
Chapter 4
The Algebra–Geometry Dictionary

In this chapter, we will explore the correspondence between ideals and varieties.

In §§1 and 2, we will prove the Nullstellensatz, a celebrated theorem which iden-

tifies exactly which ideals correspond to varieties. This will allow us to construct a

“dictionary” between geometry and algebra, whereby any statement about varieties

can be translated into a statement about ideals (and conversely). We will pursue this

theme in §§3 and 4, where we will define a number of natural algebraic operations

on ideals and study their geometric analogues. In keeping with the computational

emphasis of the book, we will develop algorithms to carry out the algebraic op-

erations. In §§5 and 6, we will study the more important algebraic and geometric

concepts arising out of the Hilbert Basis Theorem: notably the possibility of decom-

posing a variety into a union of simpler varieties and the corresponding algebraic

notion of writing an ideal as an intersection of simpler ideals. In §7, we will prove

the Closure Theorem from Chapter 3 using the tools developed in this chapter.

§1 Hilbert’s Nullstellensatz

In Chapter 1, we saw that a variety V ⊆ kn can be studied by passing to the ideal

I(V) = { f ∈ k[x1, . . . , xn] | f (a) = 0 for all a ∈ V}

of all polynomials vanishing on V . Hence, we have a map

affine varieties

V
−→ ideals

I(V).

Conversely, given an ideal I ⊆ k[x1, . . . , xn], we can define the set

V(I) = {a ∈ kn | f (a) = 0 for all f ∈ I}.
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The Hilbert Basis Theorem assures us that V(I) is actually an affine variety, for

it tells us that there exists a finite set of polynomials f1, . . . , fs ∈ I such that I =
⟨ f1, . . . , fs⟩, and we proved in Proposition 9 of Chapter 2, §5 that V(I) is the set of

common roots of these polynomials. Thus, we have a map

ideals

I
−→ affine varieties

V(I).

These two maps give us a correspondence between ideals and varieties. In this chap-

ter, we will explore the nature of this correspondence.

The first thing to note is that this correspondence (more precisely, the map V) is

not one-to-one: different ideals can give the same variety. For example, ⟨x⟩ and ⟨x2⟩
are different ideals in k[x] which have the same variety V(x) = V(x2) = {0}. More

serious problems can arise if the field k is not algebraically closed. For example,

consider the three polynomials 1, 1 + x2, and 1 + x2 + x4 in R[x]. These generate

different ideals

I1 = ⟨1⟩ = R[x], I2 = ⟨1 + x2⟩, I3 = ⟨1 + x2 + x4⟩,

but each polynomial has no real roots, so that the corresponding varieties are all

empty:

V(I1) = V(I2) = V(I3) = ∅.
Examples of polynomials in two variables without real roots include 1+ x2 + y2 and

1 + x2 + y4. These give different ideals in R[x, y] which correspond to the empty

variety.

Does this problem of having different ideals represent the empty variety go away

if the field k is algebraically closed? It does in the one-variable case when the ring is

k[x]. To see this, recall from §5 of Chapter 1 that any ideal I in k[x] can be generated

by a single polynomial because k[x] is a principal ideal domain. So we can write

I = ⟨ f ⟩ for some polynomial f ∈ k[x]. Then V(I) is the set of roots of f ; i.e.,

the set of a ∈ k such that f (a) = 0. But since k is algebraically closed, every

nonconstant polynomial in k[x] has a root. Hence, the only way that we could have

V(I) = ∅ would be to have f be a nonzero constant. In this case, 1/f ∈ k. Thus,

1 = (1/f ) · f ∈ I, which means that g = g · 1 ∈ I for all g ∈ k[x]. This shows

that I = k[x] is the only ideal of k[x] that represents the empty variety when k is

algebraically closed.

A wonderful thing now happens: the same property holds when there is more than

one variable. In any polynomial ring, algebraic closure is enough to guarantee that

the only ideal which represents the empty variety is the entire polynomial ring itself.

This is the Weak Nullstellensatz, which is the basis of (and is equivalent to) one

of the most celebrated mathematical results of the late nineteenth century, Hilbert’s

Nullstellensatz. Such is its impact that, even today, one customarily uses the original

German name Nullstellensatz: a word formed, in typical German fashion, from three

simpler words: Null (= Zero), Stellen (= Places), Satz (= Theorem).
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Theorem 1 (The Weak Nullstellensatz). Let k be an algebraically closed field and

let I ⊆ k[x1, . . . , xn] be an ideal satisfying V(I) = ∅. Then I = k[x1, . . . , xn].

Proof. Our proof is inspired by GLEBSKY (2012). We will prove the theorem in

contrapositive form:

I ! k[x1, . . . , xn] =⇒ V(I) ̸= ∅.
We will make frequent use of the standard equivalence I = k[x1, . . . , xn] ⇔ 1 ∈ I.

This is part (a) of Exercise 16 from Chapter 1, §4.

Given a ∈ k and f ∈ k[x1, . . . , xn], let f̄ = f (x1, . . . , xn−1, a) ∈ k[x1, . . . , xn−1].
Similar to Exercise 2 of Chapter 3, §5 and Exercise 15 of Chapter 3, §6, the set

Ixn=a = { f̄ | f ∈ I}

is an ideal of k[x1, . . . , xn−1]. The key step in the proof is the following claim.

Claim. If k is algebraically closed and I ! k[x1, . . . , xn] is a proper ideal, then there

is a ∈ k such that Ixn=a ! k[x1, . . . , xn−1].

Once we prove the claim, an easy induction gives elements a1, . . . , an ∈ k such

that Ixn=an,...,x1=a1
! k. But the only ideals of k are {0} and k (Exercise 3), so that

Ixn=an,...,x1=a1
= {0}. This implies (a1, . . . , an) ∈ V(I). We conclude that V(I) ̸= ∅,

and the theorem will follow.

To prove the claim, there are two cases, depending on the size of I ∩ k[xn].

Case 1. I ∩ k[xn] ̸= {0}. Let f ∈ I ∩ k[xn] be nonzero, and note that f is nonconstant,

since otherwise 1 ∈ I ∩ k[xn] ⊆ I, contradicting I ̸= k[x1, . . . , xn].
Since k is algebraically closed, f = c

?r

i=1(xn−bi)
mi where c, b1, . . . , br ∈ k and

c ̸= 0. Suppose that Ixn=bi
= k[x1, . . . , xn−1] for all i. Then for all i there is Bi ∈ I

with Bi(x1, . . . , xn−1, bi) = 1. This implies that

1 = Bi(x1, . . . , xn−1, bi) = Bi(x1, . . . , xn−1, xn − (xn − bi)) = Bi + Ai(xn − bi)

for some Ai ∈ k[x1, . . . , xn]. Since this holds for i = 1, . . . , r, we obtain

1 =

r@

i=1

(Ai(xn − bi) + Bi)
mi = A

r@

i=1

(xn − bi)
mi + B,

where A =
?r

i=1 Ami

i and B ∈ I. This and
?r

i=1(xn − bi)
mi = c−1f ∈ I imply that

1 ∈ I, which contradicts I ̸= k[x1, . . . , xn]. Thus Ixn=bi
̸= k[x1, . . . , xn−1] for some i.

This bi is the desired a.

Case 2. I ∩ k[xn] = {0}. Let {g1, . . . , gt} be a Gröbner basis of I for lex order with

x1 > · · · > xn and write

(1) gi = ci(xn)x
αi + terms < xαi ,

where ci(xn) ∈ k[xn] is nonzero and xαi is a monomial in x1, . . . , xn−1.
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Now pick a ∈ k such that ci(a) ̸= 0 for all i. This is possible since algebraically

closed fields are infinite by Exercise 4. It is easy to see that the polynomials

ḡi = gi(x1, . . . , xn−1, a)

form a basis of Ixn=a (Exercise 5). Substituting xn = a into equation (1), one easily

sees that LT(ḡi) = ci(a)x
αi since ci(a) ̸= 0. Also note that xαi ̸= 1, since otherwise

gi = ci ∈ I ∩ k[xn] = {0}, yet ci ̸= 0. This shows that LT(ḡi) is nonconstant for all i.

We claim that the ḡi form a Gröbner basis of Ixn=a. Assuming the claim, it follows

that 1 /∈ Ixn=a since no LT(ḡi) can divide 1. Thus Ixn=a ̸= k[x1, . . . , xn−1], which is

what we want to show.

To prove the claim, take gi, gj ∈ G and consider the polynomial

S = cj(xn)
xγ

xαi
gi − ci(xn)

xγ

xαj
gj,

where xγ = lcm(xαi , xαj). By construction, xγ > LT(S) (be sure you understand

this). Since S ∈ I, it has a standard representation S =
"t

l=1 Algl. Then evaluating

at xn = a gives

cj(a)
xγ

xαi
ḡi − ci(a)

xγ

xαj
ḡj = S =

"t

l=1 Āl ḡl.

Since LT(ḡi) = ci(a)x
αi , we see that S is the S-polynomial S(ḡi, ḡj) up to the

nonzero constant ci(a)cj(a). Then

xγ > LT(S) ≥ LT(Algl), Algl ̸= 0

implies that

xγ > LT(Ālḡl), Ālḡl ̸= 0

(Exercise 6). Since xγ = lcm(LM(ḡi), LM(ḡj)), it follows that S(ḡi, ḡj) has an lcm

representation for all i, j and hence is a Gröbner basis by Theorem 6 of Chapter 2,

§9. This proves the claim and completes the proof of the theorem. !

In the special case when k = C, the Weak Nullstellensatz may be thought of

as the “Fundamental Theorem of Algebra for multivariable polynomials”—every

system of polynomials that generates an ideal strictly smaller than C[x1, . . . , xn] has

a common zero in Cn.

The Weak Nullstellensatz also allows us to solve the consistency problem from

§2 of Chapter 1. Recall that this problem asks whether a system

f1 = 0,

f2 = 0,
...

fs = 0
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of polynomial equations has a common solution in Cn. The polynomials fail to have

a common solution if and only if V( f1, . . . , fs) = ∅. By the Weak Nullstellensatz, the

latter holds if and only if 1 ∈ ⟨ f1, . . . , fs⟩. Thus, to solve the consistency problem,

we need to be able to determine whether 1 belongs to an ideal. This is made easy

by the observation that for any monomial ordering, {1} is the only reduced Gröbner

basis of the ideal ⟨1⟩ = k[x1, . . . , xn].
To see this, let {g1, . . . , gt} be a Gröbner basis of I = ⟨1⟩. Thus, 1 ∈ ⟨LT(I)⟩ =

⟨LT(g1), . . . , LT(gt)⟩, and then Lemma 2 of Chapter 2, §4 implies that 1 is divisible

by some LT(gi), say LT(g1). This forces LT(g1) to be constant. Then every other

LT(gi) is a multiple of that constant, so that g2, . . . , gt can be removed from the

Gröbner basis by Lemma 3 of Chapter 2, §7. Finally, since LT(g1) is constant, g1

itself is constant since every nonconstant monomial is > 1 (see Corollary 6 of

Chapter 2, §4). We can multiply by an appropriate constant to make g1 = 1. Our

reduced Gröbner basis is thus {1}.

To summarize, we have the following consistency algorithm: if we have poly-

nomials f1, . . . , fs ∈ C[x1, . . . , xn], we compute a reduced Gröbner basis of the ideal

they generate with respect to any ordering. If this basis is {1}, the polynomials have

no common zero in Cn; if the basis is not {1}, they must have a common zero. Note

that this algorithm works over any algebraically closed field.

If we are working over a field k which is not algebraically closed, then the con-

sistency algorithm still works in one direction: if {1} is a reduced Gröbner basis of

⟨ f1, . . . , fs⟩, then the equations f1 = · · · = fs = 0 have no common solution. The

converse is not true, as shown by the examples preceding the statement of the Weak

Nullstellensatz.

Inspired by the Weak Nullstellensatz, one might hope that the correspondence

between ideals and varieties is one-to-one provided only that one restricts to alge-

braically closed fields. Unfortunately, our earlier example V(x) = V(x2) = {0}
works over any field. Similarly, the ideals ⟨x2, y⟩ and ⟨x, y⟩ (and, for that matter,

⟨xn, ym⟩ where n and m are integers greater than one) are different but define the

same variety: namely, the single point {(0, 0)} ⊆ k2. These examples illustrate a

basic reason why different ideals can define the same variety (equivalently, that the

map V can fail to be one-to-one): namely, a power of a polynomial vanishes on the

same set as the original polynomial. The Hilbert Nullstellensatz states that over an

algebraically closed field, this is the only reason that different ideals can give the

same variety: if a polynomial f vanishes at all points of some variety V(I), then

some power of f must belong to I.

Theorem 2 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. If

f , f1, . . . , fs ∈ k[x1, . . . , xn], then f ∈ I(V( f1, . . . , fs)) if and only if

f m ∈ ⟨ f1, . . . , fs⟩

for some integer m ≥ 1.

Proof. Given a nonzero polynomial f which vanishes at every common zero of

the polynomials f1, . . . , fs, we must show that there exists an integer m ≥ 1 and
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polynomials A1, . . . ,As such that

f m =

s!

i=1

Ai fi.

The most direct proof is based on an ingenious trick. Consider the ideal

Ĩ = ⟨ f1, . . . , fs , 1 − yf ⟩ ⊆ k[x1, . . . , xn, y],

where f , f1, . . . , fs are as above. We claim that

V(Ĩ) = ∅.

To see this, let (a1, . . . , an, an+1) ∈ kn+1. Either

• (a1, . . . , an) is a common zero of f1, . . . , fs, or

• (a1, . . . , an) is not a common zero of f1, . . . , fs.

In the first case f (a1, . . . , an) = 0 since f vanishes at any common zero of f1, . . . , fs.

Thus, the polynomial 1 − yf takes the value 1 − an+1f (a1, . . . , an) = 1 ̸= 0 at

the point (a1, . . . , an, an+1). In particular, (a1, . . . , an, an+1) /∈ V(Ĩ). In the second

case, for some i, 1 ≤ i ≤ s, we must have fi(a1, . . . , an) = 0. Thinking of fi as

a function of n + 1 variables which does not depend on the last variable, we have

fi(a1, . . . , an, an+1) ̸= 0. In particular, we again conclude that (a1, . . . , an, an+1) /∈
V(Ĩ). Since (a1, . . . , an, an+1) ∈ kn+1 was arbitrary, we obtain V(Ĩ) = ∅, as claimed.

Now apply the Weak Nullstellensatz to conclude that 1 ∈ Ĩ. Hence

(2) 1 =
s!

i=1

pi(x1, . . . , xn, y) fi + q(x1, . . . , xn, y)(1 − yf )

for some polynomials pi, q ∈ k[x1, . . . , xn, y]. Now set y = 1/f (x1, . . . , xn). Then

relation (2) above implies that

(3) 1 =

s!

i=1

pi(x1, . . . , xn, 1/f ) fi.

Multiply both sides of this equation by a power f m, where m is chosen sufficiently

large to clear all the denominators. This yields

(4) f m =

s!

i=1

Ai fi,

for some polynomials Ai ∈ k[x1, . . . , xn], which is what we had to show. !
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EXERCISES FOR §1

1. Recall that V(y − x2, z − x3) is the twisted cubic in R3.

a. Show that V((y − x2)2 + (z − x3)2) is also the twisted cubic.
b. Show that any variety V(I) ⊆ Rn, I ⊆ R[x1, . . . , xn], can be defined by a single

equation (and hence by a principal ideal).

2. Let J = ⟨x2 + y2 − 1, y − 1⟩. Find f ∈ I(V(J)) such that f /∈ J.

3. Prove that {0} and k are the only ideals of a field k.

4. Prove that an algebraically closed field k must be infinite. Hint: Given n elements
a1, . . . , an of a field k, can you write down a nonconstant polynomial f ∈ k[x] with
the property that f (ai) = 1 for all i?

5. In the proof of Theorem 1, prove that Ixn=a = ⟨ḡ1, . . . , ḡt⟩.
6. In the proof of Theorem 1, let xδ be a monomial in x1, . . . , xn−1 satisfying xδ > LT( f )

for some f ∈ k[x1, . . . , xn]. Prove that xδ > LT( f̄ ), where f̄ = f (x1, . . . , xn−1, a).
7. In deducing Hilbert’s Nullstellensatz from the Weak Nullstellensatz, we made the sub-

stitution y = 1/f (x1, . . . , xn) to deduce relations (3) and (4) from (2). Justify this rigor-
ously. Hint: In what set is 1/f contained?

8. The purpose of this exercise is to show that if k is any field that is not algebraically closed,
then any variety V ⊆ kn can be defined by a single equation.

a. If g = a0xn + a1xn−1 + · · · + an−1x + an is a polynomial of degree n in x, define
the homogenization gh of g with respect to some variable y to be the polynomial
gh = a0xn + a1xn−1y + · · · + an−1xyn−1 + anyn. Show that g has a root in k if and
only if there is (a, b) ∈ k2 such that (a, b) ̸= (0, 0) and gh(a, b) = 0. Hint: Show that

gh(a, b) = bngh(a/b, 1) when b ̸= 0.
b. If k is not algebraically closed, show that there exists f ∈ k[x, y] such that the variety

defined by f = 0 consists of just the origin (0, 0) ∈ k2. Hint: Choose a polynomial in
k[x] with no root in k and consider its homogenization.

c. If k is not algebraically closed, show that for each integer l > 0 there exists f ∈
k[x1, . . . , xl] such that the only solution of f = 0 is the origin (0, . . . , 0) ∈ kl. Hint:
Use induction on l and part (b) above.

d. If W = V(g1, . . . , gs) is any variety in kn, where k is not algebraically closed, then
show that W can be defined by a single equation. Hint: Consider the polynomial
f (g1, . . . , gs) where f is as in part (c).

9. Let k be an arbitrary field and let S be the subset of all polynomials in k[x1, . . . , xn] that
have no zeros in kn. If I is any ideal in k[x1, . . . , xn] such that I ∩ S = ∅, show that
V(I) ̸= ∅. Hint: When k is not algebraically closed, use the previous exercise.

10. In Exercise 1, we encountered two ideals in R[x, y] that give the same nonempty variety.
Show that one of these ideals is contained in the other. Can you find two ideals in R[x, y],
neither contained in the other, which give the same nonempty variety? Can you do the
same for R[x]?

§2 Radical Ideals and the Ideal–Variety Correspondence

To further explore the relation between ideals and varieties, it is natural to recast

Hilbert’s Nullstellensatz in terms of ideals. Can we characterize the kinds of ideals

that appear as the ideal of a variety? In other words, can we identify those ideals that

consist of all polynomials which vanish on some variety V? The key observation is

contained in the following simple lemma.
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Lemma 1. Let V be a variety. If f m ∈ I(V), then f ∈ I(V).

Proof. Let a ∈ V. If f m ∈ I(V), then ( f (a))m = 0. But this can happen only if

f (a) = 0. Since a ∈ V was arbitrary, we must have f ∈ I(V). !

Thus, an ideal consisting of all polynomials which vanish on a variety V has the

property that if some power of a polynomial belongs to the ideal, then the polyno-

mial itself must belong to the ideal. This leads to the following definition.

Definition 2. An ideal I is radical if f m ∈ I for some integer m ≥ 1 implies that

f ∈ I.

Rephrasing Lemma 1 in terms of radical ideals gives the following statement.

Corollary 3. I(V) is a radical ideal.

On the other hand, Hilbert’s Nullstellensatz tells us that the only way that an

arbitrary ideal I can fail to be the ideal of all polynomials vanishing on V(I) is for

I to contain powers f m of polynomials f which are not in I—in other words, for I

to fail to be a radical ideal. This suggests that there is a one-to-one correspondence

between affine varieties and radical ideals. To clarify this and get a sharp statement,

it is useful to introduce the operation of taking the radical of an ideal.

Definition 4. Let I ⊆ k[x1, . . . , xn] be an ideal. The radical of I, denoted
√

I, is the

set

{ f | f m ∈ I for some integer m ≥ 1}.

Note that we always have I ⊆
√

I since f ∈ I implies f 1 ∈ I and, hence, f ∈
√

I

by definition. It is an easy exercise to show that an ideal I is radical if and only if

I =
√

I. A somewhat more surprising fact is that the radical of an ideal is always an

ideal. To see what is at stake here, consider, for example, the ideal J = ⟨x2, y3⟩ ⊆
k[x, y]. Although neither x nor y belongs to J, it is clear that x ∈

√
J and y ∈

√
J.

