Factorizations of Coxeter Elements in Complex Reflection Groups
 University of Minnesota-Twin Cities 2017 REU

Thomas Hameister

July 31, 2017

Table of Contents

(1) Background

- Definitions
(2) Previous Results
(3) Question Framework

4 Results and Implications

Complex Reflection Groups

Definition

Let V be a finite dimensional complex vector space of dimension n. A complex reflection is an element $r \in \mathrm{GL}(V)$ such that

- r has finite order,
- The fixed space of r is a hyperplane in V, i.e. $\operatorname{dim}_{\mathbb{C}} \operatorname{ker}(r-\mathbf{1})=n-1$.

Definition

A complex reflection group is a finite subgroup of GL(V) generated by reflections.

Complex Reflection Groups

Definition

Let V be a finite dimensional complex vector space of dimension n. A complex reflection is an element $r \in \mathrm{GL}(V)$ such that

- r has finite order,
- The fixed space of r is a hyperplane in V, i.e. $\operatorname{dim}_{\mathbb{C}} \operatorname{ker}(r-\mathbf{1})=n-1$.

Definition

A complex reflection group is a finite subgroup of GL(V) generated by reflections.

Familiar Examples:

- The dihedral group $I_{2}(n)$.
- The group $B=G(2,1, n)$ of signed $n \times n$ permutation matrices.

Notation and Definitions

- W will denote a well-generated, irreducible complex reflection group.

Notation and Definitions

- W will denote a well-generated, irreducible complex reflection group.
- $\mathcal{R}=$ set of reflections in $W, N=|\mathcal{R}|$.
- $\mathcal{R}^{*}=$ set of hyperplanes in V fixed by some element of $\mathcal{R}, N^{*}=\left|\mathcal{R}^{*}\right|$.

Notation and Definitions

- W will denote a well-generated, irreducible complex reflection group.
- $\mathcal{R}=$ set of reflections in $W, N=|\mathcal{R}|$.
- $\mathcal{R}^{*}=$ set of hyperplanes in V fixed by some element of $\mathcal{R}, N^{*}=\left|\mathcal{R}^{*}\right|$.
- The Coxeter number of W is the number

$$
h=\frac{N+N^{*}}{n}
$$

Notation and Definitions

- W will denote a well-generated, irreducible complex reflection group.
- $\mathcal{R}=$ set of reflections in $W, N=|\mathcal{R}|$.
- $\mathcal{R}^{*}=$ set of hyperplanes in V fixed by some element of $\mathcal{R}, N^{*}=\left|\mathcal{R}^{*}\right|$.
- The Coxeter number of W is the number

$$
h=\frac{N+N^{*}}{n}
$$

Definition

A ζ-regular element is a $c \in W$ with eigenvalue ζ and corresponding eigenvector not contained in any $H \in \mathcal{R}^{*}$. A Coxeter element is a ζ_{h}-regular element.

Previous Results

Set

$$
f_{k}=\#\left\{\left(r_{1}, \ldots, r_{k}\right): c=r_{1} \ldots r_{k}, r_{i} \in \mathcal{R}\right\}
$$

Theorem
(Chapuy-Stump, 2014, [5]) For any irreducible, well-generated complex reflection group, W of rank n,

$$
\operatorname{FAC}_{W}(t)=\sum_{k \geq 0} f_{k} \frac{t^{k}}{k!}=\left(e^{N t / n}-e^{-N^{*} t / n}\right)^{n}
$$

Question Framework

For $\mathcal{R}=\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{\ell}$ a partition of \mathcal{R} with each \mathcal{R}_{i} a union of conjugacy classes in \mathcal{R}, and $\mathcal{C}=\left(C_{1}, \ldots, C_{m}\right)$ a tuple with $C_{i} \in\left\{\mathcal{R}_{1}, \ldots, \mathcal{R}_{\ell}\right\}$. Set

$$
g(\mathcal{C})=\#\left\{\left(r_{1}, \ldots, r_{m}\right): c=r_{1} \ldots r_{m}, r_{i} \in C_{i}\right\}
$$

