
Chapter 6

Free Resolutions

In Chapter 5, we saw that to work with an R-module M , we needed not
just the generators f1, . . . , ft of M , but the relations they satisfy. Yet
the set of relations Syz (f1, . . . , ft) is an R-module in a natural way and,
hence, to understand it, we need not just its generators g1, . . . , gs, but the
set of relations Syz (g1, . . . , gs) on these generators, the so-called second
syzygies. The second syzygies are again an R-module and to understand it,
we again need a set of generators and relations, the third syzygies, and so
on. We obtain a sequence, called a resolution, of generators and relations of
successive syzygy modules of M . In this chapter, we will study resolutions
and the information they encode about M . Throughout this chapter, R
will denote the polynomial ring k[x1, . . . , xn] or one of its localizations.

§1 Presentations and Resolutions of Modules

Apart from the possible presence of nonzero elements in the module of
syzygies on a minimal set of generators, one of the important things that
distinguishes the theory of modules from the theory of vector spaces over
a field is that many properties of modules are frequently stated in terms of
homomorphisms and exact sequences. Although this is primarily cultural,
it is very common and very convenient. In this first section, we introduce
this language.

To begin with, we recall the definition of exact.

(1.1) Definition. Consider a sequence of R-modules and homomorphisms

· · · −→ Mi+1
ϕi+1−→ Mi

ϕi−→ Mi−1 −→ · · ·

a. We say the sequence is exact at Mi if im(ϕi+1) = ker(ϕi).
b. The entire sequence is said to be exact if it is exact at each Mi which

is not at the beginning or the end of the sequence.
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248 Chapter 6. Free Resolutions

Many important properties of homomorphisms can be expressed by say-
ing that a certain sequence is exact. For example, we can phrase what it
means for an R-module homomorphism ϕ : M → N to be onto, injective,
or an isomorphism:

• ϕ : M → N is onto (or surjective) if and only if the sequence

M
ϕ→ N → 0

is exact, where N → 0 is the homomorphism sending every element of
N to 0. To prove this, recall that onto means im(ϕ) = N . Then the
sequence is exact at N if and only if im(ϕ) = ker(N → 0) = N , as
claimed.

• ϕ : M → N is one-to-one (or injective) if and only if the sequence

0 → M
ϕ→ N

is exact, where 0 → M is the homomorphism sending 0 to the additive
identity of M . This is equally easy to prove.

• ϕ : M → N is an isomorphism if and only if the sequence

0 → M
ϕ→ N → 0

is exact. This follows from the above since ϕ is an isomorphism if and
only if it is one-to-one and onto.

Exact sequences are ubiquitous. Given any R-module homomorphism or
any pair of modules, one a submodule of the other, we get an associated
exact sequence as follows.

(1.2) Proposition.
a. For any R-module homomorphism ϕ : M → N , we have an exact

sequence

0 → ker(ϕ) → M
ϕ→ N → coker(ϕ) → 0,

where ker(ϕ) → M is the inclusion mapping and N → coker(ϕ) =
N/im(ϕ) is the natural homomorphism onto the quotient module, as in
Exercise 12 from §1 of Chapter 5.

b. If Q ⊂ P is a submodule of an R-module P , then we have an exact
sequence

0 → Q → P
ν→ P/Q → 0,

where Q → P is the inclusion mapping, and ν is the natural
homomorphism onto the quotient module.

Proof. Exactness of the sequence in part a at ker(ϕ) follows from the
above bullets, and exactness at M is the definition of the kernel of a ho-
momorphism. Similarly, exactness at N comes from the definition of the
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cokernel of a homomorphism (see Exercise 28 of Chapter 5, §1), and exact-
ness at coker(ϕ) follows from the above bullets. In the exercises, you will
show that part b follows from part a.

Choosing elements of an R-module M is also conveniently described in
terms of homomorphisms.

(1.3) Proposition. Let M be an R-module.
a. Choosing an element of M is equivalent to choosing a homomorphism

R → M .
b. Choosing t elements of M is equivalent to choosing a homomorphism

Rt → M .
c. Choosing a set of t generators of M is equivalent to choosing a homo-

morphism Rt → M which is onto (i.e., an exact sequence Rt → M →
0).

d. If M is free, choosing a basis with t elements is equivalent to choosing
an isomorphism Rt → M .

Proof. To see part a, note that the identity 1 is the distinguished element
of a ring R. Choosing an element f of a module M is the same as choosing
the R-module homomorphism ϕ : R → M which satisfies ϕ(1) = f . This
is true since ϕ(1) determines the values of ϕ on all g ∈ R:

ϕ(g) = ϕ(g · 1) = g · ϕ(1) = gf.

Thus, choosing t elements in M can be thought of as choosing t R-module
homomorphisms from R to M or, equivalently, as choosing an R-module
homomorphism from Rt to M . This proves part b. More explicitly, if we
think of Rt as the space of column vectors and denote the standard basis in
Rt by e1, e2, . . . , et, then choosing t elements f1, . . . , ft of M corresponds
to choosing the R-module homomorphism ϕ : Rt → M defined by set-
ting ϕ(ei) = fi, for all i = 1, . . . , t. The image of ϕ is the submodule
�f1, . . . , ft� ⊂ M . Hence, choosing a set of t generators for M corresponds
to choosing an R-module homomorphism Rt → M which is onto. By our
previous discussion, this is the same as choosing an exact sequence

Rt → M → 0.

This establishes part c, and part d follows immediately.

In the exercises, we will see that we can also phrase what it means to
be projective in terms of homomorphisms and exact sequences. Even more
useful for our purposes, will be the interpretation of presentation matrices
in terms of this language. The following terminology will be useful.

(1.4) Definition. Let M be an R-module. A presentation for M is a set
of generators f1, . . . , ft, together with a set of generators for the syzygy
module Syz (f1, . . . , ft) of relations among f1, . . . , ft.
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One obtains a presentation matrix for a module M by arranging the gen-
erators of Syz (f1, . . . , ft) as columns—being given a presentation matrix
is essentially equivalent to being given a presentation of M . To reinter-
pret Definition (1.4) in terms of exact sequences, note that the generators
f1, . . . , ft give a surjective homomorphism ϕ : Rt → M by part c of
Proposition (1.3), which means an exact sequence

Rt ϕ→ M → 0.

The map ϕ sends (g1, . . . , gt) ∈ Rt to
�t

i=1 gifi ∈ M . It follows that a
syzygy on f1, . . . , ft is an element of the kernel of ϕ, i.e.,

Syz (f1, . . . , ft) = ker(ϕ : Rt → M).

By part c of Proposition (1.3), choosing a set of generators for the syzygy
module corresponds to choosing a homomorphism ψ of Rs onto ker(ϕ) =
Syz (f1, . . . , ft). But ψ being onto is equivalent to im(ψ) = ker(ϕ), which
is just the condition for exactness at Rt in the sequence

(1.5) Rs ψ→ Rt ϕ→ M → 0.

This proves that a presentation of M is equivalent to an exact sequence of
the form (1.5). Also note that the matrix of ψ with respect to the standard
bases of Rs and Rt is a presentation matrix for M .

We next observe that every finitely generated R-module has a presenta-
tion.

