A Rule of Three for Schur Q-functions

Ewin Tang

August 2, 2017

Outline

Rule of Three

Schur Q-functions

Results and Approach

Notation

$e_{k} \mathbf{s}$ are elementary symmetric polynomials:

$$
e_{k}\left(x_{1}, \cdots, x_{n}\right)=\sum_{1 \leq j_{1}<\cdots<j_{k} \leq n} x_{j_{k}} \cdots x_{j_{1}}
$$

$h_{k} \mathrm{~s}$ are homogeneous symmetric polynomials:

$$
h_{k}\left(x_{1}, \cdots, x_{n}\right)=\sum_{1 \leq j_{1} \leq \cdots \leq j_{k} \leq n} x_{j_{1}} \cdots x_{j_{k}}
$$

For x_{1}, \ldots, x_{n} and $S \subset[n]$ with $S=\left\{s_{1}<s_{2}<\cdots<s_{k}\right\}$:

$$
\begin{aligned}
{[x, y] } & =x y-y x \\
e_{i}\left(x_{S}\right) & =e_{i}\left(x_{s_{1}}, \ldots, x_{s_{k}}\right) \\
x_{S} & =x_{S}^{\downarrow}=x_{s_{k}} x_{s_{k-1}} \cdots x_{s_{1}}
\end{aligned}
$$

What is a Rule of Three?

Kirillov 2016:

Theorem (1.1)

For $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ tuples of elements in a ring R, the following are equivalent:

- $\left[e_{k}\left(u_{S}\right), e_{\ell}\left(v_{S}\right)\right]=0$ for any $k, l, S \subset[n]$,
- the above holds for $|S| \leq 3$ and $k l \leq 3$; that is,

$$
\begin{aligned}
& {\left[e_{1}\left(u_{S}\right), e_{1}\left(v_{S}\right)\right]=0} \\
& {\left[e_{1}\left(u_{S}\right), e_{2}\left(v_{S}\right)\right]=0} \\
& {\left[e_{2}\left(u_{S}\right), e_{1}\left(v_{S}\right)\right]=0} \\
& {\left[e_{1}\left(u_{S}\right), e_{3}\left(v_{S}\right)\right]=0} \\
& {\left[e_{3}\left(u_{S}\right), e_{1}\left(v_{S}\right)\right]=0}
\end{aligned}
$$

Example

Consider $u=v=(a, b, c)$. Then we have the following relations for $S=\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}$.

$$
\begin{aligned}
& {\left[e_{1}\left(u_{S}\right), e_{1}\left(v_{S}\right)\right]=0} \\
& {\left[e_{1}\left(u_{S}\right), e_{2}\left(v_{S}\right)\right]=0} \\
& {\left[e_{2}\left(u_{S}\right), e_{1}\left(v_{S}\right)\right]=0} \\
& {\left[e_{1}\left(u_{S}\right), e_{3}\left(v_{S}\right)\right]=0} \\
& {\left[e_{3}\left(u_{S}\right), e_{1}\left(v_{S}\right)\right]=0}
\end{aligned}
$$

Example (cont.)

$$
\begin{aligned}
(a+b)(b a) & -(b a)(a+b) \\
(a+c)(c a) & -(c a)(a+c) \\
(b+c)(c b) & -(c b)(b+c) \\
(a+b+c)(c b+c a+b a) & -(c b+c a+b a)(a+b+c) \\
(a+b+c)(c b a) & -(c b a)(a+b+c)
\end{aligned}
$$

Example (cont.)

$$
\begin{gathered}
a b a+b b a-b a a-b a b \\
a c a+c c a-c a a-c a c \\
b c b+c c b-c b b-c b c \\
a c b+b c a-c a b-b a c \\
a c b a+c a b a-c b c a-c b a c
\end{gathered}
$$

These must generate all of $\left[e_{k}\left(u_{S}\right), e_{\ell}\left(u_{S}\right)\right]$.

Motivation

Fomin-Greene 2006:

Theorem

If nonadjacent variables commute (or satisfy the non-local Knuth relations) and adjacent variables $a<b$ satisfy

$$
\left[e_{1}(a, b), e_{2}(a, b)\right]=0
$$

then noncommutative Schur functions behave as if they were ordinary Schur functions.

More Rules of Three

Blasiak and Fomin 2016 generalized to:

- Super elementary symmetric polynomials
- Generating functions over rings
- Sums and products

Research Problem

Problem

Can we use this theory to give rules of three in other settings?

Definition by Analogy

Schur functions : semistandard Young tableaux :: Schur Q-functions : semistandard shifted Young tableaux

Definition

A (semistandard) shifted Young tableau T of shape λ is a filling of a shifted diagram λ with letters from the alphabet
$A=\left\{1^{\prime}<1<2^{\prime}<2<\cdots\right\}$ such that:

- Rows and columns are weakly increasing;
- Each column has at most one k for $k \in\{1,2, \cdots\}$;
- Each row has at most one k for $k \in\left\{1^{\prime}, 2^{\prime}, \cdots\right\}$.