Question Framework

For $\mathcal{R}=\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{\ell}$ a partition of \mathcal{R} with each \mathcal{R}_{i} a union of conjugacy classes in \mathcal{R}, and $\mathcal{C}=\left(C_{1}, \ldots, C_{m}\right)$ a tuple with $C_{i} \in\left\{\mathcal{R}_{1}, \ldots, \mathcal{R}_{\ell}\right\}$. Set

$$
g(\mathcal{C})=\#\left\{\left(r_{1}, \ldots, r_{m}\right): c=r_{1} \ldots r_{m}, r_{i} \in C_{i}\right\}
$$

Fact

Let \mathfrak{S}_{m} act on m-tuples \mathcal{C} by permuting its entries. Then, for all $\omega \in \mathfrak{S}_{m}$ and all tuples \mathcal{C},

$$
g(\mathcal{C})=g(\omega \cdot \mathcal{C})
$$

Question Framework

For $\mathcal{R}=\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{\ell}$ a partition of \mathcal{R} with each \mathcal{R}_{i} a union of conjugacy classes in \mathcal{R}, and $\mathcal{C}=\left(C_{1}, \ldots, C_{m}\right)$ a tuple with $C_{i} \in\left\{\mathcal{R}_{1}, \ldots, \mathcal{R}_{\ell}\right\}$. Set

$$
g(\mathcal{C})=\#\left\{\left(r_{1}, \ldots, r_{m}\right): c=r_{1} \ldots r_{m}, r_{i} \in C_{i}\right\}
$$

Fact

Let \mathfrak{S}_{m} act on m-tuples \mathcal{C} by permuting its entries. Then, for all $\omega \in \mathfrak{S}_{m}$ and all tuples \mathcal{C},

$$
g(\mathcal{C})=g(\omega \cdot \mathcal{C})
$$

Let

$$
f_{m_{1}, \ldots, m_{\ell}}:=g(\underbrace{\mathcal{R}_{1}, \ldots, \mathcal{R}_{1}}_{m_{1} \text { times }}, \ldots, \underbrace{\mathcal{R}_{\ell}, \ldots, \mathcal{R}_{\ell}}_{m_{\ell} \text { times }})
$$

Question Framework

Consider the generating function

$$
\operatorname{FAC}_{w}\left(u_{1}, \ldots, u_{\ell}\right)=\sum_{m_{1}, \ldots, m_{\ell} \geq 0} f_{m_{1}, \ldots, m_{\ell}} \prod_{i=1}^{\ell} \frac{u_{i}^{m_{i}}}{m_{i}!}
$$

Question Framework

Consider the generating function

$$
\operatorname{FAC}_{W}\left(u_{1}, \ldots, u_{\ell}\right)=\sum_{m_{1}, \ldots, m_{\ell} \geq 0} f_{m_{1}, \ldots, m_{\ell}} \prod_{i=1}^{\ell} \frac{u_{i}^{m_{i}}}{m_{i}!}
$$

Question

For what partitions $\mathcal{R}=\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{\ell}$ does this function have a nice closed form expression?

Hyperplane-Induced Partitions

- Let $\mathcal{C}_{\mathcal{R}}(W)$ be the set of conjugacy classes in \mathcal{R}.

Hyperplane-Induced Partitions

- Let $\mathcal{C}_{\mathcal{R}}(W)$ be the set of conjugacy classes in \mathcal{R}.
- For $r \in \mathcal{R}$ a reflection, let H_{r} be the hyperplane fixed by r.

Hyperplane-Induced Partitions

- Let $\mathcal{C}_{\mathcal{R}}(W)$ be the set of conjugacy classes in \mathcal{R}.
- For $r \in \mathcal{R}$ a reflection, let H_{r} be the hyperplane fixed by r.
- W acts on \mathcal{R}^{*} by right multiplication.

