Chow Rings of Matroids
 University of Minnesota-Twin Cities REU

Thomas Hameister, Sujit Rao, Connor Simpson

August 2, 2017

Outline

1 Preliminaries

2 Methods for calculating Hilbert series

3 Uniform matroids and $M_{r}\left(\mathbb{F}_{q}^{n}\right)$

4 Future work and other lattices

Motivation

- The Chow ring of a ranked atomic lattice L is a graded ring denoted $A(L)$.
- The proof of the Heron-Rota-Welsh conjecture by Adiprasito-Huh-Katz uses properties of $A(L)$ when L is the lattice of flats of a matroid M.
- We are interested in combinatorial information about the lattice L or the matroid M which can be determined from A(L).

Example

- $L\left(U_{n, r}\right)=\{A \subseteq[n]$ with $\# A \leq r-1\}$
- $L\left(M_{r}\left(\mathbb{F}_{q}^{n}\right)\right)=\left\{A \leq \mathbb{F}_{q}^{n}\right.$ with $\left.\operatorname{dim} A \leq r-1\right\}$
- $L\left(M\left(K_{n}\right)\right)=\{$ partitions of $[n]\}$

Definitions

Definition (Feichtner-Yuzvinsky 2004)

Let L be a ranked lattice with atoms a_{1}, \ldots, a_{k}. The Chow ring of L is

$$
A(L)=\mathbb{Z}\left[\left\{x_{p}: p \in L, p \neq \perp\right\}\right] /(I+J)
$$

where

$$
\begin{aligned}
& I=\left(x_{p} x_{q}: p \text { and } q \text { are incomparable }\right) \\
& J=\left(\sum_{q \geq a_{i}} x_{q}: 1 \leq i \leq k\right) .
\end{aligned}
$$

Theorem (Adiprasito-Huh-Katz 2015)
The Heron-Rota-Welsh conjecture is true.

Incidence algebra

Theorem (Feichtner-Yuzvinsky 2004)

$$
H(A(L), t)=1+\sum_{\perp=x_{0}<x_{1}<\cdots<x_{m}} \prod_{i=1}^{m} \frac{t-t^{r k x_{i}-r k x_{i-1}-1}}{1-t}
$$

Proposition

If $\eta, \gamma \in(\mathbb{Q}(t))[L]$ are given by

$$
\eta(x, y)=\sum_{i=1}^{\mathrm{rky} y-\mathrm{rkx} x-1} t^{i}
$$

and $\gamma=(1-\eta)^{-1} \zeta$, then $H(A([x, y]), t)=\gamma(x, y)$.
Proposition

$$
\gamma_{L \times K}=\left(1-t\left(1-\gamma_{L}\right) \otimes\left(1-\gamma_{K}\right)\right)^{-1}\left(\gamma_{L} \otimes \gamma_{K}\right) .
$$

Differential operators and derivations

Motivation: What is $H\left(A\left(L \times B_{1}\right), t\right)$?

Differential operators and derivations

Motivation: What is $H\left(A\left(L \times B_{1}\right), t\right)$?
Observation: the FY formula for $L \times B_{1}$ is Leibniz rule-like.

Differential operators and derivations

Motivation: What is $H\left(A\left(L \times B_{1}\right), t\right)$?
Observation: the FY formula for $L \times B_{1}$ is Leibniz rule-like.

- Define new multiplicands; use them to get $H(A(L), t, s)$

Differential operators and derivations

Motivation: What is $H\left(A\left(L \times B_{1}\right), t\right)$?
Observation: the FY formula for $L \times B_{1}$ is Leibniz rule-like.

- Define new multiplicands; use them to get $H(A(L), t, s)$
- $H(A(L), t, 0)=H(A(L), t)$

Differential operators and derivations

Motivation: What is $H\left(A\left(L \times B_{1}\right), t\right)$?
Observation: the FY formula for $L \times B_{1}$ is Leibniz rule-like.
■ Define new multiplicands; use them to get $H(A(L), t, s)$

- $H(A(L), t, 0)=H(A(L), t)$

Proposition

$$
H\left(A\left(L \times B_{1}\right), t, s\right)=\left(1+\partial_{s}\right) H(A(L), t, s)
$$

Applications of AHK results

Motivation:

- Many families of lattices such that if L is in the family, then $[z, \top]$ is in the family too for all $z \in L$.