Example

For $\lambda=(5,4,2)$, a possible tableau:

1	2^{\prime}	3^{\prime}	3	3
	2^{\prime}	3	4^{\prime}	4
		4^{\prime}	4	

Examples

$$
\begin{aligned}
& Q_{(1)}\left(x_{1}, x_{2}\right)=x^{[1]}+x^{[\boxed{1]}}+x^{[2]}+x^{2^{2]}} \\
& =2 x_{1}+2 x_{2} \\
& Q_{(2)}\left(x_{1}, x_{2}\right)=x^{[1 \mid 1}+x^{[1 \mid 1]}+x^{[2 \mid 2]}+x^{\left[2^{2} \mid 2\right]} \\
& +x^{\boxed{1 \mid 2}}+x^{\sqrt{1^{\prime} \mid 2}}+x^{\boxed{1 \mid 2^{\prime}}}+x^{\sqrt{1^{\prime} 2^{\prime}}} \\
& =2 x_{1}^{2}+2 x_{2}^{2}+4 x_{1} x_{2} \\
& =\frac{1}{2} Q_{(1)}^{2}
\end{aligned}
$$

Properties

- Q_{λ} are symmetric;
- $\mathbb{Q}\left[Q_{\lambda}\right]$ form the same subalgebra as $\mathbb{Q}\left[p_{2 k+1}\right]$, where $p_{a}=\sum x_{i}^{a}$;
- $\mathbb{Q}\left[Q_{\lambda}\right]=\mathbb{Q}\left[Q_{(2 k+1)}\right]$.

Non-commutative Case

How do we generalize?

$$
\begin{aligned}
\begin{array}{|l|l|l|l|l|l|}
\hline 1^{\prime} & 1 & 2^{\prime} & 3 & 3 & 4^{\prime} \\
\hline
\end{array} & \longleftrightarrow 5^{\prime}
\end{aligned} \begin{aligned}
& \longleftrightarrow x_{4} x_{4} x_{3} x_{3} x_{2} x_{1} x_{1} \text { (descending) } \\
& \longleftrightarrow x_{5} x_{4} x_{2} x_{1} x_{1} x_{3} x_{3} x_{4} \text { (hook) }
\end{aligned}
$$

Non-commutative Case

How do we generalize?

$$
\begin{aligned}
1^{\prime}|1| 2^{\prime}|3| 3\left|4^{\prime}\right| 4\left|5^{\prime}\right| & \longleftrightarrow x_{5} x_{4} x_{4} x_{3} x_{3} x_{2} x_{1} x_{1} \text { (descending) } \\
& \longleftrightarrow x_{5} x_{4} x_{2} x_{1} x_{1} x_{3} x_{3} x_{4} \text { (hook) }
\end{aligned}
$$

$$
\begin{aligned}
Q_{(2)}\left(x_{1}, x_{2}\right)= & x^{\sqrt{1 \mid 1}}+x^{\sqrt{1^{\prime} \mid 1}}+x^{\sqrt{2 \mid 2}}+x^{\sqrt{2^{\prime} 2}} \\
& +x^{\sqrt{1 \mid 2}}+x^{\frac{1^{\prime} \mid 2}{2}}+x^{\sqrt{12^{\prime}}}+x^{\sqrt{1^{\prime} \mid 2^{\prime}}} \\
= & 2 x_{1}^{2}+2 x_{2}^{2}+4 x_{2} x_{1} \text { (descending) } \\
= & 2 x_{1}^{2}+2 x_{2}^{2}+2 x_{2} x_{1}+2 x_{1} x_{2} \text { (hook) } \\
= & \frac{1}{2} Q_{(1)}^{2}
\end{aligned}
$$

Hook reading is the more natural.

Proposed Rule of Three

Conjecture

Let $u_{1}, \ldots, u_{N}, v_{1}, \ldots, v_{N}$ be elements of a ring A. The following are equivalent:

- $Q_{(k)}\left(u_{S}\right)$ and $Q_{(\ell)}\left(v_{S}\right)$ commute for all S, k, ℓ.
- the above holds when $k=1$ or $\ell=1$ (for all S)

Computation suggests this is optimal.

