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Motivation

The Chow ring of a ranked atomic lattice L is a graded ring
denoted A(L).
The proof of the Heron-Rota-Welsh conjecture by
Adiprasito-Huh-Katz uses properties of A(L) when L is the
lattice of flats of a matroid M.
We are interested in combinatorial information about the
lattice L or the matroid M which can be determined from
A(L).

Example

L(Un,r ) = {A ⊆ [n] with #A ≤ r − 1}
L(Mr (Fn

q)) = {A ≤ Fn
q with dim A ≤ r − 1}

L(M(Kn)) = {partitions of [n]}



Definitions

Definition (Feichtner-Yuzvinsky 2004)

Let L be a ranked lattice with atoms a1, . . . , ak . The Chow ring of
L is

A(L) = Z[{xp : p ∈ L, p 6= ⊥}]/(I + J)
where

I = (xpxq : p and q are incomparable)

J =

∑
q≥ai

xq : 1 ≤ i ≤ k

 .

Theorem (Adiprasito-Huh-Katz 2015)

The Heron-Rota-Welsh conjecture is true.



Incidence algebra

Theorem (Feichtner-Yuzvinsky 2004)

H(A(L), t) = 1 +
∑

⊥=x0<x1<···<xm

m∏
i=1

t − trk xi−rk xi−1−1

1− t

Proposition
If η, γ ∈ (Q(t))[L] are given by

η(x , y) =
rk y−rk x−1∑

i=1
t i

and γ = (1− η)−1ζ, then H(A([x , y ]), t) = γ(x , y).

Proposition

γL×K = (1− t(1− γL)⊗ (1− γK ))−1(γL ⊗ γK ).



Differential operators and derivations

Motivation: What is H(A(L× B1), t)?

Observation: the FY formula for L× B1 is Leibniz rule-like.

Define new multiplicands; use them to get H(A(L), t, s)
H(A(L), t, 0) = H(A(L), t)

Proposition

H(A(L× B1), t, s) = (1 + ∂s)H(A(L), t, s)
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Applications of AHK results

Motivation:
Many families of lattices such that if L is in the family, then
[z ,>] is in the family too for all z ∈ L.

AHK gives isomorphisms relating Chow rings of these intervals
to the Chow ring of the whole

Theorem
Let L be a “nicely ranked” atomic lattice with rk L = r + 1 and
rk(z) = rk(z ′) =⇒ [z ,>] ∼= [z ′,>]. Let z2, . . . , zr−1 ∈ L with
rk(zi ) = i . Then
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Applications of AHK results

Motivation:
Many families of lattices such that if L is in the family, then
[z ,>] is in the family too for all z ∈ L.
AHK gives isomorphisms relating Chow rings of these intervals
to the Chow ring of the whole

Theorem (A better one!)

Let L be a “nicely ranked” atomic lattice with rk L = r + 1 and
rk(z) = rk(z ′) =⇒ [z ,>] ∼= [z ′,>]. Let z2, . . . , zr−1 ∈ L with
rk(zi ) = i . Then

H(A(L), t) = [r + 1]t + t
r∑

i=2
#Li [i − 1]tH([zi ,>], t)



Applications of AHK results: examples

Uniform:

H(Un,r+1, t) = [r + 1]t + t
r∑

i=2

(
n
i

)
[i − 1]t H(Un−i ,r+1−i , t).

Subspaces:

H
(
A
(
Mr+1(Fn

q)
)
, t
)

= [r+1]t+t
r∑

i=2
[i−1]t

[
n
i

]
q
H
(
A
(
Mr+1−i (Fn

q)
)
, t
)
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Uniform matroids

Recall Un,r has lattice of flats the truncation of the boolean
lattice at rank r .

Some invariants of interest for A(Un,r ) have combinatorial
meaning.

Theorem
The Hilbert series of Un,n is the Eulerian polynomial

H
(
A(Un,n), t

)
=
∑
σ∈Sn

texc(σ).
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Uniform matroids

For r < n, there are surjective maps
πn,r : A(Un,r+1)→ A(Un,r ).

Theorem
For En,k := {σ ∈ Sn : #fix(σ) ≥ k}, the Hilbert series of
Kn,r = ker(πn,r ) is

H(Kn,r , t) =
∑

σ∈En,n−r

tr−exc(σ)

Can be used to characterize Hilbert series for H(A(Un,r ), t)
for all r .
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Uniform matroids

The Charney-Davis quantity of a graded ring R supported in
finitely many degrees is H(R,−1).

Theorem
For odd r , the Charney-Davis quantity for the uniform matroid,
Un,r , of rank r and dimension n is

r−1
2∑

k=0

(
n

2k

)
E2k

where E2` is the `-th secant number, i.e.

sech(t) =
∑
`≥0

E2`
t2`

(2`)!
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q-analogs of uniform matroids: Mr (Fn
q)

The lattice of flats of Mr (Fn
q) is the lattice of dimension ≤ r

subspaces in Fn
q.

Have q-analogues of each piece of data for uniform matroid.

Theorem
The Hilbert series of M(Fn

q) is

H
(
A(M(Fn

q)), t
)

=
∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ).
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q-analogs of uniform matroids: Mr (Fn
q)

There are again surjective maps
πn,r : A(Mr+1(Fn

q))→ A(Mr (Fn
q)).

Theorem
The Hilbert series of Kn,r = ker(πn,r ) is

H
(
A(Mr (Fn

q)), t
)

=
∑

σ∈En,n−r

qmaj(σ)−exc(σ)tr−exc(σ).



q-analogs of uniform matroids: Mr (Fn
q)

Let coshq(t) =
∑
n≥0

t2n

[2n]q! and sechq(t) = 1/ coshq(t).

Theorem
For odd r , the Charney Davis quantity of A(Mr (Fn

q)) is

r−1
2∑

k=0

(
n

2k

)
E2k,q

where E2`,q satisfies

sechq(t) =
∑
`≥0

E2`,q
t2`

[2`]q!



Beyond matroids

Question: Why look at only matroids? Is the Chow ring still nice
for more general lattices?

If L is an atomic lattice with atoms E , let

d(x , y) := min

#S : S ⊆ E , x ∨
∨
s∈S

s = y


If d(x , y) = rk(y)− rk(x), then we get Poincaré duality.
Can also generalize some early lemmas needed for hard
Leftschetz, etc.
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Experimental results

Experimentally, the following have symmetric Hilbert series:
Polytope face lattices
Simplicial complexes
Convex closure lattices
Various manual examples

Conjecture
All Chow rings of ranked atomic lattices exhibit Poincaré duality.

Suggestions for strange families of ranked atomic lattices welcome.
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Geometry?

Experimentally, f -polynomial determines the Hilbert series of
the Chow ring of a face lattice

H(A(Un,n), t) is the h-polynomial of ∆(Bn).

Conjecture

h
(

∆(L(Un,r )), t
)

= t2
r∑

i=1

(
n − i − 1

r − i

)
H(A(Un,i ), t)
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Further further work

In what generality do AHK’s results hold?
Investigate Koszulity. No obstructions yet.
Eigenvalues, normal forms of ample elements?
More basic operations on matroids and lattices: what happens
to the Chow ring?
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