Hyperplane-Induced Partitions

- Let $\mathcal{C}_{\mathcal{R}}(W)$ be the set of conjugacy classes in \mathcal{R}.
- For $r \in \mathcal{R}$ a reflection, let H_{r} be the hyperplane fixed by r.
- W acts on \mathcal{R}^{*} by right multiplication.
- Each conjugacy class $C \subset \mathcal{R}$ determines a unique W-orbit

$$
\mathcal{H}_{C}=\left\{H_{r} \subset V: r \in C\right\}
$$

Hyperplane-Induced Partitions

- Define the equivalence relation on $\mathcal{C}_{\mathcal{R}}(W)$ by

$$
C_{1} \sim C_{2} \Longleftrightarrow \mathcal{H}_{C_{1}}=\mathcal{H}_{C_{2}}
$$

Let $\Theta_{1}, \ldots, \Theta_{\ell}$ be the equivalence classes of $\mathcal{C}_{\mathcal{R}}(W)$ under \sim and set

$$
\mathcal{R}_{i}=\#\left\{r \in \mathcal{R}: r \in C \text { for some } C \in \Theta_{i}\right\} .
$$

Hyperplane-Induced Partitions

- Define the equivalence relation on $\mathcal{C}_{\mathcal{R}}(W)$ by

$$
C_{1} \sim C_{2} \Longleftrightarrow \mathcal{H}_{C_{1}}=\mathcal{H}_{C_{2}}
$$

Let $\Theta_{1}, \ldots, \Theta_{\ell}$ be the equivalence classes of $\mathcal{C}_{\mathcal{R}}(W)$ under \sim and set

$$
\mathcal{R}_{i}=\#\left\{r \in \mathcal{R}: r \in C \text { for some } C \in \Theta_{i}\right\} .
$$

- $\mathcal{R}=\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{\ell}$ as above will be called a hyperplane-induced partition of \mathcal{R}.

The Hurwitz Action and Numbers n_{i}

Definition

Say $\operatorname{rank}(W)=n$. The Hurwitz action of the braid group of type A_{n-1} on factorizations $\left(t_{1}, \ldots, t_{n}\right)$ of c is given by generators

$$
e_{i} \cdot\left(t_{1}, \ldots, t_{n}\right)=\left(t_{1}, \ldots, t_{i} t_{i+1} t_{i}^{-1}, t_{i}, \ldots, t_{n}\right)
$$

Theorem (Bessis, 2003 [1])
The Hurwitz action is transitive on the set of minimal-length factorizations $\left(t_{1}, \ldots, t_{n}\right)$ of any fixed Coxeter element c.

The Hurwitz action preserves the multiset of conjugacy classes $\left\{C_{i}: t_{i} \in C_{i}\right\}$.

Constants associated to Hyperplane-Induced Partitions

Definition

For any factorization $c=t_{1} \cdots t_{n}$ of a Coxeter element c, set

$$
n_{i}=\#\left\{j: t_{j} \in \mathcal{R}_{i}\right\}
$$

This definition is independent of the choice of factorization by the transitivity of the Hurwitz action.

Constants associated to Hyperplane-Induced Partitions

Definition

For any factorization $c=t_{1} \cdots t_{n}$ of a Coxeter element c, set

$$
n_{i}=\#\left\{j: t_{j} \in \mathcal{R}_{i}\right\}
$$

This definition is independent of the choice of factorization by the transitivity of the Hurwitz action.

- Let $\mathcal{R}=\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{\ell}$ be a hyperplane-induced partition of \mathcal{R}, and let \mathcal{H}_{i} be the W-orbit of \mathcal{R}^{*} corresponding to \mathcal{R}_{i}.
- Set

$$
N_{i}:=\# \mathcal{R}_{i} \quad \text { and } \quad N_{i}^{*}=\# \mathcal{H}_{i}
$$

Schematic Interpretation of n_{i}

- The data of the theorem can be read off a Coxeter-Shephard diagram.

Example: $W=G_{26}$ has diagram

	$\text { (3) }{ }^{3}-(3)-4$
	Remove edges with even label. $n_{i}=$ size of connected component.