(1.6) Proposition. Let M be a finitely generated R-module.
a. M has a presentation of the form given by (1.5).
b. M is a homomorphic image of a free R-module. In fact, if f1, . . . , ft is

a set of generators of M , then M ∼= Rt/S where S is the submodule of
Rt given by S = Syz(f1, . . . , ft). Alternatively, if we let the matrix A
represent ψ in (1.5), then ARs = im(ψ) and M ∼= Rt/ARs.

Proof. Let f1, . . . , ft be a finite generating set of M . Part a follows from
the fact noted in Chapter 5, §2 that every submodule of Rt, in particular
Syz (f1, . . . , ft) ⊂ Rt, is finitely generated. Hence we can choose a finite
generating set for the syzygy module, which gives the exact sequence (1.5)
as above.

Part b follows from part a and Proposition 1.10 of Chapter 5, §1.

Here is a simple example. Let I = �x2 − x, xy, y2 − y� in R = k[x, y].
In geometric terms, I is the ideal of the variety V = {(0, 0), (1, 0), (0, 1)}
in k2. We claim that I has a presentation given by the following exact
sequence:

(1.7) R2 ψ→ R3 ϕ→ I → 0,
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where ϕ is the homomorphism defined by the 1 × 3 matrix

A = ( x2 − x xy y2 − y )

and ψ is defined by the 3 × 2 matrix

B =

⎛
⎝

y 0
−x + 1 y − 1

0 −x

⎞
⎠ .

The following exercise gives one proof that (1.7) is a presentation of I.

Exercise 1. Let S denote Syz(x2 − x, xy, y2 − y).
a. Verify that the matrix product AB equals the 1× 2 zero matrix, and ex-

plain why this shows that im(ψ) (the module generated by the columns
of the matrix B) is contained in S.

b. To show that S is generated by the columns of B, we can use Schreyer’s
Theorem—Theorem (3.3) from Chapter 5 of this book. Check that the
generators for I form a lex Gröbner basis for I.

c. Compute the syzygies s12, s13, s23 obtained from the S-polynomials on
the generators of I. By Schreyer’s Theorem, they generate S.

d. Explain how we could obtain a different presentation

R3 ψ�
→ R3 ϕ→ I → 0

of I using this computation, and find an explicit 3 × 3 matrix
representation of the homomorphism ψ�.

e. How do the columns of B relate to the generators s12, s13, s23 of S?
Why does B have only two columns? Hint: Show that s13 ∈ �s12, s23�
in R3.

We have seen that specifying any module requires knowing both gener-
ators and the relations between the generators. However, in presenting a
module M , we insisted only on having a set of generators for the module of
syzygies. Shouldn’t we have demanded a set of relations on the generators
of the syzygy module? These are the so-called second syzygies.

For example, in the presentation from part d of Exercise 1, there is a
relation between the generators sij of Syz(x2 − x, xy, y2 − y), namely

(1.8) (y − 1)s12 − s13 + xs23 = 0,

so (y − 1, −1, x)T ∈ R3 would be a second syzygy.
Likewise, we would like to know not just a generating set for the second

syzygies, but the relations among those generators (the third syzygies), and
so on. As you might imagine, the connection between a module, its first
syzygies, its second syzygies, and so forth can also be phrased in terms of
an exact sequence of modules and homomorphisms. The idea is simple—we
just iterate the construction of the exact sequence giving a presentation. For
instance, starting from the sequence (1.6) corresponding to a presentation
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for M , if we want to know the second syzygies as well, we need another
step in the sequence:

Rr λ→ Rs ψ→ Rt ϕ→ M → 0,

where now the image of λ : Rr → Rs is equal to the kernel of ψ (the
second syzygy module). Continuing in the same way to the third and higher
syzygies, we produce longer and longer exact sequences. We wind up with
a free resolution of M . The precise definition is as follows.

(1.9) Definition. Let M be an R-module. A free resolution of M is an
exact sequence of the form

· · · → F2
ϕ2→ F1

ϕ1→ F0
ϕ0→ M → 0,

where for all i, Fi
∼= Rri is a free R-module. If there is an � such that

F�+1 = F�+2 = · · · = 0, but F� �= 0, then we say the resolution is finite,
of length �. In a finite resolution of length �, we will usually write the
resolution as

0 → F� → F�−1 → · · · → F1 → F0 → M → 0.

For an example, consider the presentation (1.7) for

I = �x2 − x, xy, y2 − y�
in R = k[x, y]. If

a1

⎛
⎝

y
−x + 1

0

⎞
⎠ + a2

⎛
⎝

0
y − 1
−x

⎞
⎠ =

⎛
⎝

0
0
0

⎞
⎠ ,

ai ∈ R, is any syzygy on the columns of B with ai ∈ R, then looking
at the first components, we see that ya1 = 0, so a1 = 0. Similarly from
the third components a2 = 0. Hence the kernel of ψ in (1.7) is the zero
submodule. An equivalent way to say this is that the columns of B are a
basis for Syz(x2 −x, xy, y2 −y), so the first syzygy module is a free module.
As a result, (1.7) extends to an exact sequence:

(1.10) 0 → R2 ψ→ R3 ϕ→ I → 0.

According to Definition (1.9), this is a free resolution of length 1 for I.

Exercise 2. Show that I also has a free resolution of length 2 obtained
by extending the presentation given in part d of Exercise 1 above:

(1.11) 0 → R
λ→ R3 ψ→ R3 ϕ→ I → 0,

where the homomorphism λ comes from the syzygy given in (1.8).



§1. Presentations and Resolutions of Modules 253

Generalizing the observation about the matrix B above, we have the
following characterization of finite resolutions.

(1.12) Proposition. In a finite free resolution

0 → F�
ϕ�→ F�−1

ϕ�−1−→ F�−2 → · · · → F0
ϕ0→ M → 0,

ker(ϕ�−1) is a free module. Conversely, if M has a free resolution in which
ker(ϕ�−1) is a free module for some �, then M has a finite free resolution
of length �.

Proof. If we have a finite resolution of length �, then ϕ� is one-to-one by
exactness at F�, so its image is isomorphic to F�, a free module. Also, ex-
actness at F�−1 implies ker(ϕ�−1) = im(ϕ�), so ker(ϕ�−1) is a free module.
Conversely, if ker(ϕ�−1) is a free module, then the partial resolution

F�−1
ϕ�−1−→ F�−2 → · · · → F0

ϕ0→ M → 0

can be completed to a finite resolution of length �

0 → F� → F�−1
ϕ�−1−→ F�−2 → · · · → F0

ϕ0→ M → 0,

by taking F� to be the free module ker(ϕ�−1) and letting the arrow F� →
F�−1 be the inclusion mapping.

Both (1.11) and the more economical resolution (1.10) came from the
computation of the syzygies sij on the Gröbner basis for I. By Schreyer’s
Theorem again, the same process can be applied to produce a free resolu-
tion of any submodule M of a free module over R. If G = {g1, . . . , gs} is
a Gröbner basis for M with respect to any monomial order, then the sij

are a Gröbner basis for the first syzygy module (with respect to the >G
order from Theorem (3.3) of Chapter 5). Since this is true, we can iterate
the process and produce Gröbner bases for the modules of second, third,
and all higher syzygies. In other words, Schreyer’s Theorem forms the basis
for an algorithm for computing any finite number of terms in a free resolu-
tion. This algorithm is implemented in Singular, in CoCoA, in the CALI
package for REDUCE, and in the resolution command of Macaulay 2.