Note that (x · y)2 = x2y2 ∈ J since x2 ∈ J; thus, x · y ∈
√

J. It is less obvious that

x + y ∈
√

J. To see this, observe that

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 ∈ J

because x4, 4x3y, 6x2y2 ∈ J (they are all multiples of x2) and 4xy3, y4 ∈ J (because

they are multiples of y3). Thus, x+ y ∈
√

J. By way of contrast, neither xy nor x+ y

belong to J.

Lemma 5. If I is an ideal in k[x1, . . . , xn], then
√

I is an ideal in k[x1, . . . , xn] con-

taining I. Furthermore,
√

I is a radical ideal.

Proof. We have already shown that I ⊆
√

I. To show
√

I is an ideal, suppose f , g ∈√
I. Then there are positive integers m and l such that f m, gl ∈ I. In the binomial

expansion of ( f + g)m+l−1 every term has a factor f igj with i+ j = m+ l− 1. Since

either i ≥ m or j ≥ l, either f i or gj is in I, whence f igj ∈ I and every term in the
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binomial expansion is in I. Hence, ( f + g)m+l−1 ∈ I and, therefore, f + g ∈
√

I.

Finally, suppose f ∈
√

I and h ∈ k[x1, . . . , xn]. Then f m ∈ I for some integer m ≥ 1.

Since I is an ideal, we have (h · f )m = hmf m ∈ I. Hence, hf ∈
√

I. This shows that√
I is an ideal. In Exercise 4, you will show that

√
I is a radical ideal. !

We are now ready to state the ideal-theoretic form of the Nullstellensatz.

Theorem 6 (The Strong Nullstellensatz). Let k be an algebraically closed field. If

I is an ideal in k[x1, . . . , xn], then

I(V(I)) =
√

I.

Proof. We certainly have
√

I ⊆ I(V(I)) because f ∈
√

I implies that f m ∈ I for

some m. Hence, f m vanishes on V(I), which implies that f vanishes on V(I). Thus,

f ∈ I(V(I)).
Conversely, take f ∈ I(V(I)). Then, by definition, f vanishes on V(I). By

Hilbert’s Nullstellensatz, there exists an integer m ≥ 1 such that f m ∈ I. But this

means that f ∈
√

I. Since f was arbitrary, I(V(I)) ⊆
√

I, and we are done. !

It has become a custom, to which we shall adhere, to refer to Theorem 6 as the

Nullstellensatz with no further qualification. The most important consequence of

the Nullstellensatz is that it allows us to set up a “dictionary” between geometry and

algebra. The basis of the dictionary is contained in the following theorem.

Theorem 7 (The Ideal–Variety Correspondence). Let k be an arbitrary field.

(i) The maps

affine varieties
I−→ ideals

and

ideals
V−→ affine varieties

are inclusion-reversing, i.e., if I1 ⊆ I2 are ideals, then V(I1) ⊇ V(I2) and,

similarly, if V1 ⊆ V2 are varieties, then I(V1) ⊇ I(V2).
(ii) For any variety V,

V(I(V)) = V,

so that I is always one-to-one. On the other hand, any ideal I satisfies

V(
√

I) = V(I).

(iii) If k is algebraically closed, and if we restrict to radical ideals, then the maps

affine varieties
I−→ radical ideals

and

radical ideals
V−→ affine varieties

are inclusion-reversing bijections which are inverses of each other.
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Proof. (i) The proof will be covered in the exercises.

(ii) Let V = V( f1, . . . , fs) be an affine variety in kn. Since every f ∈ I(V)
vanishes on V , the inclusion V ⊆ V(I(V)) follows directly from the definition

of V. Going the other way, note that f1, . . . , fs ∈ I(V) by the definition of I,

and, thus, ⟨ f1, . . . , fs⟩ ⊆ I(V). Since V is inclusion-reversing, it follows that

V(I(V)) ⊆ V(⟨ f1, . . . , fs⟩) = V . This proves that V(I(V)) = V , and, consequently,

I is one-to-one since it has a left inverse. The final assertion of part (ii) is left as an

exercise.

(iii) Since I(V) is radical by Corollary 3, we can think of I as a function which

takes varieties to radical ideals. Furthermore, we already know V(I(V)) = V for

any variety V . It remains to prove I(V(I)) = I whenever I is a radical ideal. This is

easy: the Nullstellensatz tells us I(V(I)) =
√

I, and I being radical implies
√

I = I

(see Exercise 4). This gives the desired equality. Hence, V and I are inverses of

each other and, thus, define bijections between the set of radical ideals and affine

varieties. The theorem is proved. !

As a consequence of this theorem, any question about varieties can be rephrased

as an algebraic question about radical ideals (and conversely), provided that we are

working over an algebraically closed field. This ability to pass between algebra and

geometry will give us considerable power.

In view of the Nullstellensatz and the importance it assigns to radical ideals, it is

natural to ask whether one can compute generators for the radical from generators

of the original ideal. In fact, there are three questions to ask concerning an ideal

I = ⟨ f1, . . . , fs⟩:
• (Radical Generators) Is there an algorithm which produces a set {g1, . . . , gm} of

polynomials such that
√

I = ⟨g1, . . . , gm⟩?
• (Radical Ideal) Is there an algorithm which will determine whether I is radical?

• (Radical Membership) Given f ∈ k[x1, . . . , xn], is there an algorithm which will

determine whether f ∈
√

I?

The existence of these algorithms follows from the work of HERMANN (1926)

[see also MINES, RICHMAN, and RUITENBERG (1988) and SEIDENBERG (1974,

1984) for more modern expositions]. More practical algorithms for finding radicals

follow from the work of GIANNI, TRAGER and ZACHARIAS (1988), KRICK and

LOGAR (1991), and EISENBUD, HUNEKE and VASCONCELOS (1992). These algo-

rithms have been implemented in CoCoA, Singular, and Macaulay2, among others.

See, for example, Section 4.5 of GREUEL and PFISTER (2008).

For now, we will settle for solving the more modest radical membership problem.

To test whether f ∈
√

I, we could use the ideal membership algorithm to check

whether f m ∈ I for all integers m > 0. This is not satisfactory because we might have

to go to very large powers of m, and it will never tell us if f /∈
√

I (at least, not until

we work out a priori bounds on m). Fortunately, we can adapt the proof of Hilbert’s

Nullstellensatz to give an algorithm for determining whether f ∈
A
⟨ f1, . . . , fs⟩.

Proposition 8 (Radical Membership). Let k be an arbitrary field and let I =
⟨ f1, . . . , fs⟩ ⊆ k[x1, . . . , xn] be an ideal. Then f ∈

√
I if and only if the constant
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polynomial 1 belongs to the ideal Ĩ = ⟨ f1, . . . , fs, 1 − yf ⟩ ⊆ k[x1, . . . , xn, y], in

which case Ĩ = k[x1, . . . , xn, y].

Proof. From equations (2), (3), and (4) in the proof of Hilbert’s Nullstellensatz in

§1, we see that 1 ∈ Ĩ implies f m ∈ I for some m, which, in turn, implies f ∈
√

I.

Going the other way, suppose that f ∈
√

I. Then f m ∈ I ⊆ Ĩ for some m. But we

also have 1 − yf ∈ Ĩ, and, consequently,

1 = ymf m + (1 − ymf m) = ym · f m + (1 − yf ) · (1 + yf + · · ·+ ym−1f m−1) ∈ Ĩ,

as desired. !
Proposition 8, together with our earlier remarks on determining whether 1 be-

longs to an ideal (see the discussion of the consistency problem in §1), imme-

diately leads to the following radical membership algorithm: to determine if

f ∈
A

⟨ f1, . . . , fs⟩ ⊆ k[x1, . . . , xn], we compute a reduced Gröbner basis of the ideal

⟨ f1, . . . , fs, 1 − yf ⟩ ⊆ k[x1, . . . , xn, y] with respect to some ordering. If the result is

{1}, then f ∈
√

I. Otherwise, f /∈
√

I.

As an example, consider the ideal I = ⟨xy2 + 2y2, x4 − 2x2 + 1⟩ in k[x, y]. Let us

test if f = y − x2 + 1 lies in
√

I. Using lex order on k[x, y, z], one checks that the

ideal

Ĩ = ⟨xy2 + 2y2, x4 − 2x2 + 1, 1 − z(y − x2 + 1)⟩ ⊆ k[x, y, z]

has reduced Gröbner basis {1}. It follows that y − x2 + 1 ∈
√

I by Proposition 8.

Using the division algorithm, we can check what power of y − x2 + 1 lies in I:

y − x2 + 1
G
= y − x2 + 1,

(y − x2 + 1)2
G
= −2x2y + 2y,

(y − x2 + 1)3
G
= 0,

where G = {x4−2x2+1, y2} is a Gröbner basis of I with respect to lex order and pG

is the remainder of p on division by G. As a consequence, we see that (y−x2+1)3 ∈
I, but no lower power of y − x2 + 1 is in I (in particular, y − x2 + 1 /∈ I).

We can also see what is happening in this example geometrically. As a set,

V(I) = {(±1, 0)}, but (speaking somewhat imprecisely) every polynomial in I

vanishes to order at least 2 at each of the two points in V(I). This is visible from the

form of the generators of I if we factor them:

xy2 + 2y2 = y2(x + 2) and x4 − 2x2 + 1 = (x2 − 1)2.

Even though f = y − x2 + 1 also vanishes at (±1, 0), f only vanishes to order 1

there. We must take a higher power of f to obtain an element of I.

We will end this section with a discussion of the one case where we can compute

the radical of an ideal, which is when we are dealing with a principal ideal I =
⟨ f ⟩. A nonconstant polynomial f is said to be irreducible if it has the property that

whenever f = g · h for some polynomials g and h, then either g or h is a constant.

As noted in §2 of Appendix A, any nonconstant polynomial f can always be written
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as a product of irreducible polynomials. By collecting the irreducible polynomials

which differ by constant multiples of one another, we can write f in the form

f = cf a1

1 · · · f ar

r , c ∈ k,

where the fi’s, 1 ≤ i ≤ r, are distinct irreducible polynomials, meaning that fi and fj
are not constant multiples of one another whenever i ̸= j. Moreover, this expression

for f is unique up to reordering the fi’s and up to multiplying the fi’s by constant

multiples. (This unique factorization is Theorem 2 from Appendix A, §2.)

If we have f expressed as a product of irreducible polynomials, then it is easy to

write down the radical of the principal ideal generated by f .

Proposition 9. Let f ∈ k[x1, . . . , xn] and I = ⟨ f ⟩ be the principal ideal generated

by f . If f = cf a1

1 · · · f ar
r is the factorization of f into a product of distinct irreducible

polynomials, then √
I =

A
⟨ f ⟩ = ⟨ f1 f2 · · · fr⟩.

Proof. We first show that f1 f2 · · · fr belongs to
√

I. Let N be an integer strictly

greater than the maximum of a1, . . . , ar. Then

( f1 f2 · · · fr)
N = f N−a1

1 f N−a2

2 · · · f N−ar
r f

is a polynomial multiple of f . This shows that ( f1 f2 · · · fr)
N ∈ I, which implies that

f1 f2 · · · fr ∈
√

I. Thus ⟨ f1 f2 · · · fr⟩ ⊆
√

I.

Conversely, suppose that g ∈
√

I. Then there exists a positive integer M such

that gM ∈ I = ⟨ f ⟩, so that gM is a multiple of f and hence a multiple of each

irreducible factor fi of f . Thus, fi is an irreducible factor of gM . However, the unique

factorization of gM into distinct irreducible polynomials is the Mth power of the

factorization of g. It follows that each fi is an irreducible factor of g. This implies

that g is a polynomial multiple of f1 f2 · · · fr and, therefore, g is contained in the ideal

⟨ f1 f2 · · · fr⟩. The proposition is proved. !
In view of Proposition 9, we make the following definition:

Definition 10. If f ∈ k[x1, . . . , xn] is a polynomial, we define the reduction of f ,

denoted fred, to be the polynomial such that ⟨ fred⟩ =
A
⟨ f ⟩. A polynomial is said to

be reduced (or square-free) if f = fred.

Thus, fred is the polynomial f with repeated factors “stripped away.” So, for ex-

ample, if f = (x + y2)3(x − y), then fred = (x + y2)(x − y). Note that fred is only

unique up to a constant factor in k.

The usefulness of Proposition 9 is mitigated by the requirement that f be factored

into irreducible factors. We might ask if there is an algorithm to compute fred from f

without factoring f first. It turns out that such an algorithm exists.

To state the algorithm, we will need the notion of a greatest common divisor of

two polynomials.

Definition 11. Let f , g ∈ k[x1, . . . , xn]. Then h ∈ k[x1, . . . , xn] is called a greatest
common divisor of f and g, and denoted h = gcd( f , g), if
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(i) h divides f and g.

(ii) If p is any polynomial that divides both f and g, then p divides h.

It is easy to show that gcd( f , g) exists and is unique up to multiplication by a

nonzero constant in k (see Exercise 9). Unfortunately, the one-variable algorithm

for finding the gcd (i.e., the Euclidean Algorithm) does not work in the case of

several variables. To see this, consider the polynomials xy and xz in k[x, y, z]. Clearly,

gcd(xy, xz) = x. However, no matter what term ordering we use, dividing xy by xz

gives 0 plus remainder xy and dividing xz by xy gives 0 plus remainder xz. As a

result, neither polynomial “reduces” with respect to the other and there is no next

step to which to apply the analogue of the Euclidean Algorithm.

Nevertheless, there is an algorithm for calculating the gcd of two polynomials

in several variables. We defer a discussion of it until the next section after we have

studied intersections of ideals. For the purposes of our discussion here, let us assume

that we have such an algorithm. We also remark that given polynomials f1, . . . , fs ∈
k[x1, . . . , xn], one can define gcd( f1, f2, . . . , fs) exactly as in the one-variable case.

There is also an algorithm for computing gcd( f1, f2, . . . , fs).
Using this notion of gcd, we can now give a formula for computing the radical

of a principal ideal.

Proposition 12. Suppose that k is a field containing the rational numbers Q and let

I = ⟨ f ⟩ be a principal ideal in k[x1, . . . , xn] . Then
√

I = ⟨ fred⟩, where

fred =
f

gcd
6

f , ∂f

∂x1
, ∂f

∂x2
, . . . , ∂f

∂xn

( .

Proof. Writing f as in Proposition 9, we know that
√

I = ⟨ f1 f2 · · · fr⟩. Thus, it

suffices to show that

(1) gcd
0

f ,
∂f

∂x1

, . . . ,
∂f

∂xn

/
= f a1−1

1 f a2−1
2 · · · f ar−1

r .

We first use the product rule to note that

∂f

∂xj

= f a1−1
1 f a2−1

2 · · · f ar−1
r

0
a1

∂f1

∂xj

f2 · · · fr + · · ·+ ar f1 · · · fr−1

∂fr

∂xj

/
.

This proves that f a1−1
1 f a2−1

2 · · · f ar−1
r divides the gcd. It remains to show that for

each i, there is some
∂f

∂xj
which is not divisible by f ai

i .

Write f = f ai

i hi, where hi is not divisible by fi. Since fi is nonconstant, some

variable xj must appear in fi. The product rule gives us

∂f

∂xj

= f ai−1
i

0
a1

∂fi

∂xj

hi + fi
∂hi

∂xj

/
.

If this expression is divisible by f ai

i , then
∂fi
∂xj

hi must be divisible by fi. Since fi is

irreducible and does not divide hi, this forces fi to divide
∂fi
∂xj

. In Exercise 13, you
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will show that
∂fi
∂xj

is nonzero since Q ⊆ k and xj appears in fi. As
∂fi
∂xj

also has

smaller total degree than fi, it follows that fi cannot divide
∂fi
∂xj

. Consequently,
∂f

∂xj
is

not divisible by f ai

i , which proves (1), and the proposition follows. !

It is worth remarking that for fields which do not contain Q, the above formula

for fred may fail (see Exercise 13).

EXERCISES FOR §2

1. Given a field k (not necessarily algebraically closed), show that
@

⟨x2, y2⟩ = ⟨x, y⟩ and,

more generally, show that
@

⟨xn, ym⟩ = ⟨x, y⟩ for any positive integers n and m.

2. Let f and g be distinct nonconstant polynomials in k[x, y] and let I = ⟨ f 2, g3⟩. Is it

necessarily true that
√

I = ⟨ f , g⟩? Explain.

3. Show that ⟨x2 + 1⟩ ⊆ R[x] is a radical ideal, but that V(x2 + 1) is the empty variety.

4. Let I be an ideal in k[x1, . . . , xn], where k is an arbitrary field.

a. Show that
√

I is a radical ideal.
b. Show that I is radical if and only if I =

√
I.

c. Show that
@√

I =
√

I.

5. Prove that I and V are inclusion-reversing and that V(
√

I) = V(I) for any ideal I.

6. Let I be an ideal in k[x1, . . . , xn].

a. In the special case when
√

I = ⟨ f1, f2⟩, with f
mi
i ∈ I, prove that f m1+m2−1 ∈ I for all

f ∈
√

I.
b. Now prove that for any I, there exists a single integer m such that f m ∈ I for all

f ∈
√

I. Hint: Write
√

I = ⟨ f1, . . . , fs⟩.
7. Determine whether the following polynomials lie in the following radicals. If the answer

is yes, what is the smallest power of the polynomial that lies in the ideal?

a. Is x + y ∈
@

⟨x3, y3, xy(x + y)⟩?
b. Is x2 + 3xz ∈

@
⟨x + z, x2y, x − z2⟩?

8. Let f1 = y2 + 2xy − 1 and f2 = x2 + 1. Prove that ⟨ f1, f2⟩ is not a radical ideal. Hint:
What is f1 + f2?

9. Given f , g ∈ k[x1, . . . , xn], use unique factorization to prove that gcd( f , g) exists. Also
prove that gcd( f , g) is unique up to multiplication by a nonzero constant of k.

10. Prove the following ideal-theoretic characterization of gcd( f , g): given polynomials
f , g, h in k[x1, . . . , xn], then h = gcd( f , g) if and only if h is a generator of the small-
est principal ideal containing ⟨ f , g⟩ (i.e., if ⟨h⟩ ⊆ J, whenever J is a principal ideal such
that J ⊇ ⟨ f , g⟩).

11. Find a basis for the ideal

@
⟨x5 − 2x4 + 2x2 − x, x5 − x4 − 2x3 + 2x2 + x − 1⟩.

Compare with Exercise 17 of Chapter 1, §5.

12. Let f = x5+3x4y+3x3y2−2x4y2+x2y3−6x3y3−6x2y4+x3y4−2xy5+3x2y5+3xy6+y7 ∈
Q[x, y]. Compute

@
⟨ f ⟩.

13. A field k has characteristic zero if it contains the rational numbers Q; otherwise, k has
positive characteristic.

a. Let k be the field F2 from Exercise 1 of Chapter 1, §1. If f = x2
1 + · · · + x2

n ∈
F2[x1, . . . , xn], then show that

∂f

∂xi
= 0 for all i. Conclude that the formula given in

Proposition 12 may fail when the field is F2.
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b. Let k be a field of characteristic zero and let f ∈ k[x1, . . . , xn] be nonconstant. If the

variable xj appears in f , then prove that
∂f

∂xj
̸= 0. Also explain why

∂f

∂xj
has smaller

total degree than f .

14. Let J = ⟨xy, (x − y)x⟩. Describe V(J) and show that
√

J = ⟨x⟩.
15. Prove that I = ⟨xy, xz, yz⟩ is a radical ideal. Hint: If you divide f ∈ k[x, y, z] by xy, xz, yz,

what does the remainder look like? What does f m look like?
16. Let I ⊆ k[x1, . . . , xn] be an ideal. Assume that I has a Gröbner basis G = {g1, . . . , gt}

such that for all i, LT(gi) is square-free in the sense of Definition 10.

a. If f ∈
√

I, prove that LT( f ) is divisible by LT(gi) for some i. Hint: f m ∈ I.

b. Prove that I is radical. Hint: Use part (a) to show that G is a Gröbner basis of
√

I.
17. This exercise continues the line of thought begun in Exercise 16.

a. Prove that a monomial ideal in k[x1, . . . , xn] is radical if and only if its minimal gen-
erators are square-free.

b. Given an ideal I ⊆ k[x1, . . . , xn], prove that if ⟨LT(I)⟩ is radical, then I is radical.
c. Give an example to show that the converse of part (b) can fail.