Applications of AHK results

Motivation:

- Many families of lattices such that if L is in the family, then $[z, \top]$ is in the family too for all $z \in L$.
- AHK gives isomorphisms relating Chow rings of these intervals to the Chow ring of the whole

Applications of AHK results

Motivation:

- Many families of lattices such that if L is in the family, then $[z, \top]$ is in the family too for all $z \in L$.
- AHK gives isomorphisms relating Chow rings of these intervals to the Chow ring of the whole

Theorem

Let L be a "nicely ranked" atomic lattice with $\mathrm{rk} L=r+1$ and $\operatorname{rk}(z)=\operatorname{rk}\left(z^{\prime}\right) \Longrightarrow[z, \top] \cong\left[z^{\prime}, \top\right]$. Let $z_{2}, \ldots, z_{r-1} \in L$ with $\operatorname{rk}\left(z_{i}\right)=i$. Then

$$
\operatorname{dim}_{\mathbb{Z}} A^{q}(L)=1+\sum_{i=2}^{r} \# L_{i} \sum_{p=1}^{i-1} \operatorname{dim}_{\mathbb{Z}} A^{q-p}\left(\left[z_{i}, \top\right]\right)
$$

Applications of AHK results

Motivation:

- Many families of lattices such that if L is in the family, then [$z, T]$ is in the family too for all $z \in L$.
■ AHK gives isomorphisms relating Chow rings of these intervals to the Chow ring of the whole

Theorem (A better one!)

Let L be a "nicely ranked" atomic lattice with $r k=r+1$ and $\operatorname{rk}(z)=\operatorname{rk}\left(z^{\prime}\right) \Longrightarrow[z, \top] \cong\left[z^{\prime}, \top\right]$. Let $z_{2}, \ldots, z_{r-1} \in L$ with $\operatorname{rk}\left(z_{i}\right)=i$. Then

$$
H(A(L), t)=[r+1]_{t}+t \sum_{i=2}^{r} \# L_{i}[i-1]_{t} H\left(\left[z_{i}, \top\right], t\right)
$$

Applications of AHK results: examples

Uniform:

$$
H\left(U_{n, r+1}, t\right)=[r+1]_{t}+t \sum_{i=2}^{r}\binom{n}{i}[i-1]_{t} H\left(U_{n-i, r+1-i}, t\right) .
$$

Applications of AHK results: examples

Uniform:

$$
H\left(U_{n, r+1}, t\right)=[r+1]_{t}+t \sum_{i=2}^{r}\binom{n}{i}[i-1]_{t} H\left(U_{n-i, r+1-i}, t\right) .
$$

Subspaces:

$$
H\left(A\left(M_{r+1}\left(\mathbb{F}_{q}^{n}\right)\right), t\right)=[r+1]_{t}+t \sum_{i=2}^{r}[i-1]_{t}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q} H\left(A\left(M_{r+1-i}\left(\mathbb{F}_{q}^{n}\right)\right), t\right)
$$

Uniform matroids

- Recall $U_{n, r}$ has lattice of flats the truncation of the boolean lattice at rank r.

Uniform matroids

- Recall $U_{n, r}$ has lattice of flats the truncation of the boolean lattice at rank r.
■ Some invariants of interest for $A\left(U_{n, r}\right)$ have combinatorial meaning.

Uniform matroids

- Recall $U_{n, r}$ has lattice of flats the truncation of the boolean lattice at rank r.
■ Some invariants of interest for $A\left(U_{n, r}\right)$ have combinatorial meaning.