For example, consider the homogeneous ideal

M = �yz − xw, y3 − x2z, xz2 − y2w, z3 − yw2�
in k[x, y, z, w]. This is the ideal of a rational quartic curve in P

3. Here is a
Macaulay 2 session calculating and displaying a free resolution for M :

i1 : R = QQ[x,y,z,w]

o1 = R

o1 : PolynomialRing
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i2 : M = ideal(z^3-y*w^2,y*z-x*w,y^3-x^2*z,x*z^2-y^2*w)

3 2 3 2 2 2
o2 = ideal (z - y*w , y*z - x*w, y - x z, x*z - y w)

o2 : Ideal of R

i3 : MR = resolution M

1 4 4 1
o3 = R <-- R <-- R <-- R

0 1 2 3

o3 : ChainComplex

i4 : MR.dd

1
o4 = -1 : 0 <----- R : 0

0

1 4
0 : R <--------------------------------------- R : 1

{0} | yz-xw y3-x2z xz2-y2w z3-yw2 |

4 4
1 : R <--------------------------- R : 2

{2} | -y2 -xz -yw -z2 |
{3} | z w 0 0 |
{3} | x y -z -w |
{3} | 0 0 x y |

4 1
2 : R <-------------- R : 3

{4} | w |
{4} | -z |
{4} | -y |
{4} | x |

o4 : ChainComplexMap

The output shows the matrices in a finite free resolution of the form

(1.13) 0 → R → R4 → R4 → M → 0,
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from the “front” of the resolution “back.” In particular, the first matrix
(1×4) gives the generators of M , the columns of the second matrix give gen-
erators for the first syzygies, and the third matrix (4 × 1) gives a generator
for the second syzygy module, which is free.

Exercise 3.
a. Verify by hand that at each step in the sequence (1.13), the image of the

mapping “coming in” is contained in the kernel of the mapping “going
out.”

b. Verify that the generators of M form a Gröbner basis of M for the grevlex
order with x > y > z > w, and compute the first syzygy module using
Schreyer’s theorem. Why is the first syzygy module generated by just 4
elements (the columns of the 4 × 4 matrix), and not 6 =

�4
2

�
elements

sij as one might expect?

The programs Singular and CALI can be used to compute resolutions of
ideals whose generators are not homogeneous (and, more generally, modules
which are not graded), as well as resolutions of modules over local rings.
Here, for example, is a Singular session computing a resolution of the ideal

(1.14) I = �z3 − y, yz − x, y3 − x2z, xz2 − y2�
in k[x, y, z] (note that I is obtained by dehomogenizing the generators of
M above).

> ring r=0, (x,y,z), dp;
> ideal I=(z3-y,yz-x,y3-x2z,xz2-y2);
> res(I,0);
[1]:
_[1]=z3-y
_[2]=yz-x
_[3]=y3-x2z
_[4]=xz2-y2

[2]:
_[1]=x*gen(1)-y*gen(2)-z*gen(4)
_[2]=z2*gen(2)-y*gen(1)+1*gen(4)
_[3]=xz*gen(2)-y*gen(4)-1*gen(3)

[3]:
_[1]=0

The first line of the input specifies that the characteristic of the field is
0, the ring variables are x, y, z, and the monomial order is graded reverse
lex. The argument “0” in the res command says that the resolution should
have as many steps as variables (the reason for this choice will become
clear in the next section). Here, again, the output is a set of columns that
generate (gen(1), gen(2), gen(3), gen(4) refer to the standard basis
columns e1, e2, e3, e4 of k[x, y, z]4).
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See the exercises below for some additional examples. Of course, this
raises the question whether finite resolutions always exist. Are we in a
situation of potential infinite regress or does this process always stop even-
tually, as in the examples above? See Exercise 11 below for an example
where the answer is no, but where R is not a polynomial ring. We shall
return to this question in the next section.

ADDITIONAL EXERCISES FOR §1

Exercise 4.
a. Prove the second bullet, which asserts that ϕ : M → N is one-to-one if

and only if 0 → M → N is exact.
b. Explain how part b of Proposition (1.2) follows from part a.

Exercise 5. Let M1, M2 be R-submodules of an R-module N . Let M1 ⊕
M2 be the direct sum as in Exercise 4 of Chapter 5, §1, and let M1 + M2 ⊂
N be the sum as in Exercise 14 of Chapter 5, §1.
a. Let ε : M1∩M2 → M1 ⊕M2 be the mapping defined by ε(m) = (m, m).

Show that ε is an R-module homomorphism.
b. Show that δ : M1 ⊕ M2 → M1 + M2 defined by δ(m1, m2) = m1 − m2

is an R-module homomorphism.
c. Show that

0 → M1 ∩ M2
ε→ M1 ⊕ M2

δ→ M1 + M2 → 0

is an exact sequence.

Exercise 6. Let M1 and M2 be submodules of an R-module N .
a. Show that the mappings ψi : Mi → M1 + M2 (i = 1, 2) defined by

ψ1(m1) = m1 + 0 ∈ M1 + M2 and ψ2(m2) = 0 + m2 ∈ M1 + M2 are
one-to-one module homomorphisms. Hence M1 and M2 are submodules
of M1 + M2.

b. Consider the homomorphism ϕ : M2 → (M1 + M2)/M1 obtained by
composing the inclusion M2 → M1 + M2 and the natural homomor-
phism M1 + M2 → (M1 + M2)/M1. Identify the kernel of ϕ, and
deduce that there is an isomorphism of R-modules (M1 + M2)/M1 ∼=
M2/(M1 ∩ M2).

Exercise 7.
a. Let

0 → Mn
ϕn−→ Mn−1

ϕn−1−→ Mn−2
ϕn−2−→ · · · ϕ1−→ M0 → 0

be a “long” exact sequence of R-modules and homomorphisms. Show
that there are “short” exact sequences

0 → ker(ϕi) → Mi → ker(ϕi−1) → 0
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for each i = 1, . . . , n, where the arrow Mi → ker(ϕi−1) is given by the
homomorphism ϕi.

b. Conversely, given

0 → ker(ϕi) → Mi
ϕi−→ Ni → 0

where Ni = ker(ϕi−1) ⊂ Mi−1, show that these short exact sequences
can be spliced together into a long exact sequence

0 → ker(ϕn−1) → Mn−1
ϕn−1−→ Mn−2

ϕn−2−→ · · · ϕ2−→ M1
ϕ1−→ im(ϕ1) → 0.

c. Explain how a resolution of a module is obtained by splicing together
presentations of successive syzygy modules.

Exercise 8. Let Vi, i = 0, . . . , n be finite dimensional vector spaces over
a field k, and let

0 → Vn
ϕn−→ Vn−1

ϕn−1−→ Vn−2
ϕn−2−→ · · · ϕ1−→ V0 → 0

be an exact sequence of k-linear mappings. Show that the alternating sum
of the dimensions of the Vi satisfies:

n�

�=0

(−1)� dimk(V�) = 0.

