Correlations in Pattern Avoidance

Marisa Gaetz, Will Hardt, Shruthi Sridhar, and Anh Quoc Tran

UMN Twin Cities Combinatorics REU
Problem 8

August 1, 2017

Overview

(1) Preliminaries
(2) Correlation Problem

- Orignial Problem
- New Problem, $u, v, w \in S_{3}$
- New Problem, $v=(k \ldots 1), u=(\ell \ldots 1), w \in S_{3}$
(3) Characteristic Polynomial Problem
- Avoiding $k(k-1) \ldots 1$
- Avoiding $t(t-1) . .1 k(k-1) \ldots(t+1)$
- Avoiding 12...k

Preliminaries

- A permutation is a bijection from $\{1,2, \ldots, n\}$ to itself

Preliminaries

- A permutation is a bijection from $\{1,2, \ldots, n\}$ to itself
- One-line notation

Preliminaries

- A permutation is a bijection from $\{1,2, \ldots, n\}$ to itself
- One-line notation

Definition

A permutation $\pi=\pi(1) \pi(2) \ldots \pi(m)$ contains a pattern $\sigma=\sigma(1) \sigma(2) \ldots \sigma(k)$ if there exists a subsequence ($i_{1}<\ldots<i_{k}$) $\pi\left(i_{1}\right) \pi\left(i_{2}\right) \ldots \pi\left(i_{k}\right)$ of π with the same relative ordering as σ. Otherwise π avoids σ.

Preliminaries

- A permutation is a bijection from $\{1,2, \ldots, n\}$ to itself
- One-line notation

Definition

A permutation $\pi=\pi(1) \pi(2) \ldots \pi(m)$ contains a pattern $\sigma=\sigma(1) \sigma(2) \ldots \sigma(k)$ if there exists a subsequence ($i_{1}<\ldots<i_{k}$) $\pi\left(i_{1}\right) \pi\left(i_{2}\right) \ldots \pi\left(i_{k}\right)$ of π with the same relative ordering as σ. Otherwise π avoids σ.

Example

(523416) contains (213), but avoids (132)

- $S_{n}\left(\sigma_{1}, \ldots, \sigma_{k}\right)=\left\{\pi \in S_{n} \mid \pi\right.$ avoids $\left.\sigma_{1}, \ldots, \sigma_{k}\right\}$

The Original Problem

Problem

How do avoiding u and avoiding w correlate for random permutations in S_{n} ?

The Original Problem

Problem

How do avoiding u and avoiding w correlate for random permutations in S_{n} ?

Solution (Joel Lewis)

If $u=(1,2, \ldots, k), w=(\ell, \ell-1, \ldots, 1)$, then negative correlation (Erdős-Szekeres). Otherwise, positive (Marcus-Tardos).

New Problem

Problem

How do avoiding u and avoiding w correlate for random permutations in $S_{n}(v)$?

New Problem

Problem

How do avoiding u and avoiding w correlate for random permutations in $S_{n}(v)$?

Criterion

Positive correlation if and only if

$$
\left(\# S_{n}(v)\right)\left(\# S_{n}(v, u, w)\right)>\left(\# S_{n}(v, u)\right)\left(\# S_{n}(v, w)\right)
$$

Answer for $u, v, w \in S_{3}$ Case

- Simion and Schmidt (1985) give $\# S_{n}(\Pi)$ for $\Pi \subset S_{3},|\Pi|=1,2,3$

Answer for $u, v, w \in S_{3}$ Case

- Simion and Schmidt (1985) give $\# S_{n}(\Pi)$ for $\Pi \subset S_{3},|\Pi|=1,2,3$
- The following (v, u, w) triples negatively correlate:

Answer for $u, v, w \in S_{3}$ Case

- Simion and Schmidt (1985) give $\# S_{n}(\Pi)$ for $\Pi \subset S_{3},|\Pi|=1,2,3$
- The following (v, u, w) triples negatively correlate:

v	(u, w) unordered pair
(132)	$(123,231),(123,312),(213,231),(213,312),(231,312)$
(213)	$(123,231),(123,312),(132,231),(132,312),(231,312)$
(231)	$(132,213),(132,312),(132,321),(213,312),(213,321)$
(312)	$(132,213),(132,231),(132,321),(213,231),(213,321)$

Table: Complete list of "interesting" negative correlations for $u, v, w \in S_{3}$

$v=(k \ldots 1), u=(\ell \ldots 1), w \in S_{3}$ Case

Criterion

Positive correlation if and only if

$$
\left(\# S_{n}(k \ldots 1)\right)\left(\# S_{n}(w, \ell \ldots 1)\right)>\left(\# S_{n}(\ell \ldots 1)\right)\left(\# S_{n}(w, k \ldots 1)\right)
$$

$v=(k \ldots 1), u=(\ell \ldots 1), w \in S_{3}$ Case

Criterion

Positive correlation if and only if

$$
\left(\# S_{n}(k \ldots 1)\right)\left(\# S_{n}(w, \ell \ldots 1)\right)>\left(\# S_{n}(\ell \ldots 1)\right)\left(\# S_{n}(w, k \ldots 1)\right)
$$

Theorem (Reifegerste)

$$
\#\left(S_{n}(132, m \ldots 1)\right)=\frac{1}{n} \sum_{i=1}^{m-1}\binom{n}{i}\binom{n}{i-1}
$$

$v=(k \ldots 1), u=(\ell \ldots 1), w \in S_{3}$ cont.