§3 Sums, Products, and Intersections of Ideals

Ideals are algebraic objects and, as a result, there are natural algebraic operations

we can define on them. In this section, we consider three such operations: sum,

intersection, and product. These are binary operations: to each pair of ideals, they

associate a new ideal. We shall be particularly interested in two general questions

which arise in connection with each of these operations. The first asks how, given

generators of a pair of ideals, one can compute generators of the new ideals which

result on applying these operations. The second asks for the geometric significance

of these algebraic operations. Thus, the first question fits the general computational

theme of this book; the second, the general thrust of this chapter. We consider each

of the operations in turn.

Sums of Ideals

Definition 1. If I and J are ideals of the ring k[x1, . . . , xn], then the sum of I and J,

denoted I + J, is the set

I + J = { f + g | f ∈ I and g ∈ J}.

Proposition 2. If I and J are ideals in k[x1, . . . , xn], then I + J is also an ideal in

k[x1, . . . , xn]. In fact, I + J is the smallest ideal containing I and J. Furthermore, if

I = ⟨ f1, . . . , fr⟩ and J = ⟨g1, . . . , gs⟩, then I + J = ⟨ f1, . . . , fr, g1, . . . , gs⟩.

Proof. Note first that 0 = 0+0 ∈ I+J. Suppose h1, h2 ∈ I+J. By the definition of

I + J, there exist f1, f2 ∈ I and g1, g2 ∈ J such that h1 = f1 + g1, h2 = f2 + g2. Then,

after rearranging terms slightly, h1 + h2 = ( f1 + f2) + (g1 + g2). But f1 + f2 ∈ I

because I is an ideal and, similarly, g1 + g2 ∈ J, whence h1 + h2 ∈ I + J. To

check closure under multiplication, let h ∈ I + J and p ∈ k[x1, . . . , xn] be any



190 Chapter 4 The Algebra–Geometry Dictionary

polynomial. Then, as above, there exist f ∈ I and g ∈ J such that h = f + g. But

then p · h = p · ( f + g) = p · f + p · g. Now p · f ∈ I and p · g ∈ J because I and J

are ideals. Consequently, p · h ∈ I + J. This shows that I + J is an ideal.

If H is an ideal which contains I and J, then H must contain all elements f ∈ I

and g ∈ J. Since H is an ideal, H must contain all f + g, where f ∈ I, g ∈ J. In

particular, H ⊇ I + J. Therefore, every ideal containing I and J contains I + J and,

thus, I + J must be the smallest such ideal.

Finally, if I = ⟨ f1, . . . , fr⟩ and J = ⟨g1, . . . , gs⟩, then ⟨ f1, . . . , fr, g1, . . . , gs⟩ is

an ideal containing I and J, so that I + J ⊆ ⟨ f1, . . . , fr, g1, . . . , gs⟩. The reverse

inclusion is obvious, so that I + J = ⟨ f1, . . . , fr, g1, . . . , gs⟩. !

The following corollary is an immediate consequence of Proposition 2.

Corollary 3. If f1, . . . , fr ∈ k[x1, . . . , xn], then

⟨ f1, . . . , fr⟩ = ⟨ f1⟩+ · · ·+ ⟨ fr⟩.

To see what happens geometrically, let I = ⟨x2 + y⟩ and J = ⟨z⟩ be ideals in

R[x, y, z]. We have sketched V(I) and V(J) on the next page. Then I+J = ⟨x2+y, z⟩
contains both x2 + y and z. Thus, the variety V(I + J) must consist of those points

where both x2 + y and z vanish, i.e., it must be the intersection of V(I) and V(J).

z

y

x

↓
V(z)

←V(x2+y)

← V(x2+y,z)

The same line of reasoning generalizes to show that addition of ideals corresponds

geometrically to taking intersections of varieties.

Theorem 4. If I and J are ideals in k[x1, . . . , xn], then V(I + J) = V(I) ∩ V(J).

Proof. If a ∈ V(I+J), then a ∈ V(I) because I ⊆ I+J; similarly, a ∈ V(J). Thus,

a ∈ V(I) ∩ V(J) and we conclude that V(I + J) ⊆ V(I) ∩ V(J).
To get the opposite inclusion, suppose a ∈ V(I)∩V(J). Let h be any polynomial

in I + J. Then there exist f ∈ I and g ∈ J such that h = f + g. We have f (a) = 0

because a ∈ V(I) and g(a) = 0 because a ∈ V(J). Thus, h(a) = f (a) + g(a) =
0+ 0 = 0. Since h was arbitrary, we conclude that a ∈ V(I+ J). Hence, V(I + J) ⊇
V(I) ∩ V(J). !
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An analogue of Theorem 4 stated in terms of generators was given in Lemma 2

of Chapter 1, §2.

Products of Ideals

In Lemma 2 of Chapter 1, §2, we encountered the fact that an ideal generated by the

products of the generators of two other ideals corresponds to the union of varieties:

V( f1, . . . , fr) ∪ V(g1, . . . , gs) = V( figj, 1 ≤ i ≤ r, 1 ≤ j ≤ s).

Thus, for example, the variety V(xz, yz) corresponding to an ideal generated by the

product of the generators of the ideals, ⟨x, y⟩ and ⟨z⟩ in k[x, y, z] is the union of

V(x, y) (the z-axis) and V(z) [the (x, y)-plane]. This suggests the following defini-

tion.

Definition 5. If I and J are two ideals in k[x1, . . . , xn], then their product, denoted

I · J, is defined to be the ideal generated by all polynomials f · g where f ∈ I and

g ∈ J.

Thus, the product I · J of I and J is the set

I · J = { f1g1 + · · ·+ frgr | f1, . . . , fr ∈ I, g1, . . . , gr ∈ J, r a positive integer}.

To see that this is an ideal, note that 0 = 0 · 0 ∈ I · J. Moreover, it is clear that

h1, h2 ∈ I · J implies that h1 + h2 ∈ I · J. Finally, if h = f1g1 + · · ·+ frgr ∈ I · J and

p is any polynomial, then

ph = (pf1)g1 + · · ·+ (pfr)gr ∈ I · J

since pfi ∈ I for all i, 1 ≤ i ≤ r. Note that the set of products would not be an

ideal because it would not be closed under addition. The following easy proposition

shows that computing a set of generators for I · J given sets of generators for I and

J is completely straightforward.

Proposition 6. Let I = ⟨ f1, . . . , fr⟩ and J = ⟨g1, . . . , gs⟩. Then I · J is generated by

the set of all products of generators of I and J:

I · J = ⟨ figj | 1 ≤ i ≤ r, 1 ≤ j ≤ s⟩.

Proof. It is clear that the ideal generated by products figj of the generators is con-

tained in I · J. To establish the opposite inclusion, note that any polynomial in I · J

is a sum of polynomials of the form fg with f ∈ I and g ∈ J. But we can write f and

g in terms of the generators f1, . . . , fr and g1, . . . , gs, respectively, as

f = a1f1 + · · ·+ arfr, g = b1g1 + · · ·+ bsgs

for appropriate polynomials a1, . . . , ar, b1, . . . , bs. Thus, fg, and consequently any

sum of polynomials of this form, can be written as a sum
"

ij cij figj, where cij ∈
k[x1, . . . , xn]. !
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The following proposition guarantees that the product of ideals does indeed cor-

respond geometrically to the operation of taking the union of varieties.

Theorem 7. If I and J are ideals in k[x1, . . . , xn], then V(I · J) = V(I) ∪ V(J).

Proof. Let a ∈ V(I · J). Then g(a)h(a) = 0 for all g ∈ I and all h ∈ J. If g(a) = 0

for all g ∈ I, then a ∈ V(I). If g(a) ̸= 0 for some g ∈ I, then we must have h(a) = 0

for all h ∈ J. In either event, a ∈ V(I) ∪ V(J).
Conversely, suppose a ∈ V(I) ∪ V(J). Either g(a) = 0 for all g ∈ I or h(a) = 0

for all h ∈ J. Thus, g(a)h(a) = 0 for all g ∈ I and h ∈ J. Thus, f (a) = 0 for all

f ∈ I · J and, hence, a ∈ V(I · J). !

In what follows, we will often write the product of ideals as IJ rather than I · J.

Intersections of Ideals

The operation of forming the intersection of two ideals is, in some ways, even more

primitive than the operations of addition and multiplication.

Definition 8. The intersection I ∩ J of two ideals I and J in k[x1, . . . , xn] is the set

of polynomials which belong to both I and J.

As in the case of sums, the set of ideals is closed under intersections.

Proposition 9. If I and J are ideals in k[x1, . . . , xn], then I ∩ J is also an ideal.

Proof. Note that 0 ∈ I ∩ J since 0 ∈ I and 0 ∈ J. If f , g ∈ I ∩ J, then f + g ∈ I

because f , g ∈ I. Similarly, f + g ∈ J and, hence, f + g ∈ I ∩ J. Finally, to check

closure under multiplication, let f ∈ I ∩ J and h be any polynomial in k[x1, . . . , xn].
Since f ∈ I and I is an ideal, we have h · f ∈ I. Similarly, h · f ∈ J and, hence,

h · f ∈ I ∩ J. !

Note that we always have IJ ⊆ I∩J since elements of IJ are sums of polynomials

of the form fg with f ∈ I and g ∈ J. But the latter belongs to both I (since f ∈ I)

and J (since g ∈ J). However, IJ can be strictly contained in I ∩ J. For example,

if I = J = ⟨x, y⟩, then IJ = ⟨x2, xy, y2⟩ is strictly contained in I ∩ J = I = ⟨x, y⟩
(x ∈ I ∩ J, but x /∈ IJ).

Given two ideals and a set of generators for each, we would like to be able to

compute a set of generators for the intersection. This is much more delicate than the

analogous problems for sums and products of ideals, which were entirely straight-

forward. To see what is involved, suppose I is the ideal in Q[x, y] generated by the

polynomial f = (x + y)4(x2 + y)2(x − 5y) and let J be the ideal generated by the

polynomial g = (x + y)(x2 + y)3(x+ 3y). We leave it as an (easy) exercise to check

that

I ∩ J = ⟨(x + y)4(x2 + y)3(x − 5y)(x + 3y)⟩.
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This computation is easy precisely because we were given factorizations of f and g

into irreducible polynomials. In general, such factorizations may not be available. So

any algorithm which allows one to compute intersections will have to be powerful

enough to circumvent this difficulty.

Nevertheless, there is a nice trick that reduces the computation of intersections

to computing the intersection of an ideal with a subring (i.e., eliminating variables),

a problem which we have already solved. To state the theorem, we need a little no-

tation: if I is an ideal in k[x1, . . . , xn] and f (t) ∈ k[t] a polynomial in the single

variable t, then f (t)I denotes the ideal in k[x1, . . . , xn, t] generated by the set of poly-

nomials { f (t)·h | h ∈ I}. This is a little different from our usual notion of product in

that the ideal I and the ideal generated by f (t) in k[t] lie in different rings: in fact, the

ideal I ⊆ k[x1, . . . , xn] is not an ideal in k[x1, . . . , xn, t] because it is not closed un-

der multiplication by t. When we want to stress that a polynomial h ∈ k[x1, . . . , xn]
involves only the variables x1, . . . , xn, we write h = h(x). Along the same lines, if

we are considering a polynomial g in k[x1, . . . , xn, t] and we want to emphasize that

it can involve the variables x1, . . . , xn as well as t, we will write g = g(x, t). In terms

of this notation, f (t)I = ⟨ f (t)h(x) | h(x) ∈ I⟩. So, for example, if f (t) = t2 − t and

I = ⟨x, y⟩, then the ideal f (t)I in k[x, y, t] contains (t2 − t)x and (t2 − t)y. In fact, it is

not difficult to see that f (t)I is generated as an ideal by (t2 − t)x and (t2 − t)y. This

is a special case of the following assertion.

Lemma 10.
(i) If I is generated as an ideal in k[x1, . . . , xn] by p1(x), . . . , pr(x), then f (t)I is

generated as an ideal in k[x1, . . . , xn, t] by f (t) · p1(x), . . . , f (t) · pr(x).
(ii) If g(x, t) ∈ f (t)I and a is any element of the field k, then g(x, a) ∈ I.

Proof. To prove the first assertion, note that any polynomial g(x, t) ∈ f (t)I can be

expressed as a sum of terms of the form h(x, t) · f (t) · p(x) for h ∈ k[x1, . . . , xn, t]
and p ∈ I. But because I is generated by p1, . . . , pr the polynomial p(x) can be

expressed as a sum of terms of the form qi(x)pi(x), 1 ≤ i ≤ r. In other words,

p(x) =

r!

i=1

qi(x)pi(x).

Hence,

h(x, t) · f (t) · p(x) =

r!

i=1

h(x, t)qi(x)f (t)pi(x).

Now, for each i, 1 ≤ i ≤ r, h(x, t) · qi(x) ∈ k[x1, . . . , xn, t]. Thus, h(x, t) · f (t) · p(x)
belongs to the ideal in k[x1, . . . , xn, t] generated by f (t) ·p1(x), . . . , f (t) ·pr(x). Since

g(x, t) is a sum of such terms,

g(x, t) ∈ ⟨ f (t) · p1(x), . . . , f (t) · pr(x)⟩,

which establishes (i). The second assertion follows immediately upon substituting

a ∈ k for t. !
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Theorem 11. Let I, J be ideals in k[x1, . . . , xn]. Then

I ∩ J = (tI + (1 − t)J) ∩ k[x1, . . . , xn].

Proof. Note that tI + (1 − t)J is an ideal in k[x1, . . . , xn, t]. To establish the desired

equality, we use the usual strategy of proving containment in both directions.

Suppose f ∈ I ∩ J. Since f ∈ I, we have t · f ∈ tI. Similarly, f ∈ J implies

(1 − t) · f ∈ (1 − t)J. Thus, f = t · f + (1 − t) · f ∈ tI + (1 − t)J. Since I, J ⊆
k[x1, . . . , xn], we have f ∈ (tI + (1 − t)J) ∩ k[x1, . . . , xn]. This shows that I ∩ J ⊆
(tI + (1 − t)J) ∩ k[x1, . . . , xn].

To establish the opposite containment, take f ∈ (tI + (1 − t)J) ∩ k[x1, . . . , xn].
Then f (x) = g(x, t) + h(x, t), where g(x, t) ∈ tI and h(x, t) ∈ (1 − t)J. First

set t = 0. Since every element of tI is a multiple of t, we have g(x, 0) = 0. Thus,

f (x) = h(x, 0) and hence, f (x) ∈ J by Lemma 10. On the other hand, set t = 1 in the

relation f (x) = g(x, t)+h(x, t). Since every element of (1− t)J is a multiple of 1− t,

we have h(x, 1) = 0. Thus, f (x) = g(x, 1) and, hence, f (x) ∈ I by Lemma 10. Since

f belongs to both I and J, we have f ∈ I∩J. Thus, I∩J ⊇ (tI+(1−t)J)∩k[x1, . . . , xn]
and this completes the proof. !

The above result and the Elimination Theorem (Theorem 2 of Chapter 3, §1)

lead to the following algorithm for computing intersections of ideals: if I =
⟨ f1, . . . , fr⟩ and J = ⟨g1, . . . , gs⟩ are ideals in k[x1, . . . , xn], we consider the ideal

⟨t f1, . . . , t fr, (1 − t)g1, . . . , (1 − t)gs⟩ ⊆ k[x1, . . . , xn, t]

and compute a Gröbner basis with respect to lex order in which t is greater than

the xi. The elements of this basis which do not contain the variable t will form a

basis (in fact, a Gröbner basis) of I ∩ J. For more efficient calculations, one could

also use one of the orders described in Exercises 5 and 6 of Chapter 3, §1. An

algorithm for intersecting three or more ideals is described in Proposition 6.19 of

BECKER and WEISPFENNING (1993).

As a simple example of the above procedure, suppose we want to compute the

intersection of the ideals I = ⟨x2y⟩ and J = ⟨xy2⟩ in Q[x, y]. We consider the ideal

tI + (1 − t)J = ⟨tx2y, (1 − t)xy2⟩ = ⟨tx2y, txy2 − xy2⟩

in Q[t, x, y]. Computing the S-polynomial of the generators, we obtain tx2y2 −
(tx2y2 − x2y2) = x2y2. It is easily checked that {tx2y, txy2 − xy2, x2y2} is a Gröbner

basis of tI + (1 − t)J with respect to lex order with t > x > y. By the Elimination

Theorem, {x2y2} is a (Gröbner) basis of (tI + (1 − t)J) ∩Q[x, y]. Thus,

I ∩ J = ⟨x2y2⟩.

As another example, we invite the reader to apply the algorithm for computing in-

tersections of ideals to give an alternate proof that the intersection I ∩ J of the ideals

I = ⟨(x + y)4(x2 + y)2(x − 5y)⟩ and J = ⟨(x + y)(x2 + y)3(x + 3y)⟩
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in Q[x, y] is

I ∩ J = ⟨(x + y)4(x2 + y)3(x − 5y)(x + 3y)⟩.
These examples above are rather simple in that our algorithm applies to ideals which

are not necessarily principal, whereas the examples given here involve intersections

of principal ideals. We shall see a somewhat more complicated example in the exer-

cises.

We can generalize both of the examples above by introducing the following def-

inition.

Definition 12. A polynomial h ∈ k[x1, . . . , xn] is called a least common multiple
of f , g ∈ k[x1, . . . , xn] and denoted h = lcm( f , g) if

(i) f divides h and g divides h.

(ii) If f and g both divide a polynomial p, then h divides p.

For example,

lcm(x2y, xy2) = x2y2

and

lcm((x + y)4(x2 + y)2(x − 5y), (x + y)(x2 + y)3(x + 3y))

= (x + y)4(x2 + y)3(x − 5y)(x + 3y).

More generally, suppose f , g ∈ k[x1, . . . , xn] and let f = cf a1

1 . . . f ar
r and g =

c′gb1

1 . . . gbs
s be their factorizations into distinct irreducible polynomials. It may hap-

pen that some of the irreducible factors of f are constant multiples of those of g. In

this case, let us suppose that we have rearranged the order of the irreducible poly-

nomials in the expressions for f and g so that for some l, 1 ≤ l ≤ min(r, s), fi is a

constant (nonzero) multiple of gi for 1 ≤ i ≤ l and for all i, j > l, fi is not a constant

multiple of gj. Then it follows from unique factorization that

(1) lcm( f , g) = f
max(a1,b1)
1 · · · f

max(al,bl)
l · g

bl+1

l+1 · · · gbs

s · f
al+1

l+1 · · · f ar

r .

[In the case that f and g share no common factors, we have lcm( f , g) = f · g.] This,

in turn, implies the following result.

Proposition 13.
(i) The intersection I ∩ J of two principal ideals I, J ⊆ k[x1, . . . , xn] is a principal

ideal.

(ii) If I = ⟨ f ⟩, J = ⟨g⟩ and I ∩ J = ⟨h⟩, then

h = lcm( f , g).

Proof. The proof will be left as an exercise. !

This result, together with our algorithm for computing the intersection of two

ideals immediately gives an algorithm for computing the least common multiple
of two polynomials: to compute the least common multiple of two polynomials
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f , g ∈ k[x1, . . . , xn], we compute the intersection ⟨ f ⟩ ∩ ⟨g⟩ using our algorithm for

computing the intersection of ideals. Proposition 13 assures us that this intersection

is a principal ideal (in the exercises, we ask you to prove that the intersection of

principal ideals is principal) and that any generator of it is a least common multiple

of f and g.

This algorithm for computing least common multiples allows us to clear up a

point which we left unfinished in §2: namely, the computation of the greatest com-

mon divisor of two polynomials f and g. The crucial observation is the following.

Proposition 14. Let f , g ∈ k[x1, . . . , xn]. Then

lcm( f , g) · gcd( f , g) = fg.

Proof. This follows by expressing f and g as products of distinct irreducibles and

then using the remarks preceding Proposition 13, especially equation (1). You will

provide the details in Exercise 5. !
It follows immediately from Proposition 14 that

(2) gcd( f , g) =
f · g

lcm( f , g)
.

This gives an algorithm for computing the greatest common divisor of two poly-

nomials f and g. Namely, we compute lcm( f , g) using our algorithm for the least

common multiple and divide it into the product of f and g using the division algo-

rithm.