Hint: Use Exercise 7 and the dimension theorem for a linear mapping ϕ :
V → W :

dimk(V ) = dimk(ker(ϕ)) + dimk(im(ϕ)).

Exercise 9. Let

0 → F� → · · · → F2 → F1 → F0 → M → 0

be a finite free resolution of a submodule M ⊂ Rn. Show how to obtain
a finite free resolution of the quotient module Rn/M from the resolution
for M . Hint: There is an exact sequence 0 → M → Rn → Rn/M → 0 by
Proposition (1.2). Use the idea of Exercise 7 part b to splice together the
two sequences.

Exercise 10. For each of the following modules, find a free resolution
either by hand or by using a computer algebra system.
a. M = �xy, xz, yz� ⊂ k[x, y, z].
b. M = �xy − uv, xz − uv, yz − uv� ⊂ k[x, y, z, u, v].
c. M = �xy − xv, xz − yv, yz − xu� ⊂ k[x, y, z, u, v].
d. M the module generated by the columns of the matrix

M =
�

a2 + b2 a3 − 2bcd a − b
c2 − d2 b3 + acd c + d

�

in k[a, b, c, d]2.
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e. M = �x2, y2, z2, xy, xz, yz� ⊂ k[x, y, z].
f. M = �x3, y3, x2y, xy2� ⊂ k[x, y, z].

Exercise 11. If we work over other rings R besides polynomial rings, then
it is not difficult to find modules with no finite free resolutions. For example,
consider R = k[x]/�x2�, and M = �x� ⊂ R.
a. What is the kernel of the mapping ϕ : R → M given by multiplication

by x?
b. Show that

· · · x→ R
x→ R

x→ M → 0

is an infinite free resolution of M over R, where x denotes multiplication
by x.

c. Show that every free resolution of M over R is infinite. Hint: One way
is to show that any free resolution of M must “contain” the resolution
from part b in a suitable sense.

Exercise 12. We say that an exact sequence of R-modules

0 −→ M
f−→ N

g−→ P −→ 0

splits if there is a homomorphism ϕ : P → N such that g ◦ ϕ = id.
a. Show that the condition that the sequence above splits is equivalent

to the condition that N ∼= M ⊕ P such that f becomes the inclusion
a �→ (a, 0) and g becomes the projection (a, b) �→ b.

b. Show that the condition that the sequence splits is equivalent to the
existence of a homomorphism ψ : N → M such that ψ ◦ f = id. Hint:
use part a.

c. Show that P is a projective module (that is, a direct summand of a free
module—see Definition (4.12) of Chapter 5) if and only if every exact
sequence of the form above splits.

d. Show that P is projective if and only if given every homomorphism
f : P → M1 and any surjective homomorphism g : M2 → M1, there
exists a homomorphism h : P → M2 such that f = g ◦ h.

§2 Hilbert’s Syzygy Theorem

In §1, we raised the question of whether every R-module has a finite free
resolution, and we saw in Exercise 11 that the answer is no if R is the finite-
dimensional algebra R = k[x]/�x2�. However, when R = k[x1, . . . , xn] the
situation is much better, and we will consider only polynomial rings in this
section. The main fact we will establish is the following famous result of
Hilbert.
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(2.1) Theorem (Hilbert Syzygy Theorem). Let R = k[x1, . . . , xn].
Then every finitely generated R-module has a finite free resolution of length
at most n.

A comment is in order. As we saw in the examples in §1, it is not true
that all finite free resolutions of a given module have the same length.
The Syzygy Theorem only asserts the existence of some free resolution of
length ≤ n for every finitely-generated module over the polynomial ring in
n variables. Also, remember from Definition (1.9) that length ≤ n implies
that an R-module M has a free resolution of the form

0 → F� → · · · → F1 → F0 → M, � ≤ n.

This has � + 1 ≤ n + 1 free modules, so that the Syzygy Theorem asserts
the existence of a free resolution with at most n + 1 free modules in it.

The proof we will present is due to Schreyer. It is based on the follow-
ing observation about resolutions produced by the Gröbner basis method
described in §1, using Schreyer’s Theorem—Theorem (3.3) of Chapter 5.

(2.2) Lemma. Let G be a Gröbner basis for a submodule M ⊂ Rt with re-
spect to an arbitrary monomial order, and arrange the elements of G to form
an ordered s-tuple G = (g1, . . . , gs) so that whenever LT(gi) and LT(gj)
contain the same standard basis vector ek and i < j, then LM(gi)/ek >lex
LM(gj)/ek, where >lex is the lex order on R with x1 > · · · > xn. If the vari-
ables x1, . . . , xm do not appear in the leading terms of G, then x1, . . . , xm+1
do not appear in the leading terms of the sij ∈ Syz(G) with respect to the
order >G used in Theorem (3.3) of Chapter 5.

Proof of the lemma. By the first step in the proof of Theorem (3.3)
of Chapter 5,

(2.3) LT>G (sij) = (mij/LT(gi))Ei,

where mij = LCM(LT(gi), LT(gj)), and Ei is the standard basis vector
in Rs. As always, it suffices to consider only the sij such that LT(gi) and
LT(gj) contain the same standard basis vector ek in Rt, and such that i < j.
By the hypothesis on the ordering of the components of G, LM(gi)/ek >lex
LM(gj)/ek. Since x1, . . . , xm do not appear in the leading terms, this implies
that we can write

LM(gi)/ek = xa
m+1ni

LM(gj)/ek = xb
m+1nj ,

where a ≥ b, and ni, nj are monomials in R containing only xm+2, . . . , xn.
But then lcm(LT(gi), LT(gj)) contains xa

m+1, and by (2.3), LT>G (sij) does
not contain x1, . . . , xm, xm+1.

We are now ready for the proof of Theorem (2.1).
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Proof of the theorem. Since we assume M is finitely generated as
an R-module, by (1.5) of this chapter, there is a presentation for M of the
form

(2.4) F1
ϕ1→ F0 → M → 0

corresponding to a choice of a generating set (f1, . . . , fr0) for M , and a
Gröbner basis G0 = {g1, . . . , gr1} for Syz(f1, . . . , fr0) = im(ϕ1) ⊂ F0 =
Rr0 with respect to any monomial order on F0. Order the elements of G0
as described in Lemma (2.2) to obtain a vector G0, and apply Schreyer’s
Theorem to compute a Gröbner basis G1 for the module Syz(G0) ⊂ F1 =
Rr1 (with respect to the >G0 order). We may assume that G1 is reduced.
By the lemma, at least x1 will be missing from the leading terms of G1.
Moreover if the Gröbner basis contains r2 elements, we obtain an exact
sequence

F2
ϕ2→ F1

ϕ1→ F0 → M → 0

with F2 = Rr2 , and im(ϕ2) = Syz(G1). Now iterate the process to obtain
ϕi : Fi → Fi−1, where im(ϕi) = Syz(Gi−1) and Gi ⊂ Rri is a Gröbner
basis for Syz(Gi−1), where each time we order the Gröbner basis Gi−1 to
form the vector Gi−1 so that the hypothesis of Lemma (2.2) is satisfied.