Main Result

Theorem

Let W be an irreducible, well-generated complex reflection group with hyperplane-induced partition of reflections $\mathcal{R}=\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{\ell}$. Let n_{i}, N_{i}, N_{i}^{*} be as before. Then,

$$
\operatorname{FAC}_{W}\left(u_{1}, \ldots, u_{\ell}\right)=\frac{1}{|W|} \prod_{i=1}^{\ell}\left(e^{\frac{N_{i} u_{i}}{n_{i}}}-e^{-\frac{N_{i}^{*} u_{i}}{n_{i}}}\right)^{n_{i}}
$$

Main Result

Theorem

Let W be an irreducible, well-generated complex reflection group with hyperplane-induced partition of reflections $\mathcal{R}=\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{\ell}$. Let n_{i}, N_{i}, N_{i}^{*} be as before. Then,

$$
\operatorname{FAC}_{W}\left(u_{1}, \ldots, u_{\ell}\right)=\frac{1}{|W|} \prod_{i=1}^{\ell}\left(e^{\frac{N_{i} u_{i}}{n_{i}}}-e^{-\frac{N_{i}^{*} u_{i}}{n_{i}}}\right)^{n_{i}}
$$

Compare with Chapuy-Stump:

$$
\operatorname{FAC}_{W}(t)=\frac{1}{|W|}\left(e^{\frac{N_{t}}{n}}-e^{-\frac{N^{*} t}{n}}\right)^{n}
$$

Main Result

Theorem

Let W be an irreducible, well-generated complex reflection group with hyperplane-induced partition of reflections $\mathcal{R}=\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{\ell}$. Let n_{i}, N_{i}, N_{i}^{*} be as before. Then,

$$
\operatorname{FAC}_{W}\left(u_{1}, \ldots, u_{\ell}\right)=\frac{1}{|W|} \prod_{i=1}^{\ell}\left(e^{\frac{N_{i} u_{i}}{n_{i}}}-e^{-\frac{N_{i}^{*} u_{i}}{n_{i}}}\right)^{n_{i}}
$$

Example: $W=G_{26}$,

$$
\begin{aligned}
n_{1} & =2, \quad N_{1}=24, \quad N_{1}^{*}=12 \\
n_{2} & =1, \quad N_{2}=12, \quad N_{2}^{*}=9 \\
\mathrm{FAC}_{G_{26}}(u, t) & =\frac{1}{\left|G_{26}\right|}\left(e^{12 u}-e^{-6 u}\right)^{2}\left(e^{9 t}-e^{-9 t}\right)
\end{aligned}
$$

Remarks on the Main Theorem

- The multivariate generating function in our work specializes to that of Chapuy-Stump:

$$
\left.\operatorname{FAC}_{W}\left(u_{1}, \ldots, u_{\ell}\right)\right|_{u_{1}=\cdots=u_{\ell}=t}=\operatorname{FAC}_{W}(t)
$$

- For any $\mathcal{R}=\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{\ell}$ a hyperplane-induced partition of reflections, ℓ is at most 2 .

A Corollary to the Main Theorem

Corollary

Let W be an irreducible, well-generated Coxeter group with Coxeter number h. Set $h_{i}=\frac{N_{i}+N_{i}^{*}}{n_{i}}$. Then $h_{i}=h$ for every i.

A Corollary to the Main Theorem

Corollary

Let W be an irreducible, well-generated Coxeter group with Coxeter number h. Set $h_{i}=\frac{N_{i}+N_{i}^{*}}{n_{i}}$. Then $h_{i}=h$ for every i.

In the real case, this is explained by a proposition of Bourbaki:

Proposition

([3], Ch VI, Section 11, Prop 33) If s_{i} are reflections corresponding to a basis of an irreducible root system R, the cyclic subgroup $\Gamma=\langle c\rangle$ of order h generated by $c=s_{1} s_{2} \ldots s_{l}$ acts freely on R and there exist representatives $\theta_{1}, \ldots, \theta_{m}$ of the Γ-orbits such that each θ_{i} is in the W-orbit of a simple root.

Sketch of Case-Free Proof of Corollary in Real Case

Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{\ell}$ be W-orbits of \mathcal{R}^{*}.

Sketch of Case-Free Proof of Corollary in Real Case

Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{\ell}$ be W-orbits of \mathcal{R}^{*}.
$\Rightarrow n_{i}$ counts number of θ_{j} with hyperplane in \mathcal{O}_{i}.

Sketch of Case-Free Proof of Corollary in Real Case

Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{\ell}$ be W-orbits of \mathcal{R}^{*}.
$\Rightarrow n_{i}$ counts number of θ_{j} with hyperplane in \mathcal{O}_{i}.
Because real, $N_{i}=N_{i}^{*}$ and number of roots with hyperplane in \mathcal{O}_{i} is $2 N_{i}$.