We should point out that the gcd algorithm just described is rather cumber-

some. In practice, more efficient algorithms are used [see DAVENPORT, SIRET and

TOURNIER (1993)].

Having dealt with the computation of intersections, we now ask what operation

on varieties corresponds to the operation of intersection on ideals. The following

result answers this question.

Theorem 15. If I and J are ideals in k[x1, . . . , xn], then V(I ∩ J) = V(I) ∪ V(J).

Proof. Let a ∈ V(I) ∪ V(J). Then a ∈ V(I) or a ∈ V(J). This means that either

f (a) = 0 for all f ∈ I or f (a) = 0 for all f ∈ J. Thus, certainly, f (a) = 0 for all

f ∈ I ∩ J. Hence, a ∈ V(I ∩ J). Hence, V(I) ∪ V(J) ⊆ V(I ∩ J).
On the other hand, note that since IJ ⊆ I ∩ J, we have V(I ∩ J) ⊆ V(IJ).

But V(IJ) = V(I) ∪ V(J) by Theorem 7, and we immediately obtain the reverse

inequality. !
Thus, the intersection of two ideals corresponds to the same variety as the prod-

uct. In view of this and the fact that the intersection is much more difficult to com-

pute than the product, one might legitimately question the wisdom of bothering with

the intersection at all. The reason is that intersection behaves much better with re-

spect to the operation of taking radicals: the product of radical ideals need not be

a radical ideal (consider IJ where I = J), but the intersection of radical ideals is

always a radical ideal. The latter fact is a consequence of the next proposition.
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Proposition 16. If I, J are any ideals, then

√
I ∩ J =

√
I ∩

√
J.

Proof. If f ∈
√

I ∩ J, then f m ∈ I ∩ J for some integer m > 0. Since f m ∈ I, we

have f ∈
√

I. Similarly, f ∈
√

J. Thus,
√

I ∩ J ⊆
√

I ∩
√

J.

For the reverse inclusion, take f ∈
√

I ∩
√

J. Then, there exist integers m, p > 0

such that f m ∈ I and f p ∈ J. Thus f m+p = f mf p ∈ I ∩ J, so f ∈
√

I ∩ J. !

EXERCISES FOR §3

1. Show that in Q[x, y], we have

⟨(x+y)4(x2+y)2(x−5y)⟩∩⟨(x+y)(x2+y)3(x +3y)⟩ = ⟨(x+y)4(x2+y)3(x −5y)(x+3y)⟩.

2. Prove formula (1) for the least common multiple of two polynomials f and g.

3. Prove assertion (i) of Proposition 13. In other words, show that the intersection of two
principal ideals is principal.

4. Prove assertion (ii) of Proposition 13. In other words, show that the least common multi-
ple of two polynomials f and g in k[x1, . . . , xn] is the generator of the ideal ⟨ f ⟩ ∩ ⟨g⟩.

5. Prove Proposition 14. In other words, show that the least common multiple of two poly-
nomials times the greatest common divisor of the same two polynomials is the product
of the polynomials. Hint: Use the remarks following the statement of Proposition 14.

6. Let I1, . . . , Ir and J be ideals in k[x1, . . . , xn]. Show the following:

a. (I1 + I2)J = I1J + I2J.
b. (I1 · · · Ir)

m = Im
1 · · · Im

r .

7. Let I and J be ideals in k[x1, . . . , xn], where k is an arbitrary field. Prove the following:

a. If Iℓ ⊆ J for some integer ℓ > 0, then
√

I ⊆
√

J.

b.
√

I + J =
@√

I +
√

J.

8. Let
f = x

4 + x
3
y + x

3
z

2 − x
2
y

2 + x
2
yz

2 − xy
3 − xy

2
z

2 − y
3
z

2

and
g = x

4 + 2x
3
z

2 − x
2
y

2 + x
2
z

4 − 2xy
2
z

2 − y
2
z

4.

a. Use a computer algebra program to compute generators for ⟨ f ⟩ ∩ ⟨g⟩ and
@

⟨ f ⟩⟨g⟩.
b. Use a computer algebra program to compute gcd( f , g).
c. Let p = x2 + xy+ xz+ yz and q = x2 − xy− xz+ yz. Use a computer algebra program

to calculate ⟨ f , g⟩ ∩ ⟨p, q⟩.
9. For an arbitrary field, show that

√
IJ =

√
I ∩ J. Give an example to show that the product

of radical ideals need not be radical. Also give an example to show that
√

IJ can differ

from
√

I
√

J.

10. If I is an ideal in k[x1, . . . , xn] and ⟨ f (t)⟩ is an ideal in k[t], show that the ideal f (t)I

defined in the text is the product of the ideal Ĩ generated by all elements of I in
k[x1, . . . , xn, t] and the ideal ⟨ f (t)⟩ generated by f (t) in k[x1, . . . , xn, t].

11. Two ideals I and J of k[x1, . . . , xn] are said to be comaximal if and only if I + J =
k[x1, . . . , xn].

a. Show that if k = C, then I and J are comaximal if and only if V(I)∩ V(J) = ∅. Give
an example to show that this is false in general.

b. Show that if I and J are comaximal, then IJ = I ∩ J.
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c. Is the converse to part (b) true? That is, if IJ = I ∩ J, does it necessarily follow that I
and J are comaximal? Proof or counterexample?

d. If I and J are comaximal, show that I and J2 are comaximal. In fact, show that Ir and
Js are comaximal for all positive integers r and s.

e. Let I1, . . . , Ir be ideals in k[x1, . . . , xn] and suppose that Ii and Ji =
A

j ̸=i
Ij are comax-

imal for all i. Show that

I
m
1 ∩ · · · ∩ I

m
r = (I1 · · · Ir)

m = (I1 ∩ · · · ∩ Ir)
m

for all positive integers m.

12. Let I, J be ideals in k[x1, . . . , xn] and suppose that I ⊆
√

J. Show that Im ⊆ J for some
integer m > 0. Hint: You will need to use the Hilbert Basis Theorem.

13. Let A be an m × n constant matrix and suppose that x = Ay, where we are thinking of
x ∈ km and y ∈ kn as column vectors of variables. Define a map

αA : k[x1, . . . , xm] −→ k[y1, . . . , yn]

by sending f ∈ k[x1, . . . , xm] to αA( f ) ∈ k[y1, . . . , yn], where αA( f ) is the polynomial
defined by αA( f )(y) = f (Ay).

a. Show that αA is k-linear, i.e., show that αA(r f +sg) = rαA( f )+sαA(g) for all r, s ∈ k
and all f , g ∈ k[x1, . . . , xn].

b. Show that αA( f · g) = αA( f ) · αA(g) for all f , g ∈ k[x1, . . . , xn]. (As we will see
in Definition 8 of Chapter 5, §2, a map between rings which preserves addition and
multiplication and also preserves the multiplicative identity is called a ring homomor-
phism. Since it is clear that αA(1) = 1, this shows that αA is a ring homomorphism.)

c. Show that the set { f ∈ k[x1, . . . , xm] | αA( f ) = 0} is an ideal in k[x1, . . . , xm]. [This
set is called the kernel of αA and denoted ker(αA).]

d. If I is an ideal in k[x1, . . . , xn], show that the set αA(I) = {αA( f ) | f ∈ I} need
not be an ideal in k[y1, . . . , yn]. [We will often write ⟨αA(I)⟩ to denote the ideal in
k[y1, . . . , yn] generated by the elements of αA(I)—it is called the extension of I to
k[y1, . . . , yn].]

e. If I′ is an ideal in k[y1, . . . , yn], set α−1
A (I′) = { f ∈ k[x1, . . . , xm] | αA( f ) ∈ I′}.

Show that α−1
A (I′) is an ideal in k[x1, . . . , xm] (often called the contraction of I′).

14. Let A and αA be as above and let K = ker(αA). Let I and J be ideals in k[x1, . . . , xm].
Show that:

a. I ⊆ J implies ⟨αA(I)⟩ ⊆ ⟨αA(J)⟩.
b. ⟨αA(I + J)⟩ = ⟨αA(I)⟩+ ⟨αA(J)⟩.
c. ⟨αA (IJ)⟩ = ⟨αA(I)⟩⟨αA(J)⟩.
d. ⟨αA(I ∩ J)⟩ ⊆ ⟨αA(I)⟩ ∩ ⟨αA(J)⟩, with equality if I ⊇ K or J ⊇ K and αA is onto.

e. ⟨αA(
√

I)⟩ ⊆
@

⟨αA(I)⟩ with equality if I ⊇ K and αA is onto.

15. Let A,αA, and K = ker(αA) be as above. Let I′ and J′ be ideals in k[y1, . . . , yn]. Show
that:

a. I′ ⊆ J′ implies α−1
A (I′) ⊆ α−1

A (J′).
b. α−1

A (I′ + J′) ⊇ α−1
A (I′) + α−1

A (J′), with equality if αA is onto.

c. α−1
A (I′J′) ⊇ (α−1

A (I′))(α−1
A (J′)), with equality if αA is onto and the right-hand side

contains K.
d. α−1

A (I′ ∩ J′) = α−1
A (I′) ∩ α−1

A (J′).

e. α−1
A (

√
I′) =

9
α−1

A (I′).
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§4 Zariski Closures, Ideal Quotients, and Saturations

We have already encountered a number of examples of sets which are not varieties.

Such sets arose very naturally in Chapter 3, where we saw that the projection of a

variety need not be a variety, and in the exercises in Chapter 1, where we saw that

the (set-theoretic) difference of varieties can fail to be a variety.

Whether or not a set S ⊆ kn is an affine variety, the set

I(S) = { f ∈ k[x1, . . . , xn] | f (a) = 0 for all a ∈ S}

is an ideal in k[x1, . . . , xn] (check this!). In fact, it is radical. By the ideal–variety cor-

respondence, V(I(S)) is a variety. The following proposition states that this variety

is the smallest variety that contains the set S.

Proposition 1. If S ⊆ kn, the affine variety V(I(S)) is the smallest variety that

contains S [in the sense that if W ⊆ kn is any affine variety containing S, then

V(I(S)) ⊆ W].

Proof. If W ⊇ S, then I(W) ⊆ I(S) because I is inclusion-reversing. But then

V(I(W)) ⊇ V(I(S)) because V also reverses inclusions. Since W is an affine variety,

V(I(W)) = W by Theorem 7 from §2, and the result follows. !

This proposition leads to the following definition.

Definition 2. The Zariski closure of a subset of affine space is the smallest affine

algebraic variety containing the set. If S ⊆ kn, the Zariski closure of S is denoted S

and is equal to V(I(S)).

We note the following properties of Zariski closure.

Lemma 3. Let S and T be subsets of kn. Then:

(i) I(S) = I(S).
(ii) If S ⊆ T, then S ⊆ T.

(iii) S ∪ T = S ∪ T.

Proof. For (i), the inclusion I(S) ⊆ I(S) follows from S ⊆ S. Going the other way,

f ∈ I(S) implies S ⊆ V( f ). Then S ⊆ S ⊆ V( f ) by Definition 2, so that f ∈ I(S).
The proofs of (ii) and (iii) will be covered in the exercises. !

A natural example of Zariski closure is given by elimination ideals. We can now

prove the first assertion of the Closure Theorem (Theorem 3 of Chapter 3, §2).

Theorem 4 (The Closure Theorem, first part). Assume k is algebraically closed.

Let V = V( f1, . . . , fs) ⊆ kn, and let πl : kn → kn−l be projection onto the last n − l

coordinates. If Il is the l-th elimination ideal Il = ⟨ f1, . . . , fs⟩ ∩ k[xl+1, . . . , xn], then

V(Il) is the Zariski closure of πl(V).
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Proof. In view of Proposition 1, we must show that V(Il) = V(I(πl(V))). By

Lemma 1 of Chapter 3, §2, we have πl(V) ⊆ V(Il). Since V(I(πl(V))) is the small-

est variety containing πl(V), it follows immediately that V(I(πl(V))) ⊆ V(Il).
To get the opposite inclusion, suppose f ∈ I(πl(V)), i.e., f (al+1, . . . , an) = 0 for

all (al+1, . . . , an) ∈ πl(V). Then, considered as an element of k[x1, x2, . . . , xn], we

certainly have f (a1, a2, . . . , an) = 0 for all (a1, . . . , an) ∈ V . By Hilbert’s Nullstel-

lensatz, f N ∈ ⟨ f1, . . . , fs⟩ for some integer N. Since f does not depend on x1, . . . , xl,

neither does f N , and we have f N ∈ ⟨ f1, . . . , fs⟩∩ k[xl+1, . . . , xn] = Il. Thus, f ∈
√

Il,

which implies I(πl(V)) ⊆
√

Il. It follows that V(Il) = V(
√

Il) ⊆ V(I(πl(V))), and

the theorem is proved. !

The conclusion of Theorem 4 can be stated as V(Il) = πl(V). In general, if V is a

variety, then we say that a subset S ⊆ V is Zariski dense in V if V = S, i.e., V is the

Zariski closure of S. is Thus Theorem 4 tells us that πl(V) is Zariski dense in V(Il)
when the field is algebraically closed.

One context in which we encountered sets that were not varieties was in taking

the difference of varieties. For example, let V = V(I) where I ⊆ k[x, y, z] is the

ideal ⟨xz, yz⟩ and W = V(J) where J = ⟨z⟩. Then we have already seen that V is

the union of the (x, y)-plane and the z-axis. Since W is the (x, y)-plane, V \W is the

z-axis with the origin removed [because the origin also belongs to the (x, y)-plane].

We have seen in Chapter 1 that this is not a variety. The z-axis [i.e., V(x, y)] is the

Zariski closure of V \ W.

We could ask if there is a general way to compute the ideal corresponding to

the Zariski closure V \ W of the difference of two varieties V and W. The answer

is affirmative, but it involves two new algebraic constructions on ideals called ideal

quotients and saturations.

We begin with the first construction.

Definition 5. If I, J are ideals in k[x1, . . . , xn], then I : J is the set

{ f ∈ k[x1, . . . , xn] | fg ∈ I for all g ∈ J}

and is called the ideal quotient (or colon ideal) of I by J.

So, for example, in k[x, y, z] we have

⟨xz, yz⟩ : ⟨z⟩ = { f ∈ k[x, y, z] | f · z ∈ ⟨xz, yz⟩}
= { f ∈ k[x, y, z] | f · z = Axz + Byz}
= { f ∈ k[x, y, z] | f = Ax + By}
= ⟨x, y⟩.

Proposition 6. If I, J are ideals in k[x1, . . . , xn], then the ideal quotient I : J is an

ideal in k[x1, . . . , xn] and I : J contains I.

Proof. To show I : J contains I, note that because I is an ideal, if f ∈ I, then fg ∈ I

for all g ∈ k[x1, . . . , xn] and, hence, certainly fg ∈ I for all g ∈ J. To show that I : J
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is an ideal, first note that 0 ∈ I : J because 0 ∈ I. Let f1, f2 ∈ I : J. Then f1g and f2g

are in I for all g ∈ J. Since I is an ideal ( f1+ f2)g = f1g+ f2g ∈ I for all g ∈ J. Thus,

f1 + f2 ∈ I : J. To check closure under multiplication is equally straightforward: if

f ∈ I : J and h ∈ k[x1, . . . , xn], then fg ∈ I and, since I is an ideal, hfg ∈ I for all

g ∈ J, which means that hf ∈ I : J. !

The algebraic properties of ideal quotients and methods for computing them will

be discussed later in the section. For now, we want to explore the relation between

ideal quotients and the Zariski closure of a difference of varieties.

Proposition 7.
(i) If I and J are ideals in k[x1, . . . , xn], then

V(I) = V(I + J) ∪ V(I : J).

(ii) If V and W are varieties kn, then

V = (V ∩ W) ∪ (V \ W).

(iii) In the situation of (i), we have

V(I) \ V(J) ⊆ V(I : J).

Proof. We begin with (ii). Since V contains V \ W and V is a variety, the smallest

variety containing V\W must be contained in V . Hence, V \ W ⊆ V. Since V∩W ⊆
V , we have (V ∩ W) ∪ (V \ W) ⊆ V .

To get the reverse containment, note that V = (V ∩W)∪ (V \W). Since V \W ⊆
V \ W , the desired inclusion V ⊆ (V ∩ W) ∪ V \ W follows immediately.

For (iii), we first claim that I : J ⊆ I(V(I) \ V(J)). For suppose that f ∈ I : J and

a ∈ V(I) \ V(J). Then fg ∈ I for all g ∈ J. Since a ∈ V(I), we have f (a)g(a) = 0

for all g ∈ J. Since a /∈ V(J), there is some g ∈ J such that g(a) ̸= 0. Hence,

f (a) = 0 for all a ∈ V(I) \V(J). Thus, f ∈ I(V(I) \V(J)), which proves the claim.

Since V reverses inclusions, we have V(I : J) ⊇ V(I(V(I) \ V(J))) = V(I) \ V(J).
Finally, for (i), note that V(I + J) = V(I) ∩ V(J) by Theorem 4 of §3. Then

applying (ii) with V = V(I) and W = V(J) gives

V(I) = V(I + J) ∪ V(I) \ V(J) ⊆ V(I + J) ∪ V(I : J),

where the inclusion follows from (iii). But I ⊆ I + J and I ⊆ I : J imply that

V(I + J) ⊆ V(I) and V(I : J) ⊆ V(I).

These inclusions give V(I + J) ∪ V(I : J) ⊆ V(I), and then we are done. !

In Proposition 7, note that V(I + J) from part (i) matches up with V ∩ W in

part (ii) since V(I + J) = V(I) ∩ V(J). So it is natural to ask if V(I : J) in part

(i) matches up with V \ W in part (ii). This is equivalent to asking if the inclusion

V(I) \ V(J) ⊆ V(I : J) in part (iii) is an equality.
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Unfortunately, this can fail, even when the field is algebraically closed. To see

what can go wrong, let I = ⟨x2(y − 1)⟩ and J = ⟨x⟩ in the polynomial ring C[x, y].
Then one easily checks that

V(I) = V(x) ∪ V(y − 1) = V(J) ∪ V(y − 1) ⊆ C2,

which is the union of the y-axis and the line y = 1. It follows without difficulty that

V(I) \ V(J) = V(y − 1). However, the ideal quotient is

I : J = ⟨x2(y − 1)⟩ : ⟨x⟩ = { f ∈ C[x, y] | f · x = Ax2(y − 1)}
= { f ∈ C[x, y] | f = Ax(y − 1)} = ⟨x(y − 1)⟩.

Then V(I : J) = V(x(y − 1)) = V(x) ∪ V(y − 1), which is strictly bigger than

V(I) \ V(J) = V(y − 1). In other words, the inclusion in part (iii) of Proposition 7

can be strict, even over an algebraically closed field.

However, if we replace J with J2, then a computation similar to the above gives

I : J2 = ⟨y − 1⟩, so that V(I : J2) = V(I) \ V(J). In general, higher powers may be

required, which leads to our second algebraic construction on ideals.

Definition 8. If I, J are ideals in k[x1, . . . , xn], then I : J∞ is the set

{ f ∈ k[x1, . . . , xn] | for all g ∈ J, there is N ≥ 0 such that fgN ∈ I}

and is called the saturation of I with respect to J.

Proposition 9. If I, J are ideals in k[x1, . . . , xn], then the saturation I : J∞ is an ideal

in k[x1, . . . , xn]. Furthermore:

(i) I ⊆ I : J ⊆ I : J∞.

(ii) I : J∞ = I : JN for all sufficiently large N.

(iii)
√

I : J∞ =
√

I : J.

Proof. First observe that J1 ⊆ J2 implies I : J2 ⊆ I : J1. Since JN+1 ⊆ JN for all N,

we obtain the ascending chain of ideals

(1) I ⊆ I : J ⊆ I : J2 ⊆ I : J3 ⊆ · · · .

By the ACC, there is N such that I : JN = I : JN+1 = · · · . We claim that I : J∞ =
I : JN . One inclusion is easy, for if f ∈ I : JN and g ∈ J, then gN ∈ JN . Hence,

fgN ∈ I, proving that f ∈ I : J∞. For the other inclusion, take f ∈ I : J∞ and let

J = ⟨g1, . . . , gs⟩. By Definition 8, f times a power of gi lies in I. If M is the largest

such power, then fgM
i ∈ I for i = 1, . . . , s. In the exercises, you will show that

JsM ⊆ ⟨gM
1 , . . . , gM

s ⟩.