Since the number of variables present in the leading terms of the Gröbner
basis elements decreases by at least one at each step, by an easy induction
argument, after some number � ≤ n of steps, the leading terms of the
reduced Gröbner basis G� do not contain any of the variables x1, . . . , xn.
At this point, we will have extended (2.4) to an exact sequence

(2.5) F�
ϕ�→ F�−1 → · · · → F1

ϕ1→ F0 → M → 0,

and the leading terms in G� will be non-zero constants times standard
basis vectors from F�. In Exercise 8 below, you will show that this implies
Syz(G�−1) is a free module, and G� is a module basis as well as a Gröbner
basis. Hence by Proposition (1.12) we can extend (2.5) to another exact
sequence by adding a zero at the left, and as a result we have produced a
free resolution of length � ≤ n for M .

Here are some additional examples illustrating the Syzygy Theorem. In
the examples we saw in the text in §1, we always found resolutions of
length strictly less than the number of variables in R. But in some cases,
the shortest possible resolutions are of length exactly n.

Exercise 1. Consider the ideal I = �x2 − x, xy, y2 − y� ⊂ k[x, y] from
(1.7) of this chapter, and let M = k[x, y]/I, which is also a module over
R = k[x, y]. Using Exercise 9 from §1, show that M has a free resolution
of length 2, of the form

0 → R2 → R3 → R → M → 0.
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In this case, it is also possible using localization (see Chapter 4) to show
that M has no free resolution of length ≤ 1. See Exercise 9 below for a
sketch.

On the other hand, we might ask whether having an especially short finite
free resolution indicates something special about an ideal or a module. For
example, if M has a resolution 0 → Rr → M → 0 of length 0, then M is
isomorphic to Rr as an R-module. Hence M is free, and this is certainly a
special property! From Chapter 5, §1, we know this happens for ideals only
when M = �f� is principal. Similarly, we can ask what can be said about
free resolutions of length 1. The next examples indicate a special feature
of resolutions of length 1 for a certain class of ideals.

Exercise 2. Let I ⊂ k[x, y, z, w] denote the ideal of the twisted cubic in
P

3, with the following generators:

I = �g1, g2, g3� = �xz − y2, xw − yz, yw − z2�.
a. Show that the given generators form a grevlex Gröbner basis for I.
b. Apply Schreyer’s Theorem to find a Gröbner basis for the module of

first syzygies on the given generators for I.
c. Show that s12 and s23 form a basis for Syz(xz − y2, xw − yz, yw − z2).
d. Use the above calculations to produce a finite free resolution of I, of the

form

0 → R2 A→ R3 → I → 0.

e. Show that the determinants of the 2 × 2 minors of A are just the gi (up
to signs).

Exercise 3. (For this exercise, you will probably want to use a computer
algebra system.) In k2 consider the points

p1 = (0, 0), p2 = (1, 0), p3 = (0, 1)

p4 = (2, 1), p5 = (1, 2), p6 = (3, 3),

and let Ii = I({pi}) for each i, so for instance I3 = �x, y − 1�.
a. Find a grevlex Gröbner basis for

J = I({p1, . . . , p6}) = I1 ∩ · · · ∩ I6.

b. Compute a free resolution of J of the form

0 → R3 A→ R4 → J → 0,

where each entry of A is of total degree at most 1 in x and y.
c. Show that the determinants of the 3 × 3 minors of A are the generators

of J (up to signs).

The examples in Exercises 2 and 3 are instances of the following general
result, which is a part of the Hilbert-Burch Theorem.
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(2.6) Proposition. Suppose that an ideal I in R = k[x1, . . . , xn] has a
free resolution of the form

0 → Rm−1 A→ Rm B→ I → 0

for some m. Then there exists a nonzero element g ∈ R such that B =
( gf̃1 . . . gf̃m ), where f̃i is the determinant of the (m − 1) × (m − 1)
submatrix of A obtained by deleting row i. If k is algebraically closed and
V(I) has dimension n − 2, then we may take g = 1.

Proof. The proof is outlined in Exercise 11 below.

The full Hilbert-Burch Theorem also gives a sufficient condition for the
existence of a resolution of the form given in the proposition. For example,
such a resolution exists when the quotient ring R/I is Cohen-Macaulay of
codimension 2. This condition is satisfied, for instance, if I ⊂ k[x, y, z] is
the ideal of a finite subset of P

2 (including the case where one or more
of the points has multiplicity > 1 as defined in Chapter 4). We will not
give the precise definition of the Cohen-Macaulay condition here. Instead
we refer the interested reader to [Eis], where this and many of the other
known results concerning the shapes of free resolutions for certain classes of
ideals in polynomial and local rings are discussed. In particular, the length
of the shortest finite free resolution of an R-module M is an important
invariant called the projective dimension of M .

ADDITIONAL EXERCISES FOR §2

Exercise 4. Let I be the ideal in k[x, y] generated by the grevlex Gröbner
basis

{g1, g2, g3} = {x2 + 3/2xy + 1/2y2 − 3/2x − 3/2y, xy2 − x, y3 − y}
This ideal was considered in Chapter 2, §2 (with k = C), and we saw there
that V(I) is a finite set containing 5 points in k2, each with multiplicity 1.
a. Applying Schreyer’s Theorem, show that Syz(g1, g2, g3) is generated by

the columns of the matrix

A =

⎛
⎝

y2 − 1 0
−x − 3y/2 + 3/2 y

−y/2 + 3/2 −x

⎞
⎠

b. Show that the columns of A form a module basis for Syz(g1, g2, g3), and
deduce that I has a finite free resolution of length 1:

0 → R2 A→ R3 → I → 0.

c. Show that the determinants of the 2 × 2 minors of A are just the gi (up
to signs).
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Exercise 5. Verify that the resolution from (1.8) of §1 has the form given
in Proposition (2.6). (In this case too, the module being resolved is the
ideal of a finite set of points in k2, each appearing with multiplicity 1.)

Exercise 6. Let

I = �z3 − y, yz − x, y3 − x2z, xz2 − y2�

be the ideal in k[x, y, z] considered in §1 see (1.16).
a. Show that the generators of I are a Gröbner basis with respect to the

grevlex order.
b. The sres command in Singular produces a resolution using Schreyer’s

algorithm. The Singular session is as follows.

> ring r=0, (x,y,z), (dp, C);
> ideal I=(z3-y,yz-x,y3-x2z,xz2-y2);
> sres(I,0);
[1]:
_[1]=yz-x
_[2]=z3-y
_[3]=xz2-y2
_[4]=y3-x2z

[2]:
_[1]=-z2*gen(1)+y*gen(2)-1*gen(3)
_[2]=-xz*gen(1)+y*gen(3)+1*gen(4)
_[3]=-x*gen(2)+y*gen(1)+z*gen(3)
_[4]=-y2*gen(1)+x*gen(3)+z*gen(4)

[3]:
_[1]=x*gen(1)+y*gen(3)-z*gen(2)+1*gen(4)

Show that the displayed generators are Gröbner bases with respect to
the orderings prescribed by Schreyer’s Theorem from Chapter 5, §3.

c. Explain why using Schreyer’s Theorem produces a longer resolution in
this case than that displayed in §1.

