (�; �)

for all evaluations �. The following theorem desribes these subgraphs and

shows how they an all be naturally embedded into the subgraph of standard

tableaux.

Theorem 5.6.7. (i) The subgraph Tab (�; �) is a rooted-tree with root the

unique row-tableau of evaluation �. Two evaluations whih di�er by a permu-

tation give rise to isomorphi trees.

(ii) Let � and � be two evaluations suh that

�

k

= �

k

for k 6= i; j;

�

i

> �

j

;

�

i

= �

i

� 1;

�

j

= �

j

+ 1:

Then there exists a unique embedding I

��

of Tab (�; �) into Tab (�; �) ommuting

with C and suh that I

��

(t) has the same shape as t for all t.

(iii) Similarly, for any evaluation � there exists a unique embedding I

�

of

Tab (�; �) into STab preserving shapes and ommuting with C.
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Figure 5.3. The tree struture of Tab (�; (2; 2; 1))

Proof By Lemma 5.6.6 (iii), the map C dereases oharge by 1. Hene, the

ylage graph has no yle and is a union of trees. It is lear from the de�nition

of oharge that row-tableaux are the only words with oharge 0. Therefore,

the subgraph Tab (�; �) is a rooted-tree with root the unique row of evaluation

�. If � = �(�) for some � 2 S(A), then, by Lemma 5.6.6 (i), Tab (�; �) and

Tab (�; �) are isomorphi as trees, whih proves (i).

Let � 2 S(A) be any permutation suh that �(a

i

) = a

1

and �(a

j

) = a

2

.

Let �

0

= �(�) and �

0

= �(�). Given t = xw in Tab (�; �

0

) its image under f

1

is non-zero and is the tableau in Tab (�; �

0

) obtained by hanging the rightmost

a

1

into a

2

. This operation learly ommutes with C, sine the letter x whih is

yled does not interfere, in the omputation of P (wx), with the subtableau of

w onsisting of the ourrenes of a

1

and a

2

. Therefore, the image of Tab (�; �

0

)

under f

1

is a subtree of Tab (�; �

0

). Moreover, if two tableaux of the same

shape have the same image under ylage, then they are idential aording to

Lemma 5.6.6 (iv). Hene there an be only one map from Tab (�; �

0

) to Tab (�; �

0

)

preserving shape and ommuting with C. Finally, using �

�1

, one obtains from

this embedding of Tab (�; �

0

) in Tab (�; �

0

) an embedding of Tab (�; �) in Tab (�; �)

with the same properties, and (ii) is proved.

Composing the preeding embeddings, one obtains for eah evaluation � at

least one embedding of Tab (�; �) into Tab (�; (1; : : : ; 1)) preserving shapes and

ommuting with C. The uniity of suh an embedding is again ensured by

Lemma 5.6.6 (iv).
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Figure 5.4. The embedding of Tab (�; (3; 1; 2)) in Tab (�; (2; 2; 2))

Figure 5.3 and Figure 5.4 illustrate Theorem 5.6.7 by displaying the tree

struture of Tab (�; (2; 2; 1)) and the anonial embedding of Tab (�; (3; 1; 2)) in

Tab (�; (2; 2; 2)).

The main motivation for studying ylage and the related plati invariants

given by harge and oharge is to develop a ombinatorial approah to the

Kostka-Foulkes polynomials K

��

(q) whih arise in many ontexts, ranging from

the harater theory of the �nite linear groups GL

n

(F

q

) to the geometry of ag

varieties or the solution of ertain models in statistial mehanis. Atually, one

has the following important result:

Theorem 5.6.8. The Kostka polynomial is equal to the generating funtion

of the harge on the set Tab (�; �) of tableaux of shape � and weight �:

X

t2Tab (�;�)

q

h (t)

= K

��

(q) :

The proof of this theorem is out the sope of this hapter.



Problems 169

Problems

Setion 5.1

5.1.1 (The Erd�os-Szekeres theorem). Prove that any permutation of n

2

+ 1

elements ontains a monotoni subsequene of length n+ 1. Show that

there exist permutations of n

2

elements with no monotoni subsequene

with length greater than n.

Setion 5.2

5.2.1 Let w denote the mirror image of a word w. Let w be a standard word,

and t = P (w). Show that P (w) = t

T

, the transposed tableau of t.

5.2.2 Let w be a standard word. Show that the sequene w

n

stabilizes in

Pl (A), in the following sense: for n suÆiently large, w

n+1

�  � w

n

,

where  is the olumn suh that ev () = ev (w).

5.2.3 Let w be a standard word. Let V (w) be the set of words v suh that

wv � vr, where r is a row. Show that the set of words of minimal length

in V (w) is a plati lass.