This implies f J sM ⊆ I, so that f ∈ I : JsM. Then f ∈ I : JN since (1) stabilizes at N.

Part (ii) follows from the claim just proved, and I : J∞ = I : JN implies that I : J∞

is an ideal by Proposition 6. Note also that part (i) follows from (1) and part (ii) .
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For part (iii), we first show
√

I : J∞ ⊆
√

I : J. This is easy, for f ∈
√

I : J∞

implies f m ∈ I : J∞ for some m. Given g ∈ J, it follows that f mgN ∈ I for some N.

Then (fg)M ∈ I for M = max(m,N), so that fg ∈
√

I. Since this holds for all g ∈ J,

we conclude that f ∈
√

I : J.

For the opposite inclusion, take f ∈
√

I : J and write J = ⟨g1, . . . , gs⟩. Then

fgi ∈
√

I, so we can find M with f MgM
i ∈ I for all i. The argument from (ii) implies

f MJsM ⊆ I, so

f M ∈ I : JsM ⊆ I : J∞.

It follows that f ∈
√

I : J∞, and the proof is complete. !

Later in the section we will discuss further algebraic properties of saturations and

how to compute them. For now, we focus on their relation to geometry.

Theorem 10. Let I and J be ideals in k[x1, . . . , xn]. Then:

(i) V(I) = V(I + J) ∪ V(I : J∞).
(ii) V(I) \ V(J) ⊆ V(I : J∞).

(iii) If k is algebraically closed, then V(I : J∞) = V(I) \ V(J).

Proof. In the exercises, you will show that (i) and (ii) follow by easy modifications

of the proofs of parts (i) and (iii) of Proposition 7.

For (iii), suppose that k is algebraically closed. We first show that

(2) I(V(I) \ V(J)) ⊆
√

I : J.

Let f ∈ I(V(I) \ V(J)). If g ∈ J, then fg vanishes on V(I) because f vanishes on

V(I) \ V(J) and g on V(J). Thus, fg ∈ I(V(I)), so fg ∈
√

I by the Nullstellensatz.

Since this holds for all g ∈ J, we have f ∈
√

I : J, as claimed.

Since V is inclusion-reversing, (2) implies

V(
√

I : J) ⊆ V(I(V(I) \ V(J))) = V(I) \ V(J).

However, we also have

V(I : J∞) = V(
√

I : J∞) = V(
√

I : J),

where the second equality follows from part (iii) of Proposition 9. Combining the

last two displays, we obtain

V(I : J∞) ⊆ V(I) \ V(J).

Then (iii) follows immediately from this inclusion and (ii). !

When k is algebraically closed, Theorem 10 and Theorem 4 of §3 imply that the

decomposition

V(I) = V(I + J) ∪ V(I : J∞)

is precisely the decomposition
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V(I) = (V(I) ∩ V(J)) ∪ (V(I) \ V(J))

from part (ii) of Proposition 7. This shows that the saturation I : J∞ is the ideal-

theoretic analog of the Zariski closure V(I) \ V(J).
In some situations, saturations can be replaced with ideal quotients. For example,

the proof of Theorem 10 yields the following corollary when the ideal I is radical.

Corollary 11. Let I and J be ideals in k[x1, . . . , xn]. If k is algebraically closed and

I is radical, then

V(I : J) = V(I) \ V(J).

You will prove this in the exercises. Another nice fact (also covered in the exer-

cises) is that if k is arbitrary and V and W are varieties in kn, then

I(V) : I(W) = I(V \ W).

The following proposition takes care of some simple properties of ideal quotients

and saturations.

Proposition 12. Let I and J be ideals in k[x1, . . . , xn]. Then:

(i) I : k[x1, . . . , xn] = I : k[x1, . . . , xn]
∞ = I.

(ii) J ⊆ I if and only if I : J = k[x1, . . . , xn].
(iii) J ⊆

√
I if and only if I : J∞ = k[x1, . . . , xn].

Proof. The proof is left as an exercise. !
When the field is algebraically closed, the reader is urged to translate parts (i)

and (iii) of the proposition into terms of varieties (upon which they become clear).

The following proposition will help us compute ideal quotients and saturations.

Proposition 13. Let I and J1, . . . , Jr be ideals in k[x1, . . . , xn]. Then:

I :
0 r!

i=1

Ji

/
=

rB

i=1

6
I : Ji

(
,(3)

I :
0 r!

i=1

Ji

/∞
=

rB

i=1

6
I : J∞i

(
.(4)

Proof. We again leave the (straightforward) proofs to the reader. !
If f is a polynomial and I an ideal, we will often write I : f instead of I : ⟨ f ⟩, and

similarly I : f∞ instead of I : ⟨ f ⟩∞. Note that (3) and (4) imply that

(5) I : ⟨ f1, f2, . . . , fr⟩ =
rB

i=1

(I : fi) and I : ⟨ f1, f2, . . . , fr⟩∞ =

rB

i=1

(I : f∞i ).

We now turn to the question of how to compute generators of the ideal quotient

I : J and saturation I : J∞, given generators of I and J. Inspired by (5), we begin with

the case when J is generated by a single polynomial.



§4 Zariski Closures, Ideal Quotients, and Saturations 205

Theorem 14. Let I be an ideal and g an element of k[x1, . . . , xn]. Then:

(i) If {h1, . . . , hp} is a basis of the ideal I ∩⟨g⟩, then {h1/g, . . . , hp/g} is a basis of

I :g.

(ii) If { f1, . . . , fs} is a basis of I and Ĩ = ⟨ f1, . . . , fs, 1−yg⟩ ⊆ k[x1, . . . , xn, y], where

y is a new variable, then

I : g∞ = Ĩ ∩ k[x1, . . . , xn].

Furthermore, if G is a lex Gröbner basis of Ĩ for y > x1 > · · · > xn, then

G ∩ k[x1, . . . , xn] is a basis of I : g∞.

Proof. For (i), observe that if h ∈ ⟨g⟩, then h = bg for some polynomial b ∈
k[x1, . . . , xn]. Thus, if f ∈ ⟨h1/g, . . . , hp/g⟩, then

hf = bgf ∈ ⟨h1, . . . , hp⟩ = I ∩ ⟨g⟩ ⊆ I.

Thus, f ∈ I : g. Conversely, suppose f ∈ I :g. Then fg ∈ I. Since fg ∈ ⟨g⟩, we

have fg ∈ I ∩ ⟨g⟩. If I ∩ ⟨g⟩ = ⟨h1, . . . , hp⟩, this means fg =
"

rihi for some

polynomials ri. Since each hi ∈ ⟨g⟩, each hi/g is a polynomial, and we conclude

that f =
"

ri(hi/g), whence f ∈ ⟨h1/g, . . . , hp/g⟩.
The first assertion of (ii) is left as an exercise. Then the Elimination Theorem

from Chapter 3, §1 implies that G ∩ k[x1, . . . , xn] is a Gröbner basis of I : g∞. !

This theorem, together with our procedure for computing intersections of ideals

and equation (5), immediately leads to an algorithm for computing a basis of an
ideal quotient: given I = ⟨ f1, . . . , fr⟩ and J = ⟨g1, . . . , gs⟩, to compute a basis

of I : J, we first compute a basis for I : gi for each i. In view of Theorem 14, this

means computing a basis {h1, . . . , hp} of ⟨ f1, . . . , fr⟩ ∩ ⟨gi⟩. Recall that we do this

via the algorithm for computing intersections of ideals from §3. Using the division

algorithm, we divide each of basis element hj by gi to get a basis for I : gi by part (i)

of Theorem 14. Finally, we compute a basis for I : J by applying the intersection

algorithm s−1 times, computing first a basis for I : ⟨g1, g2⟩ = (I :g1)∩ (I : g2), then

a basis for I : ⟨g1, g2, g3⟩ = (I : ⟨g1, g2⟩) ∩ (I : g3), and so on.

Similarly, we have an algorithm for computing a basis of a saturation: given

I = ⟨ f1, . . . , fr⟩ and J = ⟨g1, . . . , gs⟩, to compute a basis of I : J∞, we first compute

a basis for I :g∞
i for each i using the method described in part (ii) of Theorem 14.

Then by (5), we need to intersect the ideals I :g∞
i , which we do as above by applying

the intersection algorithm s − 1 times.

EXERCISES FOR §4

1. Find the Zariski closure of the following sets:

a. The projection of the hyperbola V(xy − 1) in R2 onto the x-axis.

b. The boundary of the first quadrant in R2.
c. The set {(x, y) ∈ R2 | x2 + y2 ≤ 4}.

2. Complete the proof of Lemma 3. Hint: For part (iii), use Lemma 2 from Chapter 1, §2.

3. Let f = (x + y)2(x − y)(x + z2) and g = (x + z2)3(x − y)(z + y). Compute generators
for ⟨ f ⟩ : ⟨g⟩.
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4. Let I and J be ideals in k[x1, . . . , xn]. Show that if I is radical, then I : J is radical and

I : J = I :
√

J = I : J∞.

5. As in the proof of Proposition 9, assume J = ⟨g1, . . . , gs⟩. Prove that JsM ⊆⟨gM
1 , . . . , gM

s ⟩.
Hint: See the proof of Lemma 5 of §2.

6. Prove parts (i) and (ii) of Theorem 10. Hint: Adapt the proofs of parts (i) and (iii) of
Proposition 7.

7. Prove Corollary 11. Hint: Combine Theorem 10 and the Exercise 4. Another approach
would be look closely at the proof of Theorem 10 when I is radical.

8. Let V,W ⊆ kn be varieties. Prove that I(V) : I(W) = I(V \ W).
9. Prove Proposition 12 and find geometric interpretations of parts (i) and (iii)

10. Prove Proposition 13 and find a geometric interpretation of (4).

11. Prove I : g∞ = Ĩ ∩ k[x1, . . . , xn] from part (ii) of Theorem 14. Hint: See the proof of
Proposition 8 of §2.

12. Show that Proposition 8 of §2 is a corollary of Proposition 12 and Theorem 14.

13. An example mentioned in the text used I = ⟨x2(y − 1)⟩ and J = ⟨x⟩. Compute I : J∞

and explain how your answer relates to the discussion in the text.

14. Let I, J ⊆ k[x1, . . . , xn] be ideals. Prove that I : J∞ = I : J N if and only if I : J N =
I : J N+1. Then use this to describe an algorithm for computing the saturation I : J∞ based
on the algorithm for computing ideal quotients.

15. Show that N can be arbitrarily large in I : J∞ = I : J N . Hint: Look at I = ⟨xN(y − 1)⟩.
16. Let I, J,K ⊆ k[x1, . . . , xn] be ideals. Prove the following:

a. IJ ⊆ K if and only if I ⊆ K : J.
b. (I : J) :K = I : JK.

17. Given ideals I1, . . . , Ir, J ⊆ k[x1, . . . , xn], prove that
-Ar

i=1 Ii

.
: J =

Ar

i=1(Ii : J). Then
prove a similar result for saturations and give a geometric interpretation.

18. Let A be an m × n constant matrix and suppose that x = Ay. where we are thinking of
x ∈ km and y ∈ kn as column vectors of variables. As in Exercise 13 of §3, define a map

αA : k[x1, . . . , xm] −→ k[y1, . . . , yn]

by sending f ∈ k[x1, . . . , xm] to αA( f ) ∈ k[y1, . . . , yn], where αA( f ) is the polynomial
defined by αA( f )(y) = f (Ay).
a. Show that αA(I : J) ⊆ αA(I) :αA(J) with equality if I ⊇ ker(αA) and αA is onto.

b. Show that α−1
A (I′ : J′) = α−1

A (I′) :α−1
A (J′) when αA is onto.

§5 Irreducible Varieties and Prime Ideals

We have already seen that the union of two varieties is a variety. For example, in

Chapter 1 and in the last section, we considered V(xz, yz), which is the union of

a line and a plane. Intuitively, it is natural to think of the line and the plane as

“more fundamental” than V(xz, yz). Intuition also tells us that a line or a plane are

“irreducible” or “indecomposable” in some sense: they do not obviously seem to be

a union of finitely many simpler varieties. We formalize this notion as follows.

Definition 1. An affine variety V ⊆ kn is irreducible if whenever V is written in

the form V = V1 ∪ V2, where V1 and V2 are affine varieties, then either V1 = V or

V2 = V .



§5 Irreducible Varieties and Prime Ideals 207

Thus, V(xz, yz) is not an irreducible variety. On the other hand, it is not com-

pletely clear when a variety is irreducible. If this definition is to correspond to our

geometric intuition, it is clear that a point, a line, and a plane ought to be irreducible.

For that matter, the twisted cubic V(y − x2, z − x3) in R3 appears to be irreducible.

But how do we prove this? The key is to capture this notion algebraically: if we can

characterize ideals which correspond to irreducible varieties, then perhaps we stand

a chance of establishing whether a variety is irreducible.

The following notion turns out to be the right one.

Definition 2. An ideal I ⊆ k[x1, . . . , xn] is prime if whenever f , g ∈ k[x1, . . . , xn]
and fg ∈ I, then either f ∈ I or g ∈ I.

If we have set things up right, an irreducible variety will correspond to a prime

ideal and conversely. The following theorem assures us that this is indeed the case.

Proposition 3. Let V ⊆ kn be an affine variety. Then V is irreducible if and only if

I(V) is a prime ideal.

Proof. First, assume that V is irreducible and let fg ∈ I(V). Set V1 = V ∩V( f ) and

V2 = V∩V(g); these are affine varieties because an intersection of affine varieties is

a variety. Then fg ∈ I(V) easily implies that V = V1∪V2. Since V is irreducible, we

have either V = V1 or V = V2. Say the former holds, so that V = V1 = V ∩ V( f ).
This implies that f vanishes on V, so that f ∈ I(V). Thus, I(V) is prime.

Next, assume that I(V) is prime and let V = V1 ∪ V2. Suppose that V ̸= V1. We

claim that I(V) = I(V2). To prove this, note that I(V) ⊆ I(V2) since V2 ⊆ V . For

the opposite inclusion, first note that I(V) ! I(V1) since V1 ! V . Thus, we can pick

f ∈ I(V1) \ I(V). Now take any g ∈ I(V2). Since V = V1 ∪ V2, it follows that fg

vanishes on V , and, hence, fg ∈ I(V). But I(V) is prime, so that f or g lies in I(V).
We know that f /∈ I(V) and, thus, g ∈ I(V). This proves I(V) = I(V2), whence

V = V2 because I is one-to-one. Thus, V is an irreducible variety. !

It is an easy exercise to show that every prime ideal is radical. Then, using the

ideal-variety correspondence between radical ideals and varieties, we get the fol-

lowing corollary of Proposition 3.

Corollary 4. When k is algebraically closed, the functions I and V induce a one-

to-one correspondence between irreducible varieties in kn and prime ideals in

k[x1, . . . , xn].

As an example of how to use Proposition 3, let us prove that the ideal I(V) of the

twisted cubic is prime. Suppose that fg ∈ I(V). Since the curve is parametrized by

(t, t2, t3), it follows that, for all t,

f (t, t2, t3)g(t, t2, t3) = 0.

This implies that f (t, t2, t3) or g(t, t2, t3) must be the zero polynomial, so that f or

g vanishes on V . Hence, f or g lies in I(V), proving that I(V) is a prime ideal.
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By the proposition, the twisted cubic is an irreducible variety in R3. One proves

that a straight line is irreducible in the same way: first parametrize it, then apply the

above argument.

In fact, the above argument holds much more generally.

Proposition 5. If k is an infinite field and V ⊆ kn is a variety defined parametrically

x1 = f1(t1, . . . , tm),
...

xn = fn(t1, . . . , tm),

where f1, . . . , fn are polynomials in k[t1, . . . , tm], then V is irreducible.

Proof. As in §3 of Chapter 3, we let F : km → kn be defined by

F(t1, . . . , tm) = ( f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)).

Saying that V is defined parametrically by the above equations means that V is the

Zariski closure of F(km). In particular, I(V) = I(F(km)).
For any polynomial g ∈ k[x1, . . . , xn], the function g ◦ F is a polynomial in

k[t1, . . . , tm]. In fact, g ◦ F is the polynomial obtained by “plugging the polynomials

f1, . . . , fn into g”:

g ◦ F = g( f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)).

Because k is infinite, I(V) = I(F(km)) is the set of polynomials in k[x1, . . . , xn]
whose composition with F is the zero polynomial in k[t1, . . . , tm]:

I(V) = {g ∈ k[x1, . . . , xn] | g ◦ F = 0}.

Now suppose that gh ∈ I(V). Then (gh) ◦ F = (g ◦ F)(h ◦ F) = 0. (Make sure you

understand this.) But, if the product of two polynomials in k[t1, . . . , tm] is the zero

polynomial, one of them must be the zero polynomial. Hence, either g ◦ F = 0 or

h ◦ F = 0. This means that either g ∈ I(V) or h ∈ I(V). This shows that I(V) is a

prime ideal and, therefore, that V is irreducible. !
With a little care, the above argument extends still further to show that any variety

defined by a rational parametrization is irreducible.

Proposition 6. If k is an infinite field and V is a variety defined by the rational

parametrization

x1 =
f1(t1, . . . , tm)

g1(t1, . . . , tm)
,

...

xn =
fn(t1, . . . , tm)

gn(t1, . . . , tm)
,

where f1, . . . , fn, g1, . . . , gn ∈ k[t1, . . . , tm], then V is irreducible.
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Proof. Set W = V(g1g2 · · · gn) and let F : km \ W → kn defined by

F(t1, . . . , tm) =

&
f1(t1, . . . , tm)

g1(t1, . . . , tm)
, . . . ,

fn(tn, . . . , tm)

gn(t1, . . . , tm)

'
.

Then V is the Zariski closure of F(km \ W), which implies that I(V) is the set of

h ∈ k[x1, . . . , xn] such that the function h ◦ F is zero for all (t1, . . . , tm) ∈ km \ W.

The difficulty is that h ◦ F need not be a polynomial, and we, thus, cannot directly

apply the argument in the latter part of the proof of Proposition 5.

We can get around this difficulty as follows. Let h ∈ k[x1, . . . , xn]. Since

g1(t1, . . . , tm)g2(t1, . . . , tm) · · · gn(t1, . . . , tm) ̸= 0

for any (t1, . . . , tm) ∈ km \ W, the function (g1g2 · · · gn)
N(h ◦ F) is equal to zero

at precisely those values of (t1, . . . , tm) ∈ km \ W for which h ◦ F is equal to zero.

Moreover, if we let N be the total degree of h ∈ k[x1, . . . , xn], then we leave it as

an exercise to show that (g1g2 · · · gn)
N(h ◦ F) is a polynomial in k[t1, . . . , tm]. We

deduce that h ∈ I(V) if and only if (g1g2 · · · gn)
N(h ◦ F) is zero for all t ∈ km \ W.

But, by Exercise 11 of Chapter 3, §3, this happens if and only if (g1g2 · · · gn)
N(h◦F)

is the zero polynomial in k[t1, . . . , tm]. Thus, we have shown that

h ∈ I(V) if and only if (g1g2 · · · gn)
N(h ◦ F) = 0 ∈ k[t1, . . . , tm].

Now, we continue our proof that I(V) is prime. Suppose p, q ∈ k[x1, . . . , xn]
satisfy p · q ∈ I(V). If the total degrees of p and q are M and N, respectively, then

the total degree of p ·q is M+N. Thus, (g1g2 · · · gn)
M+N(p◦F) ·(q◦F) = 0. But the

former is a product of the polynomials (g1g2 · · · gn)
M(p◦F) and (g1g2 · · · gn)

N(q◦F)
in k[t1, . . . , tm]. Hence one of them must be the zero polynomial. In particular, either

p ∈ I(V) or q ∈ I(V). This shows that I(V) is a prime ideal and, therefore, that V is

an irreducible variety. !

The simplest variety in kn given by a parametrization consists of a single point,

{(a1, . . . , an)}. In the notation of Proposition 5, it is given by the parametrization in

which each fi is the constant polynomial fi(t1, . . . , tm) = ai, 1 ≤ i ≤ n. It is clearly

irreducible and it is easy to check that I({(a1, . . . , an)}) = ⟨x1−a1, . . . , xn−an⟩ (see

Exercise 7), which implies that the latter is prime. The ideal ⟨x1 − a1, . . . , xn − an⟩
has another distinctive property: it is maximal in the sense that the only ideal which

strictly contains it is the whole ring k[x1, . . . , xn]. Such ideals are important enough

to merit special attention.