Exercise 7. Find a free resolution of length 1 of the form given in
Proposition (2.6) for the ideal

I = �x4 − x3y, x3y − x2y2, x2y2 − xy3, xy3 − y4�

in R = k[x, y]. Identify the matrix A and the element g ∈ R in this case
in Proposition (2.6). Why is g �= 1?

Exercise 8. Let G be a monic reduced Gröbner basis for a submodule
M ⊂ Rt, with respect to some monomial order. Assume that the leading
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terms of all the elements of G are constant multiples of standard basis
vectors in Rt.
a. If ei is the leading term of some element of G, show that it is the leading

term of exactly one element of G.
b. Show that Syz(G) = {0} ⊂ Rs.
c. Deduce that M is a free module.

Exercise 9. In this exercise, we will sketch one way to show that every
free resolution of the quotient R/I for

I = �x2 − x, xy, y2 − y� ⊂ R = k[x, y]

has length ≥ 2. In other words, the resolution 0 → R2 → R3 → R →
R/I → 0 from Exercise 1 is as short as possible. We will need to use some
ideas from Chapter 4 of this book.
a. Let M be an R-module, and let P be a maximal ideal in R. Generalizing

the construction of the local ring RP , define the localization of M at P ,
written MP , to be the set of “fractions” m/f , where m ∈ M , f /∈ P ,
subject to the relation that m/f = m�/f � whenever there is some g ∈ R,
g /∈ P such that g(f �m − fm�) = 0 in M . Show that MP has the
structure of a module over the local ring RP . If M is a free R-module,
show that MP is a free RP -module.

b. Given a homomorphism ϕ : M → N of R-modules, show that there is
an induced homomorphism of the localized modules ϕP : MP → NP

defined by ϕP (m/f) = ϕ(m)/f for all m/f ∈ MP . Hint: First show
that this rule gives a well-defined mapping from MP to NP .

c. Let
M1

ϕ1→ M2
ϕ2→ M3

be an exact sequence of R-modules. Show that the localized sequence

(M1)P
(ϕ1)P−→ (M2)P

(ϕ2)P−→ (M3)P

is also exact.
d. We want to show that the shortest free resolution of M = R/I for

I = �x2−x, xy, y2−y� has length 2. Aiming for a contradiction, suppose
that there is some resolution of length 1: 0 → F1 → F0 → M → 0.
Explain why we may assume F0 = R.

e. By part c, after localizing at P = �x, y� ⊃ I, we obtain a resolu-
tion 0 → (F1)P → RP → MP → 0. Show that MP is isomorphic to
RP /�x, y�RP

∼= k as an RP -module.
f. But then the image of (F1)P → RP must be �x, y�. Show that we obtain

a contradiction because this is not a free RP -module.

Exercise 10. In R = k[x1, . . . , xn], consider the ideals
Im = �x1, x2, . . . , xm�

generated by subsets of the variables, for 1 ≤ m ≤ n.
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a. Find explicit resolutions for the ideals I2, . . . , I5 in k[x1, . . . , x5].
b. Show in general that Im has a free resolution of length m − 1 of the

form

0 → R(m
m) → · · · → R(m

3 ) → R(m
2 ) → Rm → I → 0,

where if we index the basis Bk of R(m
k ) by k-element subsets of

{1, . . . , m}:

Bk = {ei1...ik
: 1 ≤ i1 < i2 < · · · < ik ≤ m},

then the mapping ϕk : R(m
k ) → R( m

k−1) in the resolution is defined by

ϕk(ei1...ik
) =

k�

j=1

(−1)j+1xij ei1...ij−1ij+1...ik
,

where in the term with index j, ij is omitted to yield a (k − 1)-element
subset. These resolutions are examples of Koszul complexes. See [Eis]
for more information about this topic.

Exercise 11. In this exercise, we will sketch a proof of Proposition (2.6).
The basic idea is to consider the linear mapping from Km−1 to Km defined
by the matrix A in a resolution

0 → Rm−1 A→ Rm B→ I → 0,

where K = k(x1, . . . , xn) is the field of rational functions (the field of
fractions of R) and to use some linear algebra over K.
a. Let V be the space of solutions of the the homogeneous system of linear

equations XA = 0 where X ∈ Km is written as a row vector. Show
that the dimension over K of V is 1. Hint: The columns A1, . . . , Am−1
of A are linearly independent over R, hence over K.

b. Let B = ( f1 . . . fm ) and note that exactness implies that BA = 0.
Let f̃i = (−1)i+1 det(Ai), where Ai is the (m − 1) × (m − 1) submatrix
of A obtained by deleting row i. Show that X = (f̃1, . . . , f̃m) is also an
element of the space V of solutions of XA = 0. Hint: append any one of
the columns of A to A to form an m × m matrix �A, and expand det(�A)
by minors along the new column.

c. Deduce that there is some r ∈ K such that rf̃i = fi for all i = 1, . . . , m.
d. Write r = g/h where g, h ∈ R and the fraction is in lowest terms, and

consider the equations gf̃i = hfi. We want to show that h must be a
nonzero constant, arguing by contradiction. If not, then let p be any
irreducible factor of h. Show that A1, . . . , Am−1 are linearly dependent
modulo �p�, or in other words that there exist r1, . . . , rm−1 not all in
�p� such that r1A1 + · · · + rm−1Am−1 = pB for some B ∈ Rm.

e. Continuing from part d, show that B ∈ Syz(f1, . . . , fm) also, so that
B = s1A1 + · · · + sm−1Am−1 for some si ∈ R.
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f. Continuing from part e, show that (r1 −ps1, . . . , rm−1 −psm−1)T would
be a syzygy on the columns of A. Since those columns are linearly in-
dependent over R, ri − psi = 0 for all i. Deduce a contradiction to the
way we chose the ri.

g. Finally, in the case that V(I) has dimension n − 2, show that g must
be a nonzero constant also. Hence by multiplying each fi by a nonzero
constant, we could take g = 1 in Proposition (2.6).

§3 Graded Resolutions

In algebraic geometry, free resolutions are often used to study the homo-
geneous ideals I = I(V ) of projective varieties V ⊂ P

n and other modules
over k[x0, . . . , xn]. The key fact we will use is that these resolutions have
an extra structure coming from the grading on the ring R = k[x0, . . . , xn],
that is the direct sum decomposition

(3.1) R =
$

s≥0

Rs

into the additive subgroups (or k-vector subspaces) Rs = k[x0, . . . , xn]s,
consisting of the homogeneous polynomials of total degree s, together with
0. To begin this section we will introduce some convenient notation and
terminology for describing such resolutions.

(3.2) Definition. A graded module over R is a module M with a family
of subgroups {Mt : t ∈ Z} of the additive group of M . The elements of Mt

are called the homogeneous elements of degree t in the grading, and the
Mt must satisfy the following properties.
a. As additive groups,

M =
$

t∈Z

Mt.

b. The decomposition of M in part a is compatible with the multiplication
by elements of R in the sense that RsMt ⊂ Ms+t for all s ≥ 0 and all
t ∈ Z.