5.2.4 The olumn reading C(t) of a tableau t is the word obtained by reading

the planar representation of t olumn-wise, from left to right and from

top to bottom. Show that for any tableau, C(t) � t.

5.2.5 (Plati monoid and quantum matries). Let A be the assoiative unital

Q[q; q

�1

℄-algebra generated by elements x

11

; x

12

; x

21

; x

22

subjet to the

relations:

x

12

x

11

= qx

11

x

12

x

21

x

11

= qx

11

x

21

x

22

x

21

= qx

21

x

22

x

22

x

12

= qx

12

x

22

x

12

x

21

= x

21

x

12

x

22

x

11

= x

11

x

22

+ (q � q

�1

)x

12

x

21

1) Show that D = x

11

x

22

� q

�1

x

12

x

21

ommutes with the x

ij

, hene is

entral in A.

2) Introdue the Z[q℄-lattie L in A spanned by the elements D

k

x

l

11

x

m

22

(k; l;m 2 N).

(i) Show that every diagonal monomial x

i

1

i

1

� � �x

i

k

i

k

(i; j 2 f1; 2g) be-

longs to L. (Hint: prove that x

22

x

11

= (1� q

2

)D + q

2

x

11

x

22

.)

(ii) Let w = i

1

� � � i

k

, w

0

= j

1

� � � j

k

2 f1; 2g

�

. Prove that

w � w

0

() x

i

1

i

1

� � �x

i

k

i

k

� x

j

1

j

1

� � �x

j

k

j

k

mod qL
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Setion 5.3

5.3.1 Show that the number a

n

of involutions in S

n

is equal to the number

of standard tableaux of weight n. Show that

X

n�0

a

n

z

n

n!

= e

z+

z

2

2

:

Setion 5.4

5.4.1 Show that if � = (k

l

) and � = (r

s

) are partitions of retangular shapes,

all the oeÆients 

�

��

are 0 or 1, and give a simple graphial desription

of the partitions � suh that 

�

��

= 1.

5.4.2 For an integer k, let h

k

= s

(k)

be the Shur funtion indexed by the

one-part partition (k), and for a partition � = (�

1

; : : : ; �

r

), set h

�

=

h

�

1

h

�

2

� � �h

�

r

. The Kostka numbers K

��

are de�ned as the oeÆients

of the expansion h

�

=

P

�

K

��

s

�

. Show that K

��

is equal to the

number of tableaux of shape � and evaluation �.

5.4.3 Let X = fx

1

; x

2

; : : : ; x

n

g be a set of ommuting indeterminates, and

let E(t) =

Q

i

(1 + tx

i

) =

P

k

e

k

t

k

, H(t) =

Q

i

(1 � tx

i

)

�1

=

P

k

h

k

t

k

be the generating funtions of the elementary and omplete symmetri

funtions of X . Let p

k

=

P

i

x

k

i

be the power sums symmetri funtions.

1) Show that

P

k�1

p

k

t

k�1

= H

0

(t)E(�t).

2) Dedue from 1) that p

m

=

P

m�1

k=0

(�1)

k

s

(m�k;1

k

)

.

3) The harater table of the symmetri group S

n

is a square matrix �

�

�

indexed by pairs of partitions of n, in whih �

�

�

is equal to the oeÆient

of s

�

in the produt of power sums p

�

= p

�

1

p

�

2

� � � p

�

r

. Using 2) and the

Littlewood-Rihardson rule, ompute the harater tables of the groups

S

n

for n � 6.

Setion 5.5

5.5.1 Let w = x

1

� � �x

m

2 A

�

. One says that the integer i < m is a desent of

w if x

i

> x

i+1

. The major index maj (w) of w is the sum of its desents.

We denote by Des (w) the desent set of w.

A reoil of a standard tableau t is an entry i of t suh that i+ 1 ours

in a higher row. Let Re (t) be the set of reoils of t. The index of a

tableau is ind (t)

P

i2Re (t)

i.

It is ustomary to enode a subsetE = fe

1

; : : : ; e

r�1

g � f1; 2; : : : ;m�1g

by a omposition of m, i.e. a vetor I = (i

1

; : : : ; i

r

) of positive integers

with sum jI j = m. The enoding I = C(E) of E is spei�ed by e

k

=

i

1

+ i

2

+ � � �+ i

k

. The omposition I = C(Des (w)) is alled the desent

omposition of w. Conversely, the set E de�ned in this way from a
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omposition I is alled the desent set of I and denoted by Des (I). As

above, on sets maj (I) =

P

k

e

k

.

1) Show that for any word, Des (w) = ReQ(w).