Theorem

The Hilbert series of $U_{n, n}$ is the Eulerian polynomial

$$
H\left(A\left(U_{n, n}\right), t\right)=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{exc}(\sigma)}
$$

Uniform matroids

■ For $r<n$, there are surjective maps

$$
\pi_{n, r}: A\left(U_{n, r+1}\right) \rightarrow A\left(U_{n, r}\right) .
$$

Uniform matroids

■ For $r<n$, there are surjective maps

$$
\pi_{n, r}: A\left(U_{n, r+1}\right) \rightarrow A\left(U_{n, r}\right)
$$

Theorem

For $E_{n, k}:=\left\{\sigma \in \mathbb{S}_{n}: \# \operatorname{fix}(\sigma) \geq k\right\}$, the Hilbert series of $K_{n, r}=\operatorname{ker}\left(\pi_{n, r}\right)$ is

$$
H\left(K_{n, r}, t\right)=\sum_{\sigma \in E_{n, n-r}} t^{r-\operatorname{exc}(\sigma)}
$$

Uniform matroids

■ For $r<n$, there are surjective maps

$$
\pi_{n, r}: A\left(U_{n, r+1}\right) \rightarrow A\left(U_{n, r}\right)
$$

Theorem

For $E_{n, k}:=\left\{\sigma \in \mathfrak{S}_{n}: \# \operatorname{fix}(\sigma) \geq k\right\}$, the Hilbert series of $K_{n, r}=\operatorname{ker}\left(\pi_{n, r}\right)$ is

$$
H\left(K_{n, r}, t\right)=\sum_{\sigma \in E_{n, n-r}} t^{r-\operatorname{exc}(\sigma)}
$$

- Can be used to characterize Hilbert series for $H\left(A\left(U_{n, r}\right), t\right)$ for all r.

Uniform matroids

- The Charney-Davis quantity of a graded ring R supported in finitely many degrees is $H(R,-1)$.

Uniform matroids

- The Charney-Davis quantity of a graded ring R supported in finitely many degrees is $H(R,-1)$.

Theorem

For odd r, the Charney-Davis quantity for the uniform matroid, $U_{n, r}$, of rank r and dimension n is

$$
\sum_{k=0}^{\frac{r-1}{2}}\binom{n}{2 k} E_{2 k}
$$

where $E_{2 \ell}$ is the ℓ-th secant number, i.e.

$$
\operatorname{sech}(t)=\sum_{\ell \geq 0} E_{2 \ell} \frac{t^{2 \ell}}{(2 \ell)!}
$$

q-analogs of uniform matroids: $M_{r}\left(\mathbb{F}_{q}^{n}\right)$

- The lattice of flats of $M_{r}\left(\mathbb{F}_{q}^{n}\right)$ is the lattice of dimension $\leq r$ subspaces in \mathbb{F}_{q}^{n}.

q-analogs of uniform matroids: $M_{r}\left(\mathbb{F}_{q}^{n}\right)$

- The lattice of flats of $M_{r}\left(\mathbb{F}_{q}^{n}\right)$ is the lattice of dimension $\leq r$ subspaces in \mathbb{F}_{q}^{n}.
■ Have q-analogues of each piece of data for uniform matroid.

q-analogs of uniform matroids: $M_{r}\left(\mathbb{F}_{q}^{n}\right)$

- The lattice of flats of $M_{r}\left(\mathbb{F}_{q}^{n}\right)$ is the lattice of dimension $\leq r$ subspaces in \mathbb{F}_{q}^{n}.
■ Have q-analogues of each piece of data for uniform matroid.
Theorem
The Hilbert series of $M\left(\mathbb{F}_{q}^{n}\right)$ is

$$
H\left(A\left(M\left(\mathbb{F}_{q}^{n}\right)\right), t\right)=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\sigma)-\operatorname{exc}(\sigma)} t^{\operatorname{exc}(\sigma)}
$$

q-analogs of uniform matroids: $M_{r}\left(\mathbb{F}_{q}^{n}\right)$

- There are again surjective maps

$$
\pi_{n, r}: A\left(M_{r+1}\left(\mathbb{F}_{q}^{n}\right)\right) \rightarrow A\left(M_{r}\left(\mathbb{F}_{q}^{n}\right)\right)
$$

Theorem

The Hilbert series of $K_{n, r}=\operatorname{ker}\left(\pi_{n, r}\right)$ is

$$
H\left(A\left(M_{r}\left(\mathbb{F}_{q}^{n}\right)\right), t\right)=\sum_{\sigma \in E_{n, n-r}} q^{\operatorname{maj}(\sigma)-\operatorname{exc}(\sigma)} t^{r-\operatorname{exc}(\sigma)}
$$

q-analogs of uniform matroids: $M_{r}\left(\mathbb{F}_{q}^{n}\right)$

- Let $\cosh _{q}(t)=\sum_{n \geq 0} \frac{t^{2 n}}{[2 n]]_{q}!}$ and $\operatorname{sech}_{q}(t)=1 / \cosh _{q}(t)$.