Theorem (Arriata/Regev)

$$
\#\left(S_{n}(m \ldots 1)\right) \sim \lambda_{m} \frac{(m-1)^{2 n}}{n^{m(m-2) / 2}} \text { for some constant } \lambda_{m}
$$

$v=(k \ldots 1), u=(\ell \ldots 1), w \in S_{3}$ cont.

Theorem (Arriata/Regev)

$$
\#\left(S_{n}(m \ldots 1)\right) \sim \lambda_{m} \frac{(m-1)^{2 n}}{n^{m(m-2) / 2}} \text { for some constant } \lambda_{m}
$$

Conclusion

$w=132$: positive correlation.

$v=(k \ldots 1), u=(\ell \ldots 1), w \in S_{3}$ cont.

Theorem (Arriata/Regev)

$$
\#\left(S_{n}(m \ldots 1)\right) \sim \lambda_{m} \frac{(m-1)^{2 n}}{n^{m(m-2) / 2}} \text { for some constant } \lambda_{m}
$$

Conclusion

$w=132$: positive correlation.

Fact

$$
\# S_{n}(\Pi)=\# S_{n}\left(\Pi^{R}\right)=\# S_{n}\left(\Pi^{C}\right)
$$

i.e.: $\# S_{n}(132)=\# S_{n}(213)$ and $\# S_{n}(132, m \ldots 1)=\# S_{n}(213, m \ldots 1)$

Conclusion

$w=213$: positive correlation.

$v=(k \ldots 1), u=(\ell \ldots 1), w \in S_{3}$ cont.

Theorem (Arriata/Regev)

$$
\#\left(S_{n}(m \ldots 1)\right) \sim \lambda_{m} \frac{(m-1)^{2 n}}{n^{m(m-2) / 2}} \text { for some constant } \lambda_{m}
$$

Conclusion

$w=132$: positive correlation.

Fact

$$
\# S_{n}(\Pi)=\# S_{n}\left(\Pi^{R}\right)=\# S_{n}\left(\Pi^{C}\right)
$$

i.e.: $\# S_{n}(132)=\# S_{n}(213)$ and $\# S_{n}(132, m \ldots 1)=\# S_{n}(213, m \ldots 1)$

Conclusion

$w=213$: positive correlation.
What about $w=231$?

Main conjecture

Albert, Atkinson and Vatter proved that any subclass of 231-avoiding permutations satisfies a linear recurrence.

Conjecture

For any 231-avoiding permutation $\pi, T(n)=S_{n}(231, \pi)$ satisfies a linear recurrence, and its characteristic polynomial has all positive real roots.

This implies these coefficients form a Pólya frequency sequence.

Avoiding 231 and $k(k-1) \ldots 1$

In the rest of the talk, we will denote $D(n, k)=\left|S_{n}(231, k(k-1) \ldots 1)\right|$.
Note that $D(n, k)=C_{n}$, the Catalan number, for $n<k$.

Theorem

Let $t=\left\lfloor\frac{k}{2}\right\rfloor$, then

$$
\begin{aligned}
D(n, k)=\binom{k-1}{1} D(n-1, k) & -\binom{k-2}{2} D(n-2, k)+\ldots \\
& +(-1)^{t+1}\binom{k-t}{t} D(n-t, k)
\end{aligned}
$$

When $k=2 t$, this result is true from $n=t$, and when $k=2 t+1$, this is true from $n=t+1$.

Proof

We proved the theorem by induction on k with the following recurrence
Lemma

$$
D(n, k)=\sum_{0 \leq i<n} D(i, k) D(n-i-1, k-1)
$$

combined with the identity

Lemma

$$
\begin{aligned}
(-1)^{j+1}\binom{n-j}{j}= & (-1)^{j+1}\binom{n-1-j}{j}+C_{j-1} \\
& -\sum_{i=1}^{j-1}(-1)^{i+1} C_{j-1-i}\binom{n-1-i}{i}
\end{aligned}
$$

Another proof

$$
S_{n}(231, k \ldots .1) \leftrightarrow\{\text { Dyck paths of length } 2 n \text { and height } \leq k-1\}
$$

$f(n)=\left|S_{n}(231, k \ldots 1)\right|=$ number of directed paths connecting $\widetilde{u}, \widetilde{u}+n \widetilde{g}$.

Another proof

- The RHS: an acyclic weighted (all weighted 1) graph \widetilde{N} in a strip \mathcal{S}, invariant under a shift \widetilde{g}.
- The LHS is \widetilde{N} 's projection N on a cylinder $\mathcal{O}=\mathcal{S} / \mathbb{Z} \widetilde{g}$

Another proof

Galashin and Pylyavskyy proved a general (for any cylindrical network) version of the statement below:

Theorem

Denote $f(n)$ the number of paths connecting $\widetilde{u}, \widetilde{u}+n \widetilde{g}$. Then for all but finitely many n, the sequence f satisfies a linear recurrence with characteristic polynomial

$$
Q_{N}(t)=\sum_{r=0}^{d}(-t)^{d-r}\left|\mathcal{C}^{r}(N)\right|
$$

$\mathcal{C}^{r}(N)$ is the set of r-tuples of disjoint simple cycles in N.