Naive Approach

$$
\begin{gathered}
a b a+b b a-b a a-b a b \\
a c a+c c a-c a a-c a c \\
b c b+c c b-c b b-c b c \\
a c b+b c a-c a b-b a c \\
a c b a+c a b a-c b c a-c b a c
\end{gathered}
$$

Can we get the next simplest commutation relation?

$$
\begin{aligned}
C & =\left[e_{2}(a, b, c), e_{3}(a, b, c)\right] \\
& =(c b+c a+b a)(c b a)-(c b a)(c b+c a+b a)
\end{aligned}
$$

Yes!

$$
\begin{aligned}
C= & (b c b+c c b-c b b-c b c)(a a+a b-b a) \\
& +(c c+a c+b c-c b-c a)(a b a+b b a-b a a-b a b) \\
& -(a c a+c c a-c a a-c a c) b a \\
& -(a c b+b c a-c a b-b a c) b a \\
& +(a c b a+c a b a-c b c a-c b a c)(a+b)
\end{aligned}
$$

Generating Functions

In the commutative case:

$$
\begin{aligned}
a_{i} & =1+x u_{i} \\
b_{i} & =\left(1-x u_{i}\right)^{-1} \\
q_{i} & =a_{i} b_{i}=\left(1+x u_{i}\right)\left(1-x u_{i}\right)^{-1}
\end{aligned}
$$

And:

$$
\begin{aligned}
a_{[n]} & =\sum e_{k} x^{k} \\
b_{[n]} & =\sum h_{k} x^{k} \\
q_{[n]} & =\sum Q_{(k)} x^{k}
\end{aligned}
$$

Generating Functions (cont.)

In the non-commutative case:

$$
\begin{aligned}
a_{i} & =1+x u_{i} \\
b_{i} & =\left(1-x u_{i}\right)^{-1} \\
q_{i} & =a_{i} b_{i}=\left(1+x u_{i}\right)\left(1-x u_{i}\right)^{-1}
\end{aligned}
$$

And:

$$
\begin{aligned}
a_{[n]}^{\downarrow} & =\sum e_{k} x^{k} \\
b_{[n]}^{\uparrow} & =\sum h_{k} x^{k} \\
q_{[n]}^{\downarrow} & =\sum Q_{(k)} x^{k} \text { descending reading }
\end{aligned}
$$

Generating Functions (cont.)

In the non-commutative case:

$$
\begin{aligned}
a_{i} & =1+x u_{i} \\
b_{i} & =\left(1-x u_{i}\right)^{-1}
\end{aligned}
$$

And:

$$
\begin{aligned}
a_{[n]}^{\downarrow} & =\sum e_{k} x^{k} \\
b_{[n]}^{\uparrow} & =\sum h_{k} x^{k} \\
a_{[n]}^{\downarrow} b_{[n]}^{\uparrow} & =\sum Q_{(k)} x^{k} \text { hook reading }
\end{aligned}
$$

Rephrasing Rule of Three

Theorem (Blasiak-Fomin 3.5)

Let R be a ring, and let $g_{1}, \ldots, g_{N}, h_{1}, \ldots, h_{N} \in R$ be potentially invertible elements. Then the following are equivalent:

- $\left[\sum_{i \in S} g_{i}, \sum_{i \in S} h_{i}\right]=0$, $\left[\sum_{i \in S} g_{i}, h_{S}\right]=0$, $\left[g_{S}, \sum_{i \in S} h_{i}\right]=0$, [$\left.g_{S}, h_{S}\right]=0$ for all subsets S.
- the above holds for $|S| \leq 3$.

Use $g_{i}=1+x u_{i}, h_{i}=1+y v_{i}$ to get rule of three for $e_{k} \mathbf{s}$.

Conjecture

Let A be a ring, and let $\left\{x_{i}\right\}_{i \in[N]},\left\{y_{i}\right\}_{i \in[N]} \in A$. Then define

$$
\begin{array}{ll}
a_{i}=1+x_{i} t & b_{i}=1-x_{i} t \\
\alpha_{i}=1+y_{i} s & \beta_{i}=1-y_{i} s
\end{array}
$$

Further, let the following be true.

$$
\begin{aligned}
{\left[\sum_{i \in S} x_{i}, \alpha_{S}\left(\beta_{S}\right)^{-1}\right] } & =0 \\
{\left[\sum_{i \in S} y_{i}, a_{S}\left(b_{S}\right)^{-1}\right] } & =0
\end{aligned}
$$

Then $a_{[N]}\left(b_{[N]}\right)^{-1} \alpha_{[N]}\left(\beta_{[N]}\right)^{-1}=\alpha_{[N]}\left(\beta_{[N]}\right)^{-1} a_{[N]}\left(b_{[N]}\right)^{-1}$.

Proof Progress

We have been attempting to replicate Blasiak and Fomin's proof of Lemma 8.2, both in the standard case, and in the weakened case where nonadjacent variables commute.

\square : proof for the conjecture;
\triangle : proof for the conjecture for $|S|=2$.
Arrows represent dependencies.

Further Questions

- Can we prove the conjecture? What about in a weaker setting?
- When does commutativity extend to all Schur Q-functions?

Acknowledgements

This research was carried out as part of the 2017 REU program at the School of Mathematics at the University of Minnesota, Twin Cities, and was supported by NSF RTG grant DMS-1148634.
Thanks to Elizabeth Kelley, Pavlo Pylyavskyy, and Vic Reiner for their invaluable mentorship and support.