It is easy to see from the definition that each Mt is a module over the
subring R0 = k ⊂ R, hence a k-vector subspace of M . If M is finitely-
generated, the Mt are finite dimensional over k.

Homogeneous ideals I ⊂ R are the most basic examples of graded
modules. Recall that an ideal is homogeneous if whenever f ∈ I, the ho-
mogeneous components of f are all in I as well (see for instance, [CLO],
Chapter 8, §3, Definition 1). Some of the other important properties of
these ideals are summarized in the following statement.
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• (Homogeneous Ideals) Let I ⊂ k[x0, . . . , xn] be an ideal. Then the
following are equivalent:
a. I is a homogeneous ideal.
b. I = �f1, . . . , fs� where fi are homogeneous polynomials.
c. A reduced Gröbner basis for I (with respect to any monomial order)

consists of homogeneous polynomials.

(See for instance [CLO], Theorem 2 of Chapter 8, §3.)
To show that a homogeneous ideal I has a graded module structure, set

It = I ∩ Rt. For t ≥ 0, this is the set of all homogeneous elements of total
degree t in I (together with 0), and It = {0} for t < 0. By the definition
of a homogeneous ideal, we have I = ⊕t∈ZIt, and RsIt ⊂ Is+t is a direct
consequence of the definition of an ideal and the properties of polynomial
multiplication.

The free modules Rm are also graded modules over R provided we take
(Rm)t = (Rt)m. We will call this the standard graded module structure on
Rm. Other examples of graded modules are given by submodules of the free
modules Rm with generating sets possessing suitable homogeneity proper-
ties, and we have statements analogous to those above for homogeneous
ideals.

(3.3) Proposition. Let M ⊂ Rm be submodule. Then the following are
equivalent.
a. The standard grading on Rm induces a graded module structure on M ,

given by taking Mt = (Rt)m ∩ M—the set of elements in M where each
component is a homogeneous polynomial of degree t (or 0).

b. M = �f1, . . . , fr� in Rm where each fi is a vector of homogeneous
polynomials of the same degree di.

c. A reduced Gröbner basis (for any monomial order on Rm) consists of
vectors of homogeneous polynomials where all the components of each
vector have the same degree.

Proof. The proof is left to the reader as Exercise 8 below.

Submodules, direct sums, and quotient modules extend to graded mod-
ules in the following ways. If M is a graded module and N is a submodule
of M , then we say N is a graded submodule if the additive subgroups
Nt = Mt ∩ N for t ∈ Z define a graded module structure on N . For exam-
ple, Proposition (3.3) says that the submodules M = �f1, . . . , fr� in Rm

where each fi is a vector of homogeneous polynomials of the same degree
di are graded submodules of Rm.

Exercise 1.
a. Given a collection of graded modules M1, . . . , Mm, we can produce the

direct sum N = M1 ⊕ · · · ⊕ Mm as usual. In N , let
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Nt = (M1)t ⊕ · · · ⊕ (Mm)t.

Show that the Nt define the structure of a graded module on N .
b. If N ⊂ M is a graded submodule of a graded module M , show that the

quotient module M/N also has a graded module structure, defined by
the collection of additive subgroups

(M/N)t = Mt/Nt = Mt/(Mt ∩ N).

Given any graded R-module M , we can also produce modules that are
isomorphic to M as abstract R-modules, but with different gradings, by
the following trick of shifting the indexing of the family of submodules.

(3.4) Proposition. Let M be a graded R-module, and let d be an integer.
Let M(d) be the direct sum

M(d) =
$

t∈Z

M(d)t,

where M(d)t = Md+t. Then M(d) is also a graded R-module.

Proof. The proof is left to the reader as Exercise 9.

For instance, the modules (Rm)(d) = R(d)m are called shifted or twisted
graded free modules over R. The standard basis vectors ei still form a
module basis for R(d)m, but they are now homogeneous elements of degree
−d in the grading, since R(d)−d = R0. More generally, part a of Exercise 1
shows that we can consider graded free modules of the form

R(d1) ⊕ · · · ⊕ R(dm)

for any integers d1, . . . , dm, where the basis vector ei is homogeneous of
degree −di for each i.

Exercise 2. This exercise will generalize Proposition (3.3). Suppose that
we have integers d1, . . . , dm and elements f1, . . . , fs ∈ Rm such that

fi = (fi1, . . . , fim)T

where the fij are homogeneous and deg fi1 − d1 = · · · = deg fim − dm

for each i. Then prove that M = �f1, . . . , fs� is a graded submodule of
F = R(d1) ⊕ · · · ⊕ R(dm). Also show that every graded submodule of F
has a set of generators of this form.

As the examples given later in the section will show, the twisted free
modules we deal with are typically of the form

R(−d1) ⊕ · · · ⊕ R(−dm).
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Here, the standard basis elements e1, . . . , em have respective degrees
d1, . . . , dm.

Next we consider how homomorphisms interact with gradings on
modules.

(3.5) Definition. Let M, N be graded modules over R. A homomorphism
ϕ : M → N is said to a graded homomorphism of degree d if ϕ(Mt) ⊂ Nt+d

for all t ∈ Z.

For instance, suppose that M is a graded R-module generated by homo-
geneous elements f1, . . . , fm of degrees d1, . . . , dm. Then we get a graded
homomorphism

ϕ : R(−d1) ⊕ · · · ⊕ R(−dm) −→ M

which sends the standard basis element ei to fi ∈ M . Note that ϕ is onto.
Also, since ei has degree di, it follows that ϕ has degree zero.

Exercise 3. Suppose that M is a finitely generated R-module. As usual,
Mt denotes the set of homogeneous elements of M of degree t.
a. Prove that Mt is a finite dimensional vector space over the field k and

that Mt = {0} for t � 0. Hint: Use the surjective map ϕ constructed
above.

b. Let ψ : M → M be a graded homomorphism of degree zero. Prove that
ψ is an isomorphism if and only if ψ : Mt → Mt is onto for every t.
Conclude that ψ is an isomorphism if and only if it is onto.

Another example of a graded homomorphism is given by an m×p matrix
A all of whose entries are homogeneous polynomials of degree d in the
ring R. Then A defines a graded homomorphism ϕ of degree d by matrix
multiplication

ϕ : Rp → Rm

f �→ Af.

If desired, we can also consider A as defining a graded homomorphism of
degree zero from the shifted module R(−d)p to Rm. Similarly, if the entries
of the jth column are all homogeneous polynomials of degree dj , but the
degree varies with the column, then A defines a graded homomorphism of
degree zero

R(−d1) ⊕ · · · ⊕ R(−dp) → Rm.

Still more generally, a graded homomorphism of degree zero

R(−d1) ⊕ · · · ⊕ R(−dp) → R(−c1) ⊕ · · · ⊕ R(−cm)

is defined by an m× p matrix A where the ij entry aij ∈ R is homogeneous
of degree dj − ci for all i, j. We will call a matrix A satisfying this condition
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for some collection dj of column degrees and some collection ci of row
degrees a graded matrix over R.