Sketch of Case-Free Proof of Corollary in Real Case

Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{\ell}$ be W-orbits of \mathcal{R}^{*}.
$\Rightarrow n_{i}$ counts number of θ_{j} with hyperplane in \mathcal{O}_{i}.
Because real, $N_{i}=N_{i}^{*}$ and number of roots with hyperplane in \mathcal{O}_{i} is $2 N_{i}$.
Because Γ acts freely, get $2 N_{i} / h$ orbits in \mathcal{O}_{i}.

Sketch of Case-Free Proof of Corollary in Real Case

Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{\ell}$ be W-orbits of \mathcal{R}^{*}.
$\Rightarrow n_{i}$ counts number of θ_{j} with hyperplane in \mathcal{O}_{i}.
Because real, $N_{i}=N_{i}^{*}$ and number of roots with hyperplane in \mathcal{O}_{i} is $2 N_{i}$.
Because Γ acts freely, get $2 N_{i} / h$ orbits in \mathcal{O}_{i}.
$\Rightarrow n_{i}=2 N_{i} / h$

Sketch of Case-Free Proof of Corollary in Real Case

Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{\ell}$ be W-orbits of \mathcal{R}^{*}.
$\Rightarrow n_{i}$ counts number of θ_{j} with hyperplane in \mathcal{O}_{i}.
Because real, $N_{i}=N_{i}^{*}$ and number of roots with hyperplane in \mathcal{O}_{i} is $2 N_{i}$.
Because Γ acts freely, get $2 N_{i} / h$ orbits in \mathcal{O}_{i}.
$\Rightarrow n_{i}=2 N_{i} / h$
$\Rightarrow h=2 N_{i} / n_{i}=\left(N_{i}+N_{i}^{*}\right) / n_{i}=h_{i}$

Sketch of Case-Free Proof of Corollary in Real Case

Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{\ell}$ be W-orbits of \mathcal{R}^{*}.
$\Rightarrow n_{i}$ counts number of θ_{j} with hyperplane in \mathcal{O}_{i}.
Because real, $N_{i}=N_{i}^{*}$ and number of roots with hyperplane in \mathcal{O}_{i} is $2 N_{i}$.
Because Γ acts freely, get $2 N_{i} / h$ orbits in \mathcal{O}_{i}.
$\Rightarrow n_{i}=2 N_{i} / h$
$\Rightarrow h=2 N_{i} / n_{i}=\left(N_{i}+N_{i}^{*}\right) / n_{i}=h_{i}$

Remark

In the complex case, Jean-Michel has kindly provided an argument using results of Bessis and Broué-Malle-Rouquier.

Acknowledgements

This research was carried out as part of the 2017 summer REU program at the School of Mathematics, University of Minnesota, Twin Cities, and was supported by NSF RTG grant DMS-1148634 and by NSF grant DMS-1351590.

Thanks goes out to Victor Reiner, Elise delMas, and Craig Corsi for their mentorship and support throughout this project.

References

David Bessis.
The dual braid monoid.
In Annales scientifiques de l'Ecole normale supérieure, volume 36, pages 647-683. Elsevier, 2003.
David Bessis.
Finite complex reflection arrangements are k (pi, 1).
arXiv preprint math/0610777, 2006.
Nicolas Bourbaki.
Lie groups and lie algebras. chapters 4-6. translated from the 1968 french original by andrew pressley, 2002.
Michel Broué, Gunter Malle, and Raphaël Rouquier.
Complex reflection groups, braid groups, hecke algebras.
1997.

Guillaume Chapuy and Christian Stump.
Journal of the London Mathematical Society, 90 (3):919-939 (2014), 112012.
Gustav I Lehrer and Donald E Taylor.
Unitary reflection groups, volume 20 of australian mathematical society lecture series.
Cambridge University Press, 26:27-40, 2009.
Jean Michel.
Deligne-lusztig theoretic derivation for weyl groups of the number of reflection factorizations of a coxeter element.
Proceedings of the American Mathematical Society, 144(3):937-941, 2016.