Definition 7. An ideal I ⊆ k[x1, . . . , xn] is said to be maximal if I ̸= k[x1, . . . , xn]
and any ideal J containing I is such that either J = I or J = k[x1, . . . , xn].

In order to streamline statements, we make the following definition.

Definition 8. An ideal I ⊆ k[x1, . . . , xn] is said to be proper if I is not equal to

k[x1, . . . , xn].
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Thus, an ideal is maximal if it is proper and no other proper ideal strictly con-

tains it. We now show that any ideal of the form ⟨x1 − a1, . . . , xn − an⟩ is maximal.

Proposition 9. If k is any field, an ideal I ⊆ k[x1, . . . , xn] of the form

I = ⟨x1 − a1, . . . , xn − an⟩,

where a1, . . . , an ∈ k, is maximal.

Proof. Suppose that J is some ideal strictly containing I. Then there must exist

f ∈ J such that f /∈ I. We can use the division algorithm to write f as A1(x1 − a1) +
· · · + An(xn − an) + b for some b ∈ k. Since A1(x1 − a1) + · · ·+ An(xn − an) ∈ I

and f /∈ I, we must have b ̸= 0. However, since f ∈ J and since A1(x1 − a1) + · · ·+
An(xn − an) ∈ I ⊆ J, we also have

b = f − (A1(x1 − a1) + · · ·+ An(xn − an)) ∈ J.

Since b is nonzero, 1 = 1/b · b ∈ J, so J = k[x1, . . . , xn]. !

Since

V(x1 − a1, . . . , xn − an) = {(a1, . . . , an)},
every point (a1, . . . , an) ∈ kn corresponds to a maximal ideal of k[x1, . . . , xn],
namely ⟨x1 − a1, . . . , xn − an⟩. The converse does not hold if k is not algebraically

closed. In the exercises, we ask you to show that ⟨x2 + 1⟩ is maximal in R[x]. The

latter does not correspond to a point of R. The following result, however, holds in

any polynomial ring.

Proposition 10. If k is any field, a maximal ideal in k[x1, . . . , xn] is prime.

Proof. Suppose that I is a proper ideal which is not prime and let fg ∈ I, where

f /∈ I and g /∈ I. Consider the ideal ⟨ f ⟩ + I. This ideal strictly contains I because

f /∈ I. Moreover, if we were to have ⟨ f ⟩+I = k[x1, . . . , xn], then 1 = cf +h for some

polynomial c and some h ∈ I. Multiplying through by g would give g = cfg+hg ∈ I

which would contradict our choice of g. Thus, I + ⟨ f ⟩ is a proper ideal containing

I, so that I is not maximal. !

Note that Propositions 9 and 10 together imply that ⟨x1−a1, . . . , xn−an⟩ is prime

in k[x1, . . . , xn] even if k is not infinite. Over an algebraically closed field, it turns

out that every maximal ideal corresponds to some point of kn.

Theorem 11. If k is an algebraically closed field, then every maximal ideal of

k[x1, . . . , xn] is of the form ⟨x1 − a1, . . . , xn − an⟩ for some a1, . . . , an ∈ k.

Proof. Let I ⊆ k[x1, . . . , xn] be maximal. Since I ̸= k[x1, . . . , xn], we have

V(I) ̸= ∅ by the Weak Nullstellensatz (Theorem 1 of §1). Hence, there is some
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point (a1, . . . , an) ∈ V(I). This means that every f ∈ I vanishes at (a1, . . . , an), so

that f ∈ I({(a1, . . . , an)}). Thus, we can write

I ⊆ I({(a1, . . . , an)}).

We have already observed that I({(a1, . . . , an)}) = ⟨x1 − a1, . . . , xn − an⟩ (see

Exercise 7), and, thus, the above inclusion becomes

I ⊆ ⟨x1 − a1, . . . , xn − an⟩ ! k[x1, . . . , xn].

Since I is maximal, it follows that I = ⟨x1 − a1, . . . , xn − an⟩. !

Note the proof of Theorem 11 uses the Weak Nullstellensatz. It is not difficult to

see that it is, in fact, equivalent to the Weak Nullstellensatz.

We have the following easy corollary of Theorem 11.

Corollary 12. If k is an algebraically closed field, then there is a one-to-one corre-

spondence between points of kn and maximal ideals of k[x1, . . . , xn].

Thus, we have extended our algebra–geometry dictionary. Over an algebraically

closed field, every nonempty irreducible variety corresponds to a proper prime ideal,

and conversely. Every point corresponds to a maximal ideal, and conversely.

We can use Zariski closure to characterize when a variety is irreducible.

Proposition 13. A variety V is irreducible if and only if for every variety W ! V,

the difference V \ W is Zariski dense in V.

Proof. First assume that V is irreducible and take W ! V . Then Proposition 7 of §4

gives the decomposition V = W ∪ V \ W. Since V is irreducible and V ̸= W, this

forces V = V \ W.

For the converse, suppose that V = V1 ∪ V2. If V1 ! V , then V \ V1 = V . But

V \ V1 ⊆ V2, so that V \ V1 ⊆ V2. This implies V ⊆ V2, and V = V2 follows. !

Let us make a final comment about terminology. Some references, such as

HARTSHORNE (1977), use the term “variety” for what we call an irreducible variety

and say “algebraic set” instead of variety. When reading other books on algebraic

geometry, be sure to check the definitions!

EXERCISES FOR §5

1. If h ∈ k[x1, . . . , xn] has total degree N and if F is as in Proposition 6, show that

(g1g2 . . . gn)
N(h ◦ F) is a polynomial in k[t1, . . . , tm].

2. Show that a prime ideal is radical.

3. Show that an ideal I is prime if and only if for any ideals J and K such that JK ⊆ I, either
J ⊆ I or K ⊆ I.

4. Let I1, . . . , In be ideals and P a prime ideal containing
An

i=1
Ii. Then prove that P ⊇ Ii for

some i. Further, if P =
An

i=1
Ii, show that P = Ii for some i.

5. Express f = x2z − 6y4 + 2xy3z in the form f = f1(x, y, z)(x + 3) + f2(x, y, z)(y − 1) +
f3(x, y, z)(z − 2) for some f1, f2, f3 ∈ k[x, y, z].
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6. Let k be an infinite field.

a. Show that any straight line in kn is irreducible.
b. Prove that any linear subspace of kn is irreducible. Hint: Parametrize and use Propo-

sition 5.

7. Show that
I({(a1, . . . , an)}) = ⟨x1 − a1, . . . , xn − an⟩.

8. Show the following:

a. ⟨x2 + 1⟩ is maximal in R[x].
b. If I ⊆ R[x1, . . . , xn] is maximal, show that V(I) is either empty or a point in Rn. Hint:

Examine the proof of Theorem 11.
c. Give an example of a maximal ideal I in R[x1, . . . , xn] for which V(I) = ∅. Hint:

Consider the ideal ⟨x2
1 + 1, x2, . . . , xn⟩.

9. Suppose that k is a field which is not algebraically closed.

a. Show that if I ⊆ k[x1, . . . , xn] is maximal, then V(I) is either empty or a point in kn.
Hint: Examine the proof of Theorem 11.

b. Show that there exists a maximal ideal I in k[x1, . . . , xn] for which V(I) = ∅. Hint:
See the previous exercise.

c. Conclude that if k is not algebraically closed, there is always a maximal ideal of
k[x1, . . . , xn] which is not of the form ⟨x1 − a1, . . . , xn − an⟩.

10. Prove that Theorem 11 implies the Weak Nullstellensatz.

11. If f ∈ C[x1, . . . , xn] is irreducible, then V( f ) is irreducible. Hint: Show that ⟨ f ⟩ is prime.

12. Prove that if I is any proper ideal in C[x1, . . . , xn], then
√

I is the intersection of all
maximal ideals containing I. Hint: Use Theorem 11.

13. Let f1, . . . , fn ∈ k[x1] be polynomials of one variable and consider the ideal

I = ⟨ f1(x1), x2 − f2(x1), . . . , xn − fn(x1)⟩ ⊆ k[x1, . . . , xn].

We also assume that deg( f1) = m > 0.

a. Show that every f ∈ k[x1, . . . , xn] can be written uniquely as f = q + r where q ∈ I
and r ∈ k[x1] with either r = 0 or deg(r) < m. Hint: Use lex order with x1 last.

b. Let f ∈ k[x1]. Use part (a) to show that f ∈ I if and only if f is divisible by f1 in k[x1].
c. Prove that I is prime if and only if f1 ∈ k[x1] is irreducible.
d. Prove that I is radical if and only if f1 ∈ k[x1] is square-free.

e. Prove that
√

I = ⟨( f1)red⟩+ I, where (f1)red is defined in §2.

§6 Decomposition of a Variety into Irreducibles

In the last section, we saw that irreducible varieties arise naturally in many contexts.

It is natural to ask whether an arbitrary variety can be built up out of irreducibles. In

this section, we explore this and related questions.

We begin by translating the ascending chain condition (ACC) for ideals (see §5

of Chapter 2) into the language of varieties.

Proposition 1 (The Descending Chain Condition). Any descending chain of va-

rieties

V1 ⊇ V2 ⊇ V3 ⊇ · · ·
in kn must stabilize, meaning that there exists a positive integer N such that VN =
VN+1 = · · · .



§6 Decomposition of a Variety into Irreducibles 213

Proof. Passing to the corresponding ideals gives an ascending chain of ideals

I(V1) ⊆ I(V2) ⊆ I(V3) ⊆ · · · .

By the ascending chain condition for ideals (see Theorem 7 of Chapter 2, §5), there

exists N such that I(VN) = I(VN+1) = · · · . Since V(I(V)) = V for any variety V ,

we have VN = VN+1 = · · · . !

We can use Proposition 1 to prove the following basic result about the structure

of affine varieties.

Theorem 2. Let V ⊆ kn be an affine variety. Then V can be written as a finite union

V = V1 ∪ · · · ∪ Vm,

where each Vi is an irreducible variety.

Proof. Assume that V is an affine variety which cannot be written as a finite union

of irreducibles. Then V is not irreducible, so that V = V1 ∪ V ′
1, where V ̸= V1 and

V ̸= V ′
1. Further, one of V1 and V ′

1 must not be a finite union of irreducibles, for

otherwise V would be of the same form. Say V1 is not a finite union of irreducibles.

Repeating the argument just given, we can write V1 = V2∪V ′
2, where V1 ̸= V2,V1 ̸=

V ′
2, and V2 is not a finite union of irreducibles. Continuing in this way gives us an

infinite sequence of affine varieties

V ⊇ V1 ⊇ V2 ⊇ · · ·

with

V ̸= V1 ̸= V2 ̸= · · · .
This contradicts Proposition 1. !

As a simple example of Theorem 2, consider the variety V(xz, yz) which is a

union of a line (the z-axis) and a plane [the (x, y)-plane], both of which are irre-

ducible by Exercise 6 of §5. For a more complicated example of the decomposition

of a variety into irreducibles, consider the variety

V = V(xz − y2, x3 − yz).

A sketch of this variety appears at the top of the next page. The picture suggests that

this variety is not irreducible. It appears to be a union of two curves. Indeed, since

both xz − y2 and x3 − yz vanish on the z-axis, it is clear that the z-axis V(x, y) is

contained in V. What about the other curve V \ V(x, y)?
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By Corollary 11 of §4, this suggests looking at the ideal quotient

⟨xz − y2, x3 − yz⟩ : ⟨x, y⟩.

(At the end of the section we will see that ⟨xz − y2, x3 − yz⟩ is a radical ideal.) We

can compute this quotient using our algorithm for computing ideal quotients (make

sure you review this algorithm). By equation (5) of §4, the above is equal to

(I : x) ∩ (I : y),

where I = ⟨xz − y2, x3 − yz⟩. To compute I : x, we first compute I ∩ ⟨x⟩ using our

algorithm for computing intersections of ideals. Using lex order with z > y > x, we

obtain

I ∩ ⟨x⟩ = ⟨x2z − xy2, x4 − xyz, x3y − xz2, x5 − xy3⟩.
We can omit x5 − xy3 since it is a combination of the first and second elements in

the basis. Hence

(1)

I : x =
9x2z − xy2

x
,

x4 − xyz

x
,

x3y − xz2

x

:

= ⟨xz − y2, x3 − yz, x2y − z2⟩
= I + ⟨x2y − z2⟩.

Similarly, to compute I : ⟨y⟩, we compute

I ∩ ⟨y⟩ = ⟨xyz − y3, x3y − y2z, x2y2 − yz2⟩,
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which gives

I : y =
9xyz − y3

y
,

x3y − y2z

y
,

x2y2 − yz2

y

:

= ⟨xz − y2, x3 − yz, x2y − z2⟩
= I + ⟨x2y − z2⟩
= I : x.

(Do the computations using a computer algebra system.) Since I : x = I : y, we have

I : ⟨x, y⟩ = ⟨xz − y2, x3 − yz, x2y − z2⟩.

The variety W = V(xz−y2, x3−yz, x2y−z2) turns out to be an irreducible curve. To

see this, note that it can be parametrized as (t3, t4, t5) [it is clear that (t3, t4, t5) ∈ W

for any t—we leave it as an exercise to show every point of W is of this form], so

that W is irreducible by Proposition 5 of the last section. It then follows easily that

V = V(I) = V(x, y) ∪ V(I : ⟨x, y⟩) = V(x, y) ∪ W

(see Proposition 7 of §4), which gives decomposition of V into irreducibles.

Both in the above example and the case of V(xz, yz), it appears that the decom-

position of a variety into irreducible pieces is unique. It is natural to ask whether

this is true in general. It is clear that, to avoid trivialities, we must rule out decom-

positions in which the same irreducible piece appears more than once, or in which

one irreducible piece contains another. This is the aim of the following definition.

Definition 3. Let V ⊆ kn be an affine variety. A decomposition

V = V1 ∪ · · · ∪ Vm,

where each Vi is an irreducible variety, is called a minimal decomposition (or,

sometimes, an irredundant union) if Vi ̸⊆ Vj for i ̸= j. Also, we call the Vi the

irreducible components of V .

With this definition, we can now prove the following uniqueness result.

Theorem 4. Let V ⊆ kn be an affine variety. Then V has a minimal decomposition

V = V1 ∪ · · · ∪ Vm

(so each Vi is an irreducible variety and Vi ̸⊆ Vj for i ̸= j). Furthermore, this

minimal decomposition is unique up to the order in which V1, . . . ,Vm are written.

Proof. By Theorem 2, V can be written in the form V = V1 ∪ · · ·∪ Vm, where each

Vi is irreducible. Further, if a Vi lies in some Vj for i ̸= j, we can drop Vi, and V

will be the union of the remaining Vj’s for j ̸= i. Repeating this process leads to a

minimal decomposition of V .
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To show uniqueness, suppose that V = V ′
1 ∪ · · · ∪ V ′

l is another minimal decom-

position of V . Then, for each Vi in the first decomposition, we have

Vi = Vi ∩ V = Vi ∩ (V ′
1 ∪ · · · ∪ V ′

l ) = (Vi ∩ V ′
1) ∪ · · · ∪ (Vi ∩ V ′

l ).

Since Vi is irreducible, it follows that Vi = Vi∩V ′
j for some j, i.e., Vi ⊆ V ′

j . Applying

the same argument to V ′
j (using the Vi’s to decompose V) shows that V ′

j ⊆ Vk for

some k, and, thus,

Vi ⊆ V ′
j ⊆ Vk.

By minimality, i = k, and it follows that Vi = V ′
j . Hence, every Vi appears in

V = V ′
1 ∪ · · · ∪ V ′

l , which implies m ≤ l. A similar argument proves l ≤ m, and

m = l follows. Thus, the V ′
i ’s are just a permutation of the Vi’s, and uniqueness is

proved. !

The uniqueness part of Theorem 4 guarantees that the irreducible components

of V are well-defined. We remark that the uniqueness is false if one does not insist

that the union be finite. (A plane P is the union of all the points on it. It is also the

union of some line in P and all the points not on the line—there are infinitely many

lines in P with which one could start.) This should alert the reader to the fact that

although the proof of Theorem 4 is easy, it is far from vacuous: one makes subtle

use of finiteness (which follows, in turn, from the Hilbert Basis Theorem).

Here is a result that relates irreducible components to Zariski closure.

Proposition 5. Let V,W be varieties with W ! V. Then V \W is Zariski dense in V

if and only if W contains no irreducible component of V.

Proof. Suppose that V = V1 ∪ · · · ∪ Vm as in Theorem 4 and that Vi ̸⊆ W for all i.

This implies Vi∩W ! Vi, and since Vi is irreducible, we deduce Vi \ (Vi ∩ W) = Vi

by Proposition 13 of §5. Then

V \ W = (V1 ∪ · · · ∪ Vm) \ W = (V1 \ (V1 ∩ W)) ∪ · · · ∪ (Vm \ (Vm ∩ W))

= V1 \ (V1 ∩ W) ∪ · · · ∪ Vm \ (Vm ∩ W)

= V1 ∪ · · · ∪ Vm = V,

where the second line uses Lemma 3 of §4. The other direction of the proof will be

covered in the exercises. !

Theorems 2 and 4 can also be expressed purely algebraically using the one-to-one

correspondence between radical ideals and varieties.

Theorem 6. If k is algebraically closed, then every radical ideal in k[x1, . . . , xn]
can be written uniquely as a finite intersection of prime ideals P1 ∩ · · · ∩ Pr, where

Pi ̸⊆ Pj for i ̸= j. (As in the case of varieties, we often call such a presentation of a

radical ideal a minimal decomposition or an irredundant intersection).

Proof. Theorem 6 follows immediately from Theorems 2 and 4 and the ideal–

variety correspondence. !
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We can also use ideal quotients from §4 to describe the prime ideals that appear

in the minimal representation of a radical ideal.

Theorem 7. If k is algebraically closed and I is a proper radical ideal such that

I =
rB

i=1

Pi

is its minimal decomposition as an intersection of prime ideals, then the Pi’s are

precisely the proper prime ideals that occur in the set {I : f | f ∈ k[x1, . . . , xn]}.

Proof. First, note that since I is proper, each Pi is also a proper ideal (this follows

from minimality).

For any f ∈ k[x1, . . . , xn], we have

I : f =
0 rB

i=1

Pi

/
: f =

rB

i=1

(Pi : f )

by Exercise 17 of §4. Note also that for any prime ideal P, either f ∈ P, in which

case P : f = ⟨1⟩, or f /∈ P, in which case P : f = P (see Exercise 3).

Now suppose that I : f is a proper prime ideal. By Exercise 4 of §5, the above

formula for I : f implies that I : f = Pi : f for some i. Since Pi : f = Pi or ⟨1⟩ by the

above observation, it follows that I : f = Pi.

To see that every Pi can arise in this way, fix i and pick f ∈
6Cr

j̸=i Pj

(
\ Pi; such

an f exists because
Cr

i=1 Pi is minimal. Then Pi : f = Pi and Pj : f = ⟨1⟩ for j ̸= i. If

we combine this with the above formula for I : f , then it follows that I : f = Pi. !

We should mention that Theorems 6 and 7 hold for any field k, although the

proofs in the general case are different (see Corollary 10 of §8).

For an example of these theorems, consider the ideal I = ⟨xz−y2, x3−yz⟩. Recall

that the variety V = V(I) was discussed earlier in this section. For the time being,

let us assume that I is radical (eventually we will see that this is true). Can we write

I as an intersection of prime ideals?

We start with the geometric decomposition

V = V(x, y) ∪ W

proved earlier, where W = V(xz − y2, x3 − yz, x2y − z2). This suggests that

I = ⟨x, y⟩ ∩ ⟨xz − y2, x3 − yz, x2y − z2⟩,

which is straightforward to prove by the techniques we have learned so far (see

Exercise 4). Also, from equation (1), we know that I : x = ⟨xz−y2, x3−yz, x2y−z2⟩.
Thus,

I = ⟨x, y⟩ ∩ (I : x).
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To represent ⟨x, y⟩ as an ideal quotient of I, let us think geometrically. The idea is

to remove W from V . Of the three equations defining W, the first two give V. So it

makes sense to use the third one, x2y − z2, and one can check that I : (x2y − z2) =
⟨x, y⟩ (see Exercise 4). Thus,

(2) I = (I : (x2y − z2)) ∩ (I : x).

