(1)

2017 REU Day 1
P. Pylyarskyy

Symmetric functions
x_{1}, \ldots, x_{m} are variables (sometimes weallow ∞ many: x_{1}, x_{2}, \ldots)
Symmetric functions are polynomials fixed by permuting variables
EXAMPLE $x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+x_{3}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{2}+2 x_{1} x_{2} x_{3}$
THM: They form a wing (under usual + and x), called Λ
DEF'N: A partition λ of n is $\lambda=\left(\lambda_{1} \geq \geq \lambda_{2} \geq \ldots \geq \lambda_{l}\right)$ with $\lambda_{i} \in \mathbb{Z}_{>0}$. Then $n=|\lambda|$ and we write " $\lambda F n$ " example $(4,2,1)=\lambda$ has $\lambda \vdash 7=|\lambda|$

Define the monomial symmetric function

$$
m_{\lambda}:=\sum x_{i l}^{\lambda_{1}} \cdots x_{i l}^{\lambda_{l}}
$$

overall ordered subsets of the variables
EXAMPLE: $m_{(1,1)}=x_{1} x_{2}+x_{1} x_{3}+\ldots$

$$
m_{(2)}=x_{1}^{2}+x_{2}^{2}+\cdots
$$

$m_{(2,1)}+2 m_{(1,1,1)}$ is the symm. fun, in the earlier ex example
CHM: Λ in ∞ many variables has $\left\{m_{\lambda}\right\}_{\lambda \text { all parton }}$ as a basis

$$
\Delta\left(x_{1}, \ldots, x_{m}\right) \text { in variables } x_{1}, \ldots, x_{m}
$$

has $\left\{m_{\lambda}\right\}_{\lambda}$ with imparts as abcs.
Define the elementary symmetric functions

$$
e_{k}:=m_{\frac{(1,1, \ldots, 1)}{k \text { prions }}} \text { for } k=1,2, \ldots
$$

$T H M$: The $\left\{e_{k}\right\}_{k \geq 1}$ generate Λ as an algebra
ExAmple: $m_{(2,1)}=e_{1} e_{2}-3 e_{3}$

REL EXERCISE 1 : Lear about h_{k}, the complete homogeneous symmetur functions.

Sohur functions
Partitions $\lambda \longleftrightarrow$ Young diagrams
eg.

$$
\begin{aligned}
& \lambda=(4,2,1) \longmapsto \backsim \lll \lambda_{i} \text { boxes } \\
& \text { in row } i \\
&=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)
\end{aligned} \quad \begin{aligned}
& \text { (from the tip) }
\end{aligned}
$$

(Young tableau)
A semi standard filling of λ is a filling of the boxes of its
Young diagram, weakly increasinginrows, sbretly increasing in columns, with elements of $\mathbb{Z}>0$.

EXAMPLE

$$
\text { weight }(T):=\prod_{i \geqslant 1} x_{i}^{\# i s \sin T}
$$

e.g. T above has weight $(\tau)=x_{1}^{2} x_{2}^{2} x_{3} x_{4}^{2}$

DEF'N: The Schur function $S_{\lambda}:=\sum$ weight (T)
\rightarrow SSyT T

ExAMPLE: $S_{(2,1)}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+\ldots\left(=m_{(2,1)}+2 m_{(1,1)}\right)$

$$
T=\begin{array}{lll}
11 & 12 & { }_{3}^{12}
\end{array} \frac{13}{2}
$$

EXAMPLE: $S_{(1,1, \ldots, 1)}^{k}=e_{k}=m_{(1,1, \ldots, 1)}$

REU EXERCISE 2: Prove that
(a) the $\left\{s_{\lambda}\right\}$ are symmetric functions, and
(b) they form a linear basis for the ring Λ of symmetric furs.

A skew shape or skew Young diagram λ / μ for $\mu \leq \lambda$ is this:

EXAMPLE: $(4,2,1) /(1)=$

The skew Schur function $S_{\lambda / \mu}:=\sum_{S S \text { skewtableank }}$ w T) of shape $x \mu$
(In doing REUC EXERCISE 2(a), actually prove that the $s_{\lambda / \mu}$ are also symmetric functions)

There are many skew shapes λ_{μ} for the $s_{x / \mu}$ to be linearly independent, or a basis for Λ.
One can expand them uniquely as...
THu: If $s_{\lambda / \mu}=\sum_{\nu} C_{\mu, v}^{\lambda} s_{v}$ then $c_{\mu, \nu}^{\lambda} \in \mathbb{Z}_{\geq 0}$

$$
S_{\mu, v}^{\lambda}:=\text { Litlewood-Richardson coefficient }
$$

(It has many interpretations a meanings, e.g. in representation theory of symmetric groups, general linear groups, and $i x$ cohomology of Grassmannians...)
EXAMPLE:

$$
\begin{aligned}
s_{(2,1) /(1)}=s_{\square \square}=\left(s_{\square}\right)^{2} & =S_{\square}+s_{\square \square} \\
& =s_{(1,1)}+s_{(2)}
\end{aligned}
$$

(4)
example: $S_{(2,2) /(1)}=S_{(2,1)}$

$$
\text { i.e. } S_{\sharp}=S_{\square}
$$

References on equalities among skew Scour functions:

- Reviver; Shaw, and van Willigenburg ($n \infty \infty$ many variables)
- McNamara and vanWilligenburg

Two variations
(a) Define the support of $s_{\lambda \mu \mu}$ as

$$
\left[S_{\gamma / \mu}\right]:=\left\{\nu: C_{\mu, v}^{\lambda, ~}>0\right\} .
$$

REU PROBLEM 1(a)
When is $\left[S_{\nu / \mu}\right]=\left[S_{\rho / \delta}\right]$?
Example: $[E]=[W \#]$
$\{\boxplus, \Psi, \Psi\}$
(b) Since the $\left\{m_{\lambda}\right\}$ are a basis for Λ, one can also uniquely express

$$
s_{\lambda / \mu}=\sum_{\nu} K_{\mu, \nu}^{\lambda} m_{\nu}
$$

EXAMPLE: $S_{(2,1)}=m_{(2,1)}+2 m_{(1,1,1)}$
Define the $\frac{(\text { monomial) }}{\text { support }}\left[\left[S_{\lambda / \mu}\right]\right]:=\left\{v: K_{\mu, \nu}^{\lambda}>0\right\}$

ReM PROBLEM $1(6)$. When is $\left[\left[s_{x_{\mu}}\right]\right]=\left[\left[s_{\rho / s}\right]\right]$?
Example: $\quad\left[\left[\mathbb{E}^{\square}\right]=\llbracket \theta^{\text {D }} \|\right.$
(This turns out to be the same question as when the tropicalizations of $S_{X / \mu}$ and $S_{\rho / \delta}$ are the same)

People have asked "When is $c_{\mu, v}^{\lambda}>0$?"
A: The Horn-Klyachko inequalities on (μ, v, λ) characterize 't.
Reference: Dobrovolska-Pylyarskyy
People have also asked "When is $K_{\mu, \nu}^{\lambda}>0$?"
(equivalent to characterizing the Newton polytope of $s_{x \mu \mu}$)
A: See the recent preprint by Monical-Tokcan-Yong.

REU EXERCISE 8:
Determine which skew shapes with 4 cells have equal support.
Do the same for 5 cells.
Can you do it for 6 cells?