More conjecture

Conjecture

For any 231-avoiding pattern π, we can construct a cylindrical network \widetilde{N} such that $f(n)=\left|S_{n}(231, \pi)\right|$ has characteristic polynomial $Q_{N}(t)$.

Avoiding 231 and $k(k-1) \ldots 1$

Proposition

Let $P_{k}(x)$ denotes the characteristic polynomial for $D(n, k)$. Then P_{k} has all real roots.

We can prove that the roots of P_{k} and P_{k+1} are interlaced by the following identities:

$$
\begin{gathered}
P_{2 k+1}(x)-P_{2 k}(x)=-P_{2 k-1}(x) \\
P_{2 k}(x)-x P_{2 k-1}(x)=-P_{2 k-2}(x)
\end{gathered}
$$

Avoiding 231 and $k(k-1) \ldots 1$

Conjecture

Let $P_{k}(x)$ denotes the characteristic polynomial for $D(n, k)$. Then $P_{k}\left(4(k-1)^{2} / k^{2}\right)<0$.

This implies that the largest root of P_{k} is larger then $4(k-1)^{2} / k^{2}$, and consequently answer the correlation question earlier.

Avoiding 231 and $t(t-1) \ldots 1 k(k-1) \ldots(t+1)$

Theorem

$$
\left|S_{n}(231, t(t-1) \ldots 1 k(k-1) \ldots(t+1))\right|=\left|S_{n}(231, k(k-1) \ldots 1)\right|
$$

This is interesting because it isn't known that there is a bijection between permutations that preserves 231-avoiding and maps $k(k-1) \ldots 1$ to $t(t-1) \ldots 1 k \ldots(t+1)$.

Proof

Show that $\left|S_{n}(231, t \ldots 1 k(k-1) \ldots(t+1))\right|$ satisfies the same linear recurrence as $\left|S_{n}(231, k \ldots 1)\right|$.

Proposition

Let $\pi=t . .1 k \ldots(t+1)$ and $T(n, \pi)=\left|S_{n}(231, \pi)\right|$ and $D(n, k)=\left|S_{n}(231, k . .1)\right|$. Then,

$$
\begin{aligned}
T(n+1, \pi)=\sum_{0 \leq i<n+1}(& T(i, \pi) D(n-i, k-t-1)+D(i, t) T(n-i, \pi) \\
& -D(i, l) D(n-i, k-t-1))
\end{aligned}
$$

Let $\rho=\sigma n \tau \in S_{n}$. Then,

$$
\rho \in S_{n}(231, \pi) \Leftrightarrow \sigma \in S_{n}(231, t \ldots 1) \text { or } \tau \in S_{n}(231, k-t-1 \ldots 1)
$$

Avoiding 231 and 12...k

Conjecture
 $I(n, k)=S_{n}(231,12 \ldots k)$ has characteristic polynomial $(x-1)^{2 k-3}$

We know that

$$
I(n, k)=\sum_{i=1}^{k-1} \frac{1}{n}\binom{n}{i}\binom{n}{i-1}=\sum_{i=1}^{k-1} \frac{1}{i}\binom{n}{i-1}\binom{n-1}{i-1}
$$

so the conjecture above would follow from the identity below, which we believe to be true

Conjecture

$$
\sum_{i=0}^{2 k+1}(-1)^{i}\binom{2 k+1}{i}\binom{n+i}{k}\binom{n+i-1}{k}=0
$$

References

R Astrid Reifesgerste (2003)
On the diagram of 132 -avoiding permutations
European Journal of Combinatorics 24(6), 759-776.
Richard Arriata (1999)
On the Stanley-Wilf Conjecture for the Number of Permutations Avoiding a Given Pattern
The Electronic Journal of Combinatorics 6.

- Amitai Regev (1981)

Asymptotic values for degrees associated with strips of young diagrams
Advances in Mathematics 42(2), 115-136.
目 Simion and Schmidt (1985)
Restricted Permutations
European Journal of Combinatorics 6(4), 383-406.
Erdős and Szekeres (1935)
A combinatorial problem in geometry
Compositio Mathematica 2.

References

國 Albert, Atkinson and Vatter (2011)
Subclasses of the separable permutations
Bull. London Math. Soc. 43, 859870.Galashin and Pylyavskyy (2017)
Linear recurrences for cylindrical networks
arXiv:1704.05160.

Acknowledgements

This research was performed as a part of the 2017 University of Minnesota, Twin Cities Combinatorics REU, and was supported by NSF RTG grant DMS-1148634 and by NSF grant DMS-1351590. We would like to thank Vic Reiner, Pasha Pylyavskyy, and Galen Dorpalen-Barry for their advice, mentorship, and support.