It remains to show that I : (x2y − z2) and I : x are prime ideals. The first is easy

since I : (x2y − z2) = ⟨x, y⟩ is obviously prime. As for the second, we have already

seen that W = V(xz − y2, x3 − yz, x2y − z2) is irreducible and, in the exercises,

you will show that I(W) = ⟨xz − y2, x3 − yz, x2y − z2⟩ = I : x. It follows from

Proposition 3 of §5 that I : x is a prime ideal. This completes the proof that (2) is the

minimal representation of I as an intersection of prime ideals. Finally, since I is an

intersection of prime ideals, we see that I is a radical ideal (see Exercise 1).

The arguments used in this example are special to the case I = ⟨xz− y2, x3 − yz⟩.
It would be nice to have more general methods that could be applied to any ideal.

Theorems 2, 4, 6, and 7 tell us that certain decompositions exist, but the proofs give

no indication of how to find them. The problem is that the proofs rely on the Hilbert

Basis Theorem, which is intrinsically nonconstructive. Based on what we have seen

in §§5 and 6, the following questions arise naturally:

• (Primality) Is there an algorithm for deciding if a given ideal is prime?

• (Irreducibility) Is there an algorithm for deciding if a given affine variety is irre-

ducible?

• (Decomposition) Is there an algorithm for finding the minimal decomposition of

a given variety or radical ideal?

The answer to all three questions is yes, and descriptions of the algorithms can

be found in the works of HERMANN (1926), MINES, RICHMAN, and RUITEN-

BERG (1988), and SEIDENBERG (1974, 1984). As in §2, the algorithms in these ar-

ticles are very inefficient. However, the work of GIANNI, TRAGER and ZACHARIAS

(1988) and EISENBUD, HUNEKE and VASCONCELOS (1992) has led to more effi-

cient algorithms. See also Chapter 8 of BECKER and WEISPFENNING (1993) and

§4.4 of ADAMS and LOUSTAUNAU (1994).

EXERCISES FOR §6

1. Show that the intersection of any collection of prime ideals is radical.

2. Show that an irredundant intersection of at least two prime ideals is never prime.

3. If P ⊆ k[x1, . . . , xn] is a prime ideal, then prove that P : f = P if f /∈ P and P : f = ⟨1⟩ if
f ∈ P.

4. Let I = ⟨xz − y2, x3 − yz⟩.
a. Show that I : (x2y − z2) = ⟨x, y⟩.
b. Show that I : (x2y − z2) is prime.

c. Show that I = ⟨x, y⟩ ∩ ⟨xz − y2, x3 − yz, z2 − x2y⟩.
5. Let J = ⟨xz − y2, x3 − yz, z2 − x2y⟩ ⊆ k[x, y, z], where k is infinite.

a. Show that every point of W = V(J) is of the form (t3, t4, t5) for some t ∈ k.
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b. Show that J = I(W). Hint: Compute a Gröbner basis for J using lex order with
z > y > x and show that every f ∈ k[x, y, z] can be written in the form

f = g + a + bz + xA(x) + yB(x) + y
2
C(x),

where g ∈ J, a, b ∈ k and A,B,C ∈ k[x].
6. Complete the proof of Proposition 5. Hint: Vi ⊆ W implies V \ W ⊆ V \ Vi.

7. Translate Theorem 7 and its proof into geometry.

8. Let I = ⟨xz − y2, z3 − x5⟩ ⊆ Q[x, y, z].
a. Express V(I) as a finite union of irreducible varieties. Hint: The parametrizations

(t3, t4, t5) and (t3,−t4, t5) will be useful.
b. Express I as an intersection of prime ideals which are ideal quotients of I and conclude

that I is radical.

9. Let V,W be varieties in kn with V ⊆ W. Show that each irreducible component of V is
contained in some irreducible component of W.

10. Let f ∈ C[x1, . . . , xn] and let f = f
a1

1 f
a2

2 · · · f ar
r be the decomposition of f into irreducible

factors. Show that V( f ) = V( f1) ∪ · · · ∪ V( fr) is the decomposition of V( f ) into irre-
ducible components and I(V( f )) = ⟨ f1 f2 · · · fr⟩. Hint: See Exercise 11 of §5.

§7 Proof of the Closure Theorem

This section will complete the proof of the Closure Theorem from Chapter 3, §2. We

will use many of the tools introduced in this chapter, including the Nullstellensatz,

Zariski closures, saturations, and irreducible components.

We begin by recalling the basic situation. Let k be an algebraically closed field,

and let πl : kn → kn−l is projection onto the last n − l components. If V = V(I) is

an affine variety in kn, then we get the l-th elimination ideal Il = I ∩ k[xl+1, . . . , xn].
The first part of the Closure Theorem, which asserts that V(Il) is the Zariski closure

of πl(V) in kn−l, was proved earlier in Theorem 4 of §4.

The remaining part of the Closure Theorem tells us that πl(V) fills up “most” of

V(Il). Here is the precise statement.

Theorem 1 (The Closure Theorem, second part). Let k be algebraically closed,

and let V = V(I) ⊆ kn. Then there is an affine variety W ⊆ V(Il) such that

V(Il) \ W ⊆ πl(V) and V(Il) \ W = V(Il).

This is slightly different from the Closure Theorem stated in §2 of Chapter 3.

There, we assumed V ̸= ∅ and asserted that V(Il)\W ⊆ πl(V) for some W ! V(Il).
In Exercise 1 you will prove that Theorem 1 implies the version in Chapter 3.

The proof of Theorem 1 will use the following notation. Rename xl+1, . . . , xn as

yl+1, . . . , yn and write k[x1, . . . , xl, yl+1, . . . , yn] as k[x, y] for x = (x1, . . . , xl) and

y = (yl+1, . . . , yn). Also fix a monomial order > on k[x, y] with the property that

xα > xβ implies xα > xβyγ for all γ. The product order described in Exercise 9 of

Chapter 2, §4 is an example of such a monomial order. Another example is given by

lex order with x1 > · · · > xl > yl+1 > · · · > yn.
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An important tool in proving Theorem 1 is the following result.

Theorem 2. Fix a field k. Let I ⊆ k[x, y] be an ideal and let G = {g1, . . . , gt} be a

Gröbner basis for I with respect to a monomial order as above. For 1 ≤ i ≤ t with

gi /∈ k[y], write gi in the form

(1) gi = ci(y)xαi + terms < xαi .

Finally, assume that b = (al+1, . . . , an) ∈ V(Il) ⊆ kn−l is a partial solution such

that ci(b) ̸= 0 for all gi /∈ k[y]. Then:

(i) The set

G = {gi(x, b) | gi /∈ k[y]} ⊆ k[x]

is a Gröbner basis of the ideal { f (x, b) | f ∈ I}.

(ii) If k is algebraically closed, then there exists a = (a1, . . . , al) ∈ kl such that

(a, b) ∈ V = V(I).

Proof. Given f ∈ k[x, y], we set

f̄ = f (x, b) ∈ k[x].

In this notation, G = {ḡi | gi /∈ k[y]}. Also observe that ḡi = 0 when gi ∈ k[y] since

b ∈ V(Il). If we set Ī = { f̄ | f ∈ I}, then it is an easy exercise to show that

Ī = ⟨G⟩ ⊆ k[x].

In particular, Ī is an ideal of k[x].
To prove that G is a Gröbner basis of Ī, take gi, gj ∈ G \ k[y] and consider the

polynomial

S = cj(y)
xγ

xαi
gi − ci(y)

xγ

xαj
gj,

where xγ = lcm(xαi , xαj). Our chosen monomial order has the property that

LT(gi) = LT(ci(y))xαi , and it follows easily that xγ > LT(S). Since S ∈ I, it has a

standard representation S =
"t

k=1 Akgk. Then evaluating at b gives

cj(b)
xγ

xαi
ḡi − ci(b)

xγ

xαj
ḡj = S =

"
ḡk∈G Akḡk

since ḡi = 0 for gi ∈ k[y].
Then ci(b), cj(b) ̸= 0 imply that S is the S-polynomial S(ḡi, ḡj) up to the nonzero

constant ci(b)cj(b). Since

xγ > LT(S) ≥ LT(Akgk), Akgk ̸= 0,

it follows that

xγ > LT(Ākḡk), Ākḡk ̸= 0,
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by Exercise 3 of Chapter 2, §9. Hence S(ḡi, ḡj) has an lcm representation as defined

in Chapter 2, §9. By Theorem 6 of that section, we conclude that G is a Gröbner

basis of Ī, as claimed.

For part (ii), note that by construction, every element of G has positive total

degree in the x variables, so that ḡi is nonconstant for every i. It follows that 1 /∈ Ī

since G is a Gröbner basis of Ī. Hence Ī ! k[x], so that by the Nullstellensatz,

there exists a ∈ kl such that ḡi(a) = 0 for all ḡi ∈ G, i.e., gi(a, b) = 0 for all

gi ∈ G\k[y]. Since ḡi = 0 when gi ∈ k[y], it follows that gi(a, b) = 0 for all gi ∈ G.

Hence (a, b) ∈ V = V(I). !

Part (ii) of Theorem 2 is related to the Extension Theorem from Chapter 3. Com-

pared to the Extension theorem, part (ii) is simultaneously stronger (the Extension

Theorem assumes l = 1, i.e., just one variable is eliminated) and weaker [part (ii)

requires the nonvanishing of all relevant leading coefficients, while the Extension

Theorem requires just one].

For our purposes, Theorem 2 has the following important corollary.

Corollary 3. With the same notation as Theorem 2, we have

V(Il) \ V
6?

gi∈G\k[y] ci

(
⊆ πl(V).

Proof. Take b ∈ V(Il) \ V
6?

gi∈G\k[y] ci

(
. Then b ∈ V(Il) and ci(b) ̸= 0 for all

gi ∈ G \ k[y]. By Theorem 2, there is a ∈ kl such that (a, b) ∈ V = V(I). In other

words, b ∈ πl(V), and the corollary follows. !

Since A \ B = A \ (A ∩ B), Corollary 3 implies that the intersection

W = V(Il) ∩ V
6?

gi∈G\k[y] ci

(
⊆ V(Il)

has the property that V(Il) \ W ⊆ πl(V). If V(Il) \ W is also Zariski dense in V(Il),
then W ⊆ V(Il) satisfies the conclusion of the Closure Theorem.

Hence, to complete the proof of the Closure Theorem, we need to explore what

happens when the difference V(Il) \ V
6?

gi∈G\k[y] ci

(
is not Zariski dense in V(Il).

The following proposition shows that in this case, the original variety V = V(I)
decomposes into varieties coming from strictly bigger ideals.

Proposition 4. Assume that k is algebraically closed and the Gröbner basis G is

reduced. If V(Il) \V
6?

gi∈G\k[y] ci

(
is not Zariski dense in V(Il), then there is some

gi ∈ G \ k[y] whose ci has the following two properties:

(i) V = V(I + ⟨ci⟩) ∪ V(I : c∞i ).
(ii) I ! I + ⟨ci⟩ and I ! I : c∞i .

Proof. For (i), we have V = V(I) = V(I + ⟨ci⟩) ∪ V(I : c∞i ) by Theorem 10 of §4.

For (ii), we first show that I ! I + ⟨ci⟩ for all gi ∈ G \ k[y]. To see why, suppose

that ci ∈ I for some i. Since G is a Gröbner basis of I, LT(ci) is divisible by some

LT(gj), and then gj ∈ k[y] since the monomial order eliminates the x variables.
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Hence gj ̸= gi. But then (1) implies that LT(gj) divides LT(gi) = LT(ci)xαi , which

contradicts our assumption that G is reduced. Hence ci /∈ I, and I ! I+⟨ci⟩ follows.

Now suppose that I = I : c∞i for all i with gi ∈ G \ k[y]. In Exercise 4, you will

show that this implies Il : c
∞
i = Il for all i. Hence

V(Il) = V(Il : c
∞
i ) = V(Il) \ V(ci) = V(Il) \ (V(Il) ∩ V(ci)),

where the second equality uses Theorem 10 of §4. If follows that V(Il) ∩ V(ci)
contains no irreducible component of V(Il) by Proposition 5 of §6. Since this holds

for all i, the finite union

1
gi∈G\k[y]V(Il) ∩ V(ci) = V(Il) ∩

1
gi∈G\k[y]V(ci) = V(Il) ∩ V

6?
gi∈G\k[y] ci

(

also contains no irreducible component of V(Il) (see Exercise 5). By the same

proposition from §6, we conclude that the difference

V(Il) \
6
V(Il) ∩ V

6?
gi∈G\k[y] ci

((
= V(Il) \ V

6?
gi∈G\k[y] ci

(

is Zariski dense in V(Il). This contradiction shows that I ! I : c∞i for some i and

completes the proof of the proposition. !

In the situation of Proposition 4, we have a decomposition of V into two pieces.

The next step is to show that if we can find a W that works for each piece, then we

can find a W what works for V . Here is the precise result.

Proposition 5. Let k be algebraically closed. Suppose that a variety V = V(I) can

be written V = V(I(1)) ∪ V(I(2)) and that we have varieties

W1 ⊆ V(I
(1)
l ) and W2 ⊆ V(I

(2)
l )

such that V(I
(i)
l ) \ Wi = V(I

(i)
l ) and V(I

(i)
l ) \ Wi ⊆ πl(V(I(i)) for i = 1, 2. Then

W = W1 ∪ W2 is a variety contained in V that satisfies

V(Il) \ W = V(Il) and V(Il) \ W ⊆ πl(V).

Proof. For simplicity, set Vi = V(I(i)), so that V = V1 ∪ V2. The first part of the

Closure Theorem proved in §4 implies that V(Il) = πl(V) and V(I
(i)
l ) = πl(Vi).

Hence

V(Il) = πl(V) = πl(V1 ∪ V2) = πl(V1) ∪ πl(V2) = πl(V1) ∪ πl(V2)

= V(I
(1)
l ) ∪ V(I

(2)
l ),

where the last equality of the first line uses Lemma 3 of §4.

Now let Wi ⊆ V(I
(i)
l ) be as in the statement of the proposition. By Proposition 5

of §6, we know that Wi contains no irreducible component of V(I
(i)
l ). As you will

prove in Exercise 5, this implies that the union W = W1∪W2 contains no irreducible
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component of V(Il) = V(I
(1)
l )∪V(I

(2)
l ). Using Proposition 5 of §6 again, we deduce

that V(Il) \ W is Zariski dense in V(Il). Since we also have

V(Il) \ W =
6
V(I

(1)
l ) ∪ V(I

(2)
l )

(
\ (W1 ∪ W2) ⊆

6
V(I

(1)
l ) \ W1

(
∪
6
V(I

(2)
l ) \ W2

(

⊆ πl(V1) ∪ πl(V2) = πl(V),

the proof of the proposition is complete. !

The final ingredient we need for the proof of the Closure Theorem is the follow-

ing maximum principle for ideals.

Proposition 6 (Maximum Principle for Ideals). Given a nonempty collection of

ideals {Iα}α∈A in a polynomial ring k[x1, . . . , xn], there exists α0 ∈ A such that for

all β ∈ A, we have

Iα0
⊆ Iβ =⇒ Iα0

= Iβ.

In other words, Iα0
is maximal with respect to inclusion among the Iα for α ∈ A.

Proof. This is an easy consequence of the ascending chain condition (Theorem 7

of Chapter 2, §5). The proof will be left as an exercise. !

We are now ready to prove the second part of the Closure Theorem.

Proof of Theorem 1. Suppose the theorem fails for some ideal I ⊆ k[x1, . . . , xn],
i.e., there is no affine variety W ! V(I) such that

V(Il) \ W ⊆ πl(V(I)) and V(Il) \ W = V(Il).

Our goal is to derive a contradiction.

Among all ideals for which the theorem fails, the maximum principle of Propo-

sition 6 guarantees that there is a maximal such ideal, i.e., there is an ideal I such

that the theorem fails for I but holds for every strictly larger ideal I ! J.

Let us apply our results to I. By Corollary 3, we know that

V(Il) \ V
6?

gi∈G\k[y] ci

(
⊆ πl(V).

Since the theorem fails for I, V(I) \ V
6?

gi∈G\k[y] ci

(
cannot be Zariski dense in

V(Il). Therefore, by Proposition 4, there is some i such that

I ! I(1) = I + ⟨ci⟩, I ! I(2) = I : c∞i

and

V(I) = V(I(1)) ∪ V(I(2)).

Our choice of I guarantees that the theorem holds for the strictly larger ideals I(1)

and I(2). The resulting affine varieties Wi ⊆ V(I
(i)
l ), i = 1, 2, satisfy the hypothesis

of Proposition 5, and then the proposition implies that W = W1 ∪ W2 ⊆ V(I)
satisfies the theorem for I. This contradicts our choice of I, and we are done. !
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The proof of the Closure Theorem just given is nonconstructive. Fortunately, in

practice it is straightforward to find W ⊆ V(Il) with the required properties. We will

give two examples and then describe a general procedure.

The first example is very simple. Consider the ideal

I = ⟨yx2 + yx + 1⟩ ⊆ C[x, y].

We use lex order with x > y, and I1 = {0} since g1 = yx2+yx+1 is a Gröbner basis

for I. In the notation of Theorem 2, we have c1 = y, and then Corollary 3 implies

that

V(I1) \ V(c1) = C \ V(y) = C \ {0} ⊆ π1(V(I)) = C.

Hence, we can take W = {0} in Theorem 1 since C \ {0} is Zariski dense in C.

The second example, taken from SCHAUENBURG (2007), uses the ideal

I = ⟨xz + y − 1,w + y + z − 2, z2⟩ ⊆ C[w, x, y, z].

It is straightforward to check that V = V(I) is the line V = V(w−1, y−1, z) ⊆ C4,

which projects to the point π2(V) = V(y − 1, z) ⊆ C2 when we eliminate w and x.

Thus, W = ∅ satisfies Theorem 1 in this case.

Here is a systematic way to discover that W = ∅. A lex Gröbner basis of I for

w > x > y > z consists of

g1 = w + y + z − 2, g2 = xz + y − 1, g3 = y2 − 2y + 1, g4 = yz − z, g5 = z2.

Eliminating w and x gives I2 = ⟨g3, g4, g5⟩, and one sees easily that

V(I2) = V(y − 1, z).

Since g1 = 1 · w + y + z − 2 and g2 = z · x + y − 1, we have c1 = 1 and c2 = z. If

we set

J = ⟨c1c2⟩ = ⟨z⟩,
then Corollary 3 implies that V(I2) \V(J) ⊆ π2(V). However, V(I2) \V(J) = ∅, so

the difference is not Zariski dense in V(I2).
In this situation, we use the decomposition of V(I) guaranteed to exist by Propo-

sition 4. Note that I = I : c∞1 since c1 = 1. Hence we use c2 = z in the proposition.

This gives the two ideals

I(1) = I + ⟨c2⟩ = ⟨xz + y − 1,w + y + z − 2, z2, z⟩ = ⟨w − 1, y − 1, z⟩,
I(2) = I : c∞2 = I : z∞ = ⟨1⟩ since z2 ∈ I.

Now we start over with I(1) and I(2).
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For I(1), observe that {w− 1, y− 1, z} is a Gröbner basis of I(1), and only g
(1)
1 =

w − 1 /∈ C[y, z]. The coefficient of w is c
(1)
1 = 1, and then Corollary 3 applied to

I(1) gives

V(I
(1)
2 ) \ V(1) ⊆ π2(V(I(1))).

Since V(1) = ∅, we can pick W1 = ∅ for I(1) in Theorem 1.