2) For a omposition I , de�ne the nonommutative ribbon Shur fun-

tion R

I

2 ZhAi by

R

I

=

X

Des (w)=Des (I)

w :

a) Show that R

I

=

P

Re (t)=Des (I)

S

t

.

b) Show that w 7! Q(w) de�nes a bijetion between the set of Ya-

manouhi words of evaluation � and STab (�).

) Let r

I

be the ommutative image of R

I

, and r

I

=

P

�



I

�

s

�

its ex-

pansion in the Shur basis. Show that r

I

is equal to the number of

Yamanouhi words of evaluation � with desent omposition I .

3) Prove the identity between formal series

�!

Y

k�0

Y

i�1

(1� q

k

a

i

)

�1

=

X

m�0

1

(q)

m

X

jwj=m

q

maj (w)

w ;

where (q)

m

= (1� q)(1� q

2

) � � � (1� q

m

).

4) By taking the ommutative image of the above identity, and applying

Cauhy's identity to the alphabets Q = f1; q; q

2

; : : : g and X , show that

P

jIj=m



I

�

q

maj (I)

= (q)

m

s

�

(Q) and obtain the generating funtion of

the major index on the set of standard tableaux of a given shape:

X

t2STab (�)

q

maj (t)

= (q)

m

s

�

(Q) :

This is equal to the Kostka polynomial K

�;1

m

(q).

Setion 5.6

5.6.1 (Catabolism). Let k : Tab ! Tab be the map t = t

0

v 7! vt

0

where v is the bottom row of t. Let '(t) be the sequene of shapes

of t; k(t); k

2

(t); : : :.

1) Show that the restrition of ' to STab is one-to-one.

2) Show that ' is invariant under the ation of S(A) (i.e., '(�(t)) =

'(t)).

3) Show that ' is invariant under the anonial embeddings Tab (�) ,!

Tab (1

n

) = STab .

Notes

The name plati monoid was oined by Sh�utzenberger with referene to the

tetonique des plaques. The basi theory of the plati monoid was systemati-

ally developed in Lasoux and Sh�utzenberger 1981.
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Shensted's algorithm appeared in Shensted 1961. It was realized later that

Robinson, in an attempt to prove the Littlewood-Rihardson rule, had already

formulated in Robinson 1938 the orrespondene (5.3.1), whih is essentially

equivalent to Shensted's result (Theorem 5.3.1).

Theorem 5.2.5 is due to Knuth 1970. Greene's invariants were introdued

in Greene 1974. Theorem 5.3.3 appears in Sh�utzenberger 1963. It was already

stated, without proof, in Robinson 1938.

The left-hand side of 5.3.10 an be interpreted as the sum of the haraters of

all irreduible polynomial representations of GL

n

(C ). Using this interpretation,

Theorem 5.3.10 is a lassial identity of Shur (see Littlewood 1950).

For an aount of the theory of symmetri funtions see Littlewood 1950

or Madonald 1995. The proof of the Littlewood-Rihardson rule given in Se-

tion 5.4 �rst appeared in Sh�utzenberger 1977. Corollary 5.4.6 is known by

geometers as the Pieri rule.

Lasoux and Sh�utzenberger 1988 is the basi referene for the material of

Setion 5.5, with emphasis on the operators �

i

. Our exposition here, whih

stresses the role played by the operators e

i

and f

i

, is strongly inuened by

Kashiwara's theory of rystal bases (see Kashiwara 1991, Kashiwara 1994, Las-

oux, Leler, and Thibon 1995, Leler and Thibon 1996). The onnetion

between Robinson-Shensted orrespondene and quantum groups was �rst ob-

served in Date, Jimbo, and Miwa 1990.

Conerning the statistis harge and oharge, the ylage, and their appli-

ations to Kostka-Foulkes polynomials, see Sh�utzenberger 1978, Lasoux and

Sh�utzenberger 1980, Lasoux 1991. Another ombinatorial desription of the

Kostka-Foulkes polynomials in terms of the geometry of rystal graphs was given

in Lasoux et al. 1995.

The Littlewood-Rihardson rule and the plati monoid have been gener-

alized to other root systems by Littelmann (see Littelmann 1994, Littelmann

1996). A monoid assoiated in a similar way to Gessel's quasi-symmetri fun-

tions has been introdued in Krob and Thibon 1997.

Problem 5.1.1 is a lassial result that appears for instane in Knuth 1973.

Problem 5.2.5 is from Leler and Thibon 1996. More on harater tables (Prob-

lem 5.4.3) an be found in Madonald 1995. Problem 5.5.1 is from Gelfand,

Krob, Lasoux, Leler, Retakh, and Thibon 1995.