Theorem

For odd r, the Charney Davis quantity of $A\left(M_{r}\left(\mathbb{F}_{q}^{n}\right)\right)$ is

$$
\sum_{k=0}^{\frac{r-1}{2}}\binom{n}{2 k} E_{2 k, q}
$$

where $E_{2 \ell, q}$ satisfies

$$
\operatorname{sech}_{q}(t)=\sum_{\ell \geq 0} E_{2 \ell, q} \frac{t^{2 \ell}}{[2 \ell]_{q}!}
$$

Beyond matroids

Question: Why look at only matroids? Is the Chow ring still nice for more general lattices?

Beyond matroids

Question: Why look at only matroids? Is the Chow ring still nice for more general lattices?

- If L is an atomic lattice with atoms E, let

$$
d(x, y):=\min \left\{\# S: S \subseteq E, x \vee \bigvee_{s \in S} s=y\right\}
$$

Beyond matroids

Question: Why look at only matroids? Is the Chow ring still nice for more general lattices?

- If L is an atomic lattice with atoms E, let

$$
d(x, y):=\min \left\{\# S: S \subseteq E, x \vee \bigvee_{s \in S} s=y\right\}
$$

■ If $d(x, y)=\mathrm{rk}(y)-\mathrm{rk}(x)$, then we get Poincaré duality.

Beyond matroids

Question: Why look at only matroids? Is the Chow ring still nice for more general lattices?

- If L is an atomic lattice with atoms E, let

$$
d(x, y):=\min \left\{\# S: S \subseteq E, x \vee \bigvee_{s \in S} s=y\right\}
$$

- If $d(x, y)=\mathrm{rk}(y)-\mathrm{rk}(x)$, then we get Poincaré duality.
- Can also generalize some early lemmas needed for hard Leftschetz, etc.

Experimental results

Experimentally, the following have symmetric Hilbert series:

- Polytope face lattices
- Simplicial complexes

■ Convex closure lattices

- Various manual examples

Experimental results

Experimentally, the following have symmetric Hilbert series:

- Polytope face lattices
- Simplicial complexes

■ Convex closure lattices

- Various manual examples

Conjecture

All Chow rings of ranked atomic lattices exhibit Poincaré duality.

Experimental results

Experimentally, the following have symmetric Hilbert series:
■ Polytope face lattices

- Simplicial complexes

■ Convex closure lattices
■ Various manual examples

Conjecture

All Chow rings of ranked atomic lattices exhibit Poincaré duality.
Suggestions for strange families of ranked atomic lattices welcome.

Geometry?

■ Experimentally, f-polynomial determines the Hilbert series of the Chow ring of a face lattice

Geometry?

- Experimentally, f-polynomial determines the Hilbert series of the Chow ring of a face lattice
- $H\left(A\left(U_{n, n}\right), t\right)$ is the h-polynomial of $\Delta\left(B_{n}\right)$.

Geometry?

- Experimentally, f-polynomial determines the Hilbert series of the Chow ring of a face lattice
- $H\left(A\left(U_{n, n}\right), t\right)$ is the h-polynomial of $\Delta\left(B_{n}\right)$.

Conjecture

$$
h\left(\Delta\left(L\left(U_{n, r}\right)\right), t\right)=t^{2} \sum_{i=1}^{r}\binom{n-i-1}{r-i} H\left(A\left(U_{n, i}\right), t\right)
$$

Further further work

- In what generality do AHK's results hold?

■ Investigate Koszulity. No obstructions yet.
■ Eigenvalues, normal forms of ample elements?

- More basic operations on matroids and lattices: what happens to the Chow ring?

Thanks!

■ Thank you to Vic Reiner, Ben Strasser, Pasha Pylyavskyy, and all the other mentors and TAs for their advice and help, for good problems, and for a fun summer.
■ Also thank you to all the other REU students for being nice.
■ We are financially supported by NSF RTG grant DMS-1148634 and by NSF grant DMS-1351590.