Applying the same systematic process to I(2) = ⟨1⟩, we see that there are no gi /∈
C[y, z]. Thus Corollary 3 involves the product over the empty set. By convention

(see Exercise 7) the empty product is 1. Then Corollary 3 tells us that we can pick

W2 = ∅ for I(2) in Theorem 1. By Proposition 5, it follows that Theorem 1 holds for

the ideal I with

W = W1 ∪ W2 = ∅ ∪ ∅ = ∅.
To do this in general, we use the following recursive algorithm to produce the

desired subset W:

Input : an ideal I ⊆ k[x, y] with variety V = V(I)

Output : FindW(I) = W ⊆ V(Il) with V(Il) \ W ⊆ πl(V), V(Il) \ W = V(Il)

G := reduced Gröbner basis for I for a monomial order as in Theorem 2

ci := coefficient in gi = ci(y)xαi + terms < xαi when gi ∈ G \ k[y]

Il := I ∩ k[y] = ⟨G ∩ k[y]⟩
J :=

7?
gi∈G\k[y] ci

8

IF V(Il) \ V(J) = V(Il) THEN

FindW(I) := V(Il) ∩ V(J)

ELSE

Select gi ∈ G \ k[y] with I ! I : c∞i
FindW(I) := FindW(I + ⟨ci⟩) ∪ FindW(I : c∞i )

RETURN FindW(I)

The function FindW takes the input ideal I and computes the ideals Il and J =7?
gi∈G\k[y] ci

8
. The IF statement asks whether V(Il)\V(J) is Zariski dense in V(Il).

If the answer is yes, then V(Il)∩V(J) has the desired property by Corollary 3, which

is why FindW(I) = V(Il) ∩ V(J) in this case. In the exercises, you will describe an

algorithm for determining whether V(Il) \ V(J) = V(Il).
When V(Il) \ V(J) fails to be Zariski dense in V(Il), Proposition 4 guarantees

that we can find ci such that the ideals

I(1) = I + ⟨ci⟩ and I(2) = I : c∞i

are strictly larger than I and satisfy V = V(I) = V(I(1)) ∪ V(I(2)). Then, as in

the second example above, we repeat the process on the two new ideals, which

means computing FindW(I(1)) and FindW(I(2)). By Proposition 5, the union of

these varieties works for I, which explains the last line of FindW.
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We say that FindW is recursive since it calls itself. We leave it as an exercise

to show that the maximum principle from Proposition 6 implies that FindW always

terminates in finitely many steps. When it does, correctness follows from the above

discussion.

We end this section by using the Closure Theorem to give a precise description

of the projection πl(V) ⊆ kn−l of an affine variety V ⊆ kn.

Theorem 7. Let k be algebraically closed and let V ⊆ kn be an affine variety. Then

there are affine varieties Zi ⊆ Wi ⊆ kn−l for 1 ≤ i ≤ p such that

πl(V) =

p5

i=1

(Wi \ Zi).

Proof. We assume V ̸= ∅. First let W1 = V(Il). By the Closure Theorem, there is a

variety Z1 ! W1 such that W1 \ Z1 ⊆ πl(V). Then, back in kn, consider the set

V1 = V ∩ {(a1, . . . , an) ∈ kn | (al+1, . . . , an) ∈ Z1}.

One easily checks that V1 is an affine variety (see Exercise 10), and furthermore,

V1 ! V since otherwise we would have πl(V) ⊆ Z1, which would imply W1 ⊆ Z1

by Zariski closure. Moreover, you will check in Exercise 10 that

(2) πl(V) = (W1 \ Z1) ∪ πl(V1).

If V1 = ∅, then we are done. If V1 is nonempty, let W2 be the Zariski closure of

πl(V1). Applying the Closure Theorem to V1, we get Z2 ! W2 with W2\Z2 ⊂ πl(V1).
Then, repeating the above construction, we get the variety

V2 = V1 ∩ {(a1, . . . , an) ∈ kn | (al+1, . . . , an) ∈ Z2}

such that V2 ! V1 and

πl(V) = (W1 \ Z1) ∪ (W2 \ Z2) ∪ πl(V2).

If V2 = ∅, we are done, and if not, we repeat this process again to obtain W3, Z3

and V3 ! V2. Continuing in this way, we must eventually have VN = ∅ for some N,

since otherwise we would get an infinite descending chain of varieties

V " V1 " V2 " · · · ,

which would contradict Proposition 1 of §6. Once we have VN = ∅, the desired

formula for πl(V) follows easily. !

In general, a set of the form described in Theorem 7 is called constructible.

As a simple example of Theorem 7, consider I = ⟨xy + z − 1, y2z2⟩ ⊆ C[x, y, z]
and set V = V(I) ⊆ C3. We leave it as an exercise to show that

V(I1) = V(z) ∪ V(y, z − 1) = V(z) ∪ {(0, 1)}
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and that W = V(y, z) = {(0, 0)} satisfies V(I1) \ W ⊆ π1(V). However, we also

have π1(V) ⊆ V(I1), and since xy + z − 1 ∈ I, no point of V has vanishing y and z

coordinates. It follows that π1(V) ⊆ V(I1) \ {(0, 0)}. Hence

π1(V) = V(I1) \ {(0, 0)} = (V(z) \ {(0, 0)}) ∪ {(0, 1)}.

This gives an explicit representation of π1(V) as a constructible set. You will work

out another example of Theorem 7 in the exercises. More substantial examples can

be found in SCHAUENBURG (2007), which also describes an algorithm for writing

πl(V) as a constructible set. Another approach is described in ULLRICH (2006).

EXERCISES FOR §7

1. Prove that Theorem 3 of Chapter 3, §2 follows from Theorem 1 of this section. Hint:
Show that the W from Theorem 1 satisfies W ! V(Il) when V ̸= ∅.

2. In the notation of Theorem 2, prove that Ī = ⟨G⟩ for Ī = { f̄ | f ∈ I}.

3. Given sets A and B, prove that A \ B = A \ (A ∩ B).
4. In the proof of Proposition 4, prove that I = I : c∞i implies that Il = Il : c∞i .

5. This exercise will explore some properties of irreducible components needed in the
proofs of Propositions 4 and 5.

a. Let W1, . . . ,Wr be affine varieties contained in a variety V and assume that for each
1 ≤ i ≤ r, no irreducible component of V is contained in Wi. Prove that the same is
true for

Br

i=1
Wi. (This fact is used in the proof of Proposition 4.)

b. Let Wi ⊆ Vi be affine varieties for i = 1, 2 such that Wi contains no irreducible
component of Vi. Prove that W = W1 ∪ W2 contains no irreducible component of
V = V1 ∪ V2. (This fact is used in the proof of Proposition 5.)

6. Prove Proposition 6. Hint: Assume that the proposition is false for some nonempty col-
lection of ideals {Iα}α∈A and show that this leads to a contradiction of the ascending
chain condition.

7. In this exercise we will see why it is reasonable to make the convention that the empty
product is 1. Let R be a commutative ring with 1 and let A be a finite set such that for
every α ∈ A, we have rα ∈ R. Then we get the product

2
α∈Arα.

Although A is unordered, the product is well-defined since R is commutative.

a. Assume B is finite and disjoint from A such that for every β ∈ B, we have rβ ∈ R.
Prove that

2
γ∈A∪Brγ =

-2
α∈Arα

.-2
β∈Brβ

.
.

b. It is likely that the proof you gave in part (a) assumed that A and B are nonempty.
Explain why

2
α∈∅ rα = 1 makes the above formula work in all cases.

c. In a similar way, define
&

α∈A rα and explain why
&

α∈∅ rα = 0 is needed to make
the analog of part (a) true for sums.

8. The goal of this exercise is to describe an algorithm for deciding whether V(I) \ V(g) =
V(I) when the field k is algebraically closed.

a. Prove that V(I) \ V(g) = V(I) is equivalent to I : g∞ ⊆
√

I. Hint: Use the Nullstel-
lensatz and Theorem 10 of §4. Also remember that I ⊆ I : g∞.

b. Use Theorem 14 of §4 and the Radical Membership Algorithm from §2 to describe

an algorithm for deciding whether I : g∞ ⊆
√

I.
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9. Give a proof of the termination of FindW that uses the maximum principle stated in
Proposition 6. Hint: Consider the set of all ideals in k[x, y] for which FindW does not
terminate.

10. This exercise is concerned with the proof of Theorem 7.
a. Verify that V1 = V ∩ {(a1, . . . , an) ∈ kn | (al+1, . . . , an) ∈ Z1} is an affine variety.
b. Verify that πl(V) = (W1 \ Z1) ∪ πl(V1).

11. As in the text, let V = V(I) for I = ⟨xy + z − 1, y2z2⟩ ⊆ C[x, y, z]. Show that

V(I1) = V(z) ∪ V(y, z − 1) = V(z) ∪ {(0, 1)}

and that W = V(y, z) = {(0, 0)} satisfies V(I1) \ W ⊆ π1(V).

12. Let V = V(y− xz) ⊆ C3. Theorem 7 tells us that π1(V) ⊆ C2 is a constructible set. Find
an explicit decomposition of π1(V) of the form given by Theorem 7. Hint: Your answer
will involve W1, Z1 and W2.

13. Proposition 6 is the maximum principle for ideals. The geometric analog is the minimum
principle for varieties, which states that among any nonempty collection of varieties in
kn, there is a variety in the collection which is minimal with respect to inclusion. More
precisely, this means that if we are given varieties Vα, α ∈ A, where A is a nonempty
set, then there is some α0 ∈ A with the property that for all β ∈ A, Vβ ⊆ Vα0

implies
Vβ = Vα0

. Prove the minimum principle. Hint: Use Proposition 1 of §6.

14. Apply the minimum principle of Exercise 13 to give a different proof of Theorem 7. Hint:
Consider the collection of all varieties V ⊆ kn for which πl(V) is not constructible. By
the minimum principle, there is a variety V such that πl(V) is not constructible but πl(W)
is constructible for every variety W ! V . Show how the proof of Theorem 7 up to (2)
can be used to obtain a contradiction and thereby prove the theorem.

§8 Primary Decomposition of Ideals

In view of the decomposition theorem proved in §6 for radical ideals, it is natural

to ask whether an arbitrary ideal I (not necessarily radical) can be represented as

an intersection of simpler ideals. In this section, we will prove the Lasker-Noether

decomposition theorem, which describes the structure of I in detail.

There is no hope of writing an arbitrary ideal I as an intersection of prime ideals

(since an intersection of prime ideals is always radical). The next thing that suggests

itself is to write I as an intersection of powers of prime ideals. This does not quite

work either: consider the ideal I = ⟨x, y2⟩ in C[x, y]. Any prime ideal containing I

must contain x and y and, hence, must equal ⟨x, y⟩ (since ⟨x, y⟩ is maximal). Thus, if

I were to be an intersection of powers of prime ideals, it would have to be a power

of ⟨x, y⟩ (see Exercise 1 for the details).

The concept we need is a bit more subtle.

Definition 1. An ideal I in k[x1, . . . , xn] is primary if fg ∈ I implies either f ∈ I or

some power gm ∈ I for some m > 0.

It is easy to see that prime ideals are primary. Also, you can check that the ideal

I = ⟨x, y2⟩ discussed above is primary (see Exercise 1).

Lemma 2. If I is a primary ideal, then
√

I is prime and is the smallest prime ideal

containing I.
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Proof. See Exercise 2. !

In view of this lemma, we make the following definition.

Definition 3. If I is primary and
√

I = P, then we say that I is P-primary.

We can now prove that every ideal is an intersection of primary ideals.

Theorem 4. Every ideal I ⊆ k[x1, . . . , xn] can be written as a finite intersection of

primary ideals.

Proof. We first define an ideal I to be irreducible if I = I1 ∩ I2 implies that I = I1

or I = I2. We claim that every ideal is an intersection of finitely many irreducible

ideals. The argument is an “ideal” version of the proof of Theorem 2 from §6. One

uses the ACC rather than the DCC—we leave the details as an exercise.

Next we claim that an irreducible ideal is primary. Note that this will prove the

theorem. To see why the claim is true, suppose that I is irreducible and that fg ∈ I

with f /∈ I. We need to prove that some power of g lies in I. Consider the saturation

I : g∞. By Proposition 9 of §4, we know that I :g∞ = I :gN once N is sufficiently

large. We will leave it as an exercise to show that (I + ⟨gN⟩) ∩ (I + ⟨ f ⟩) = I. Since

I is irreducible, it follows that I = I + ⟨gN⟩ or I = I + ⟨ f ⟩. The latter cannot occur

since f /∈ I, so that I = I + ⟨gN⟩. This proves that gN ∈ I. !

As in the case of varieties, we can define what it means for a decomposition to

be minimal.

Definition 5. A primary decomposition of an ideal I is an expression of I as an

intersection of primary ideals: I =
Cr

i=1 Qi. It is called minimal or irredundant if

the
√

Qi are all distinct and Qi ̸⊇
C

j̸=i Qj.

To prove the existence of a minimal decomposition, we will need the following

lemma, the proof of which we leave as an exercise.

Lemma 6. If I, J are primary and
√

I =
√

J, then I ∩ J is primary.

We can now prove the first part of the Lasker-Noether decomposition theorem.

Theorem 7 (Lasker-Noether). Every ideal I ⊆ k[x1, . . . , xn] has a minimal primary

decomposition.

Proof. By Theorem 4, we know that there is a primary decomposition I =
Cr

i=1 Qi.

Suppose that Qi and Qj have the same radical for some i ̸= j. Then, by Lemma 6,

Q = Qi ∩ Qj is primary, so that in the decomposition of I, we can replace Qi and

Qj by the single ideal Q. Continuing in this way, eventually all of the Qi’s will have

distinct radicals.

Next, suppose that some Qi contains
C

j̸=i Qj. Then we can omit Qi, and I will

be the intersection of the remaining Qj’s for j ̸= i. Continuing in this way, we can

reduce to the case where Qi ̸⊇
C

j̸=i Qj for all i. !
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Unlike the case of varieties (or radical ideals), a minimal primary decomposition

need not be unique. In the exercises, you will verify that the ideal ⟨x2, xy⟩ ⊆ k[x, y]
has the two distinct minimal decompositions

⟨x2, xy⟩ = ⟨x⟩ ∩ ⟨x2, xy, y2⟩ = ⟨x⟩ ∩ ⟨x2, y⟩.

Although ⟨x2, xy, y2⟩ and ⟨x2, y⟩ are distinct, note that they have the same radical.

To prove that this happens in general, we will use ideal quotients from §4. We start

by computing some ideal quotients of a primary ideal.

Lemma 8. If I is primary with
√

I = P and f ∈ k[x1, . . . , xn], then:

(i) If f ∈ I, then I : f = ⟨1⟩.
(ii) If f /∈ I, then I : f is P-primary.

(iii) If f /∈ P, then I : f = I.

Proof. See Exercise 7. !

The second part of the Lasker-Noether theorem tells us that the radicals of the

ideals in a minimal decomposition are uniquely determined.

Theorem 9 (Lasker-Noether). Let I =
Cr

i=1 Qi be a minimal primary decomposi-

tion of a proper ideal I ⊆ k[x1, . . . , xn] and let Pi =
√

Qi. Then the Pi are precisely

the proper prime ideals occurring in the set {√I : f | f ∈ k[x1, . . . , xn]}.

Remark. In particular, the Pi are independent of the primary decomposition of I.

We say that the Pi belong to I.

Proof. The proof is very similar to the proof of Theorem 7 from §6. The details are

covered in Exercises 8–10. !

In §6, we proved a decomposition theorem for radical ideals over an algebraically

closed field. Using the Lasker–Noether theorems, we can now show that these re-

sults hold over an arbitrary field k.

Corollary 10. Let I =
Cr

i=1 Qi be a minimal primary decomposition of a proper

radical ideal I ⊆ k[x1, . . . , xn]. Then the Qi are prime and are precisely the proper

prime ideals occurring in the set {I : f | f ∈ k[x1, . . . , xn]}.

Proof. See Exercise 12. !

The two Lasker–Noether theorems do not tell the full story of a minimal primary

decomposition I =
Cr

i=1 Qi. For example, if Pi is minimal in the sense that no Pj

is strictly contained in Pi, then one can show that Qi is uniquely determined. Thus

there is a uniqueness theorem for some of the Qi’s [see Chapter 4 of ATIYAH and

MACDONALD (1969) for the details]. We should also mention that the conclusion of

Theorem 9 can be strengthened: one can show that the Pi’s are precisely the proper

prime ideals in the set {I : f | f ∈ k[x1, . . . , xn]} [see Chapter 7 of ATIYAH and

MACDONALD (1969)].
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Finally, it is natural to ask if a primary decomposition can be done constructively.

More precisely, given I = ⟨ f1, . . . , fs⟩, we can ask the following:

• (Primary Decomposition) Is there an algorithm for finding bases for the primary

ideals Qi in a minimal primary decomposition of I?

• (Associated Primes) Can we find bases for the associated primes Pi =
√

Qi?

If you look in the references given at the end of §6, you will see that the answer

to these questions is yes. Primary decomposition has been implemented in CoCoA,

Macaulay2, Singular, and Maple.

EXERCISES FOR §9

1. Consider the ideal I = ⟨x, y2⟩ ⊆ C[x, y].

a. Prove that ⟨x, y⟩2 ! I ! ⟨x, y⟩, and conclude that I is not a prime power.
b. Prove that I is primary.

2. Prove Lemma 2.

3. This exercise is concerned with the proof of Theorem 4. Let I ⊆ k[x1, . . . , xn] be an ideal.

a. Using the hints given in the text, prove that I is a finite intersection of irreducible
ideals.

b. Suppose that fg ∈ I and I : g∞ = I : gN . Then prove that (I + ⟨gN⟩) ∩ (I + ⟨ f ⟩) = I.

Hint: Elements of (I + ⟨gN⟩) ∩ (I + ⟨ f ⟩) can be written as a + bgN = c + df , where

a, c ∈ I and b, d ∈ k[x1, . . . , xn]. Now multiply through by g and use I : gN = I : gN+1.

4. In the proof of Theorem 4, we showed that every irreducible ideal is primary. Surpris-
ingly, the converse is false. Let I be the ideal ⟨x2, xy, y2⟩ ⊆ k[x, y].
a. Show that I is primary.
b. Show that I = ⟨x2, y⟩ ∩ ⟨x, y2⟩ and conclude that I is not irreducible.

5. Prove Lemma 6. Hint: Proposition 16 from §3 will be useful.

6. Let I be the ideal ⟨x2, xy⟩ ⊆ Q[x, y].
a. Prove that

I = ⟨x⟩ ∩ ⟨x2, xy, y
2⟩ = ⟨x⟩ ∩ ⟨x2, y⟩

are two distinct minimal primary decompositions of I.
b. Prove that for any a ∈ Q,

I = ⟨x⟩ ∩ ⟨x2, y − ax⟩
is a minimal primary decomposition of I. Thus I has infinitely many distinct minimal
primary decompositions.

7. Prove Lemma 8.

8. Prove that an ideal is proper if and only if its radical is.

9. Use Exercise 8 to show that the primes belonging to a proper ideal are also proper.

10. Prove Theorem 9. Hint: Adapt the proof of Theorem 7 from §6. The extra ingredient is
that you will need to take radicals. Proposition 16 from §3 will be useful. You will also
need to use Exercise 9 and Lemma 8.

11. Let P1, . . . , Pr be the prime ideals belonging to I.

a. Prove that
√

I =
Ar

i=1
Pi. Hint: Use Proposition 16 from §3.

b. Show that
√

I =
Ar

i=1 Pi need not be a minimal decomposition of
√

I. Hint: Exer-
cise 4.

12. Prove Corollary 10. Hint: Use Proposition 9 of §4 to show that I : f is radical.
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§9 Summary

The table on the next page summarizes the results of this chapter. In the table, it is

supposed that all ideals are radical and that the field is algebraically closed.

ALGEBRA GEOMETRY

radical ideals varieties

I −→ V(I)

I(V) ←− V

addition of ideals intersection of varieties

I + J −→ V(I) ∩ V(J)A
I(V) + I(W) ←− V ∩ W

product of ideals union of varieties

IJ −→ V(I) ∪ V(J)A
I(V)I(W) ←− V ∪ W

intersection of ideals union of varieties

I ∩ J −→ V(I) ∪ V(J)
I(V) ∩ I(W) ←− V ∪ W

ideal quotients difference of varieties

I : J −→ V(I) \ V(J)

I(V) : I(W) ←− V \ W

elimination of variables projection of varieties

I ∩ k[xl+1, . . . , xn] ←→ πl(V(I))

prime ideal ←→ irreducible variety

minimal decomposition minimal decomposition

I = P1 ∩ · · · ∩ Pm −→ V(I) = V(P1) ∪ · · · ∪ V(Pm)
I(V) = I(V1) ∩ · · · ∩ I(Vm) ←− V = V1 ∪ · · · ∪ Vm

maximal ideal ←→ point of affine space

ascending chain condition ←→ descending chain condition


