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Complex Reflection Groups

Definition

Let V be a finite dimensional complex vector space of dimension n. A
complex reflection is an element r ∈ GL(V ) such that

r has finite order,

The fixed space of r is a hyperplane in V , i.e.
dimC ker(r − 1) = n − 1.

Definition

A complex reflection group is a finite subgroup of GL(V ) generated by
reflections.

Familiar Examples:

The dihedral group I2(n).

The group B = G (2, 1, n) of signed n × n permutation matrices.
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Notation and Definitions

W will denote a well-generated, irreducible complex reflection group.

R = set of reflections in W , N = |R|.
R∗ = set of hyperplanes in V fixed by some element of R, N∗ = |R∗|.
The Coxeter number of W is the number

h =
N + N∗

n

Definition

A ζ-regular element is a c ∈W with eigenvalue ζ and corresponding
eigenvector not contained in any H ∈ R∗. A Coxeter element is a
ζh-regular element.
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Previous Results

Set
fk = #

{
(r1, . . . , rk) : c = r1 . . . rk , ri ∈ R

}
Theorem

(Chapuy-Stump, 2014, [5]) For any irreducible, well-generated complex
reflection group, W of rank n,

FACW (t) =
∑
k≥0

fk
tk

k!
=
(
eNt/n − e−N

∗t/n
)n
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Question Framework

For R = R1 ∪ · · · ∪R` a partition of R with each Ri a union of conjugacy
classes in R, and C = (C1, . . . ,Cm) a tuple with Ci ∈ {R1, . . . ,R`}. Set

g(C) = #
{

(r1, . . . , rm) : c = r1 . . . rm, ri ∈ Ci

}

Fact

Let Sm act on m-tuples C by permuting its entries. Then, for all ω ∈ Sm

and all tuples C,
g(C) = g(ω · C)

Let
fm1,...,m`

:= g(R1, . . . ,R1︸ ︷︷ ︸
m1 times

, . . . ,R`, . . . ,R`︸ ︷︷ ︸
m` times

)
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Question Framework

Consider the generating function

FACW (u1, . . . , u`) =
∑

m1,...,m`≥0

fm1,...,m`

∏̀
i=1

umi
i

mi !

Question

For what partitions R = R1 ∪ · · · ∪ R` does this function have a nice
closed form expression?
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Hyperplane-Induced Partitions

Let CR(W ) be the set of conjugacy classes in R.

For r ∈ R a reflection, let Hr be the hyperplane fixed by r .

W acts on R∗ by right multiplication.

Each conjugacy class C ⊂ R determines a unique W -orbit

HC =
{
Hr ⊂ V : r ∈ C

}
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Hyperplane-Induced Partitions

Define the equivalence relation on CR(W ) by

C1 ∼ C2 ⇐⇒ HC1 = HC2

Let Θ1, . . . ,Θ` be the equivalence classes of CR(W ) under ∼ and set

Ri = #
{
r ∈ R : r ∈ C for some C ∈ Θi

}
.

R = R1 ∪ · · · ∪ R` as above will be called a hyperplane-induced
partition of R.
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The Hurwitz Action and Numbers ni

Definition

Say rank(W ) = n. The Hurwitz action of the braid group of type An−1 on
factorizations (t1, . . . , tn) of c is given by generators

ei · (t1, . . . , tn) = (t1, . . . , ti ti+1t
−1
i , ti , . . . , tn)

Theorem (Bessis, 2003 [1])

The Hurwitz action is transitive on the set of minimal-length factorizations
(t1, . . . , tn) of any fixed Coxeter element c .

The Hurwitz action preserves the multiset of conjugacy classes
{Ci : ti ∈ Ci}.
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Constants associated to Hyperplane-Induced Partitions

Definition

For any factorization c = t1 · · · tn of a Coxeter element c, set

ni = #
{
j : tj ∈ Ri

}
This definition is independent of the choice of factorization by the
transitivity of the Hurwitz action.

Let R = R1 ∪ · · · ∪ R` be a hyperplane-induced partition of R, and
let Hi be the W -orbit of R∗ corresponding to Ri .

Set
Ni := #Ri and N∗i = #Hi .
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Schematic Interpretation of ni

The data of the theorem can be read off a Coxeter-Shephard diagram.

Example: W = G26 has diagram

3 3 2
3 4

3 3 2
3 4

⇓ Remove edges with even label.

3 3 2
3

⇓ ni = size of connected component.
n1 = 2 and n2 = 1
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Main Result

Theorem

Let W be an irreducible, well-generated complex reflection group with
hyperplane-induced partition of reflections R = R1 ∪ · · · ∪ R`. Let
ni ,Ni ,N

∗
i be as before. Then,

FACW (u1, . . . , u`) =
1

|W |
∏̀
i=1

(
e

Ni ui
ni − e

−N∗
i ui
ni

)ni

Compare with Chapuy-Stump:

FACW (t) =
1

|W |

(
e

Nt
n − e−

N∗t
n

)n
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Main Result

Theorem

Let W be an irreducible, well-generated complex reflection group with
hyperplane-induced partition of reflections R = R1 ∪ · · · ∪ R`. Let
ni ,Ni ,N

∗
i be as before. Then,

FACW (u1, . . . , u`) =
1

|W |
∏̀
i=1

(
e

Ni ui
ni − e

−N∗
i ui
ni

)ni

Example: W = G26,

n1 = 2, N1 = 24, N∗1 = 12,
n2 = 1, N2 = 12, N∗2 = 9

FACG26(u, t) =
1

|G26|

(
e12u − e−6u

)2(
e9t − e−9t

)
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Remarks on the Main Theorem

The multivariate generating function in our work specializes to that of
Chapuy-Stump:

FACW (u1, . . . , u`)
∣∣
u1=···=u`=t

= FACW (t)

For any R = R1 ∪ · · · ∪ R` a hyperplane-induced partition of
reflections, ` is at most 2.
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A Corollary to the Main Theorem

Corollary

Let W be an irreducible, well-generated Coxeter group with Coxeter

number h. Set hi =
Ni+N∗

i
ni

. Then hi = h for every i .

In the real case, this is explained by a proposition of Bourbaki:

Proposition

([3], Ch VI, Section 11, Prop 33) If si are reflections corresponding to a
basis of an irreducible root system R, the cyclic subgroup Γ = 〈c〉 of order
h generated by c = s1s2 . . . sl acts freely on R and there exist
representatives θ1, . . . , θm of the Γ-orbits such that each θi is in the
W -orbit of a simple root.
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Sketch of Case-Free Proof of Corollary in Real Case

Let O1, . . . ,O` be W -orbits of R∗.

⇒ ni counts number of θj with hyperplane in Oi .

Because real, Ni = N∗i and number of roots with hyperplane in Oi is 2Ni .

Because Γ acts freely, get 2Ni/h orbits in Oi .

⇒ ni = 2Ni/h

⇒ h = 2Ni/ni = (Ni + N∗i )/ni = hi

Remark

In the complex case, Jean-Michel has kindly provided an argument using
results of Bessis and Broué-Malle-Rouquier.
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