The reason for discussing graded matrices in detail is that these matrices
appear in free resolutions of graded modules over R. For example, consider
the resolution of the homogeneous ideal

M = �z3 − yw2, yz − xw, y3 − x2z, xz2 − y2w�

in R = k[x, y, z, w] from (1.13) of this chapter, computed using Macaulay 2.
The ideal itself is the image of a graded homomorphism of degree zero

R(−3) ⊕ R(−2) ⊕ R(−3)2 → R,

where the shifts are just the negatives of the degrees of the generators,
ordered as above. The next matrix in the resolution:

A =

⎛
⎜⎜⎝

−y2 −xz −yw −z2

z w 0 0
x y −z −w
0 0 x y

⎞
⎟⎟⎠

(whose columns generate the module of syzygies on the generators of M)
defines a graded homomorphism of degree zero

R(−4)4 A→ R(−2) ⊕ R(−3)3.

In other words, dj = 4 for all j, and c2 = c3 = c4 = 3, c1 = 2 in the
notation as above, so all entries on rows 2, 3, 4 of A are homogeneous of
degree 4 − 3 = 1, while those on row 1 have degree 4 − 2 = 2. The whole
resolution can be written in the form

(3.6) 0 → R(−5) → R(−4)4 → R(−2) ⊕ R(−3)3 → M → 0,

where all the arrows are graded homomorphisms of degree zero.
Here is the precise definition of a graded resolution.

(3.7) Definition. If M is a graded R-module, then a graded resolution of
M is a resolution of the form

· · · → F2
ϕ2→ F1

ϕ1→ F0
ϕ0→ M → 0,

where each F� is a twisted free graded module R(−d1) ⊕ · · · ⊕ R(−dp) and
each homomorphism ϕ� is a graded homomorphism of degree zero (so that
the ϕ� are given by graded matrices as defined above).

The resolution given in (3.6) is clearly a graded resolution. What’s nice
is that every finitely generated graded R-module has a graded resolution
of finite length.
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(3.8) Theorem (Graded Hilbert Syzygy Theorem). Let R =
k[x1, . . . , xn]. Then every finitely generated graded R-module has a finite
graded resolution of length at most n.

Proof. This follows from the proof of Theorem (2.1) (the Syzygy The-
orem in the ungraded case) with minimal changes. The reason is that by
Proposition (3.3) and the generalization given in Exercise 2, if we apply
Schreyer’s theorem to find generators for the module of syzygies on a ho-
mogeneous ordered Gröbner basis (g1, . . . , gs) for a graded submodule of
R(−d1) ⊕ · · · ⊕ R(−dp), then the syzygies sij are also homogeneous and
“live” in another graded submodule of the same form. We leave the details
of the proof as Exercise 5 below.

The resolution command in Macaulay 2 will compute a finite graded
resolution using the method outlined in the proof of Theorem (3.8).
However, the resolutions produced by Macaulay 2 are of a very special
sort.

(3.9) Definition. Suppose that

· · · → F�
ϕ�→ F�−1 → · · · → F0 → M → 0

is a graded resolution of M . Then the resolution is minimal if for every
� ≥ 1, the nonzero entries of the graded matrix of ϕ� have positive degree.

For an example, the reader should note that the resolution (3.6) is a
minimal resolution. But not all resolutions are minimal, as shown by the
following example.

Exercise 4. Show that the resolution from (1.11) can be homogenized to
give a graded resolution, and explain why it is not minimal. Also show that
the resolution from (1.10) is minimal after we homogenize.

In Macaulay 2, resolution computes a minimal resolution.
We will soon see that minimal resolutions have many nice properties.

But first, let’s explain why they are called “minimal”. We say that a set
of generators of a module is minimal if no proper subset generates the
module. Now suppose that we have a graded resolution

· · · → F�
ϕ�→ F�−1 → · · · → F0 → M → 0.

Each ϕ� gives a surjective map F� → im(ϕ�), so that ϕ� takes the stan-
dard basis of F� to a generating set of im(ϕ�). Then we can characterize
minimality as follows.
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(3.10) Proposition. The above resolution is minimal if and only if for
each � ≥ 0, ϕ� takes the standard basis of F� to a minimal generating set
of im(ϕ�).

Proof. We will prove one direction and leave the other as an exercise.
Suppose that for some � ≥ 1 the graded matrix A� of ϕ� has entries of
positive degree. We will show that ϕ�−1 takes the standard basis of F�−1 to
a minimal generating set of im(ϕ�−1). Let e1, . . . , em be the standard basis
vectors of F�−1. If ϕ�−1(e1), . . . , ϕ�−1(em) is not a minimal generating set,
then some ϕ�−1(ei) can be expressed in terms of the others. Reordering the
basis if necessary, we can assume that

ϕ�−1(e1) =
m�

i=2

aiϕ�−1(ei), ai ∈ R.

Then ϕ�−1(e1 − a2e2 − · · ·− amem)=0, so (1, −a2, . . . , −am) ∈ ker(ϕ�−1).
By exactness, (1, −a2, . . . , −am) ∈ im(ϕ�). Since A� is the matrix of ϕ�,
the columns of A� generate im(ϕ�). We are assuming that the nonzero
components of these columns have positive degree. Since the first entry of
(1, −a2, . . . , −am) is a nonzero constant, it follows that this vector cannot
be an R-linear combination of the columns of A�. This contradiction proves
that the ϕ�−1(ei) give a minimal generating set of im(ϕ�−1).

The above proposition shows that minimal resolutions are very intuitive.
For example, suppose that we have built a graded resolution of an R-module
M out to stage � − 1:

F�−1
ϕ�−1→ F�−2 → · · · → F0 → M → 0.

We extend one more step by picking a generating set of ker(ϕ�−1) and
defining ϕ� : F� → ker(ϕ�−1) ⊂ F�−1 by mapping the standard basis of
F� to the chosen generating set. To be efficient, we should pick a minimal
generating set, and if we do this at every step of the construction, then
Proposition (3.10) guarantees that we get a minimal resolution.

Exercise 5. Give a careful proof of Theorem (3.8) (the Graded Syzygy
Theorem), and then modify the proof to show that every finitely generated
graded module over k[x1, . . . , xn] has a minimal resolution of length ≤ n.
Hint: Use Proposition (3.10).

We next discuss to what extent a minimal resolution is unique. The first
step is to define what it means for two resolutions to be the same.

(3.11) Definition. Two graded resolutions · · · → F0
ϕ0→ M → 0 and

· · · → G0
ψ0→ M → 0 are isomorphic if there are graded isomorphisms

α� : F� → G� of degree zero such that ψ0 ◦ α0 = ϕ0 and, for every � ≥ 1,
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the diagram

(3.12)
F�

ϕ�−→ F�−1
α� ↓ ↓ α�−1

G�
ψ�−→ G�−1

commutes, meaning α�−1 ◦ ϕ� = ψ� ◦ α�.

We will now show that a finitely generated graded module M has a
unique minimal resolution up to isomorphism.

(3.13) Theorem. Any two minimal resolutions of M are isomorphic.

Proof. We begin by defining α0 : F0 → G0. If e1, . . . , em is the standard
basis of F0, then we get ϕ0(ei) ∈ M , and since G0 → M is onto, we can
find gi ∈ G0 such that ψ0(gi) = ϕ0(ei). Then setting α0(ei) = gi defines a
graded homomorphism α0 : F0 → G0 of degree zero, and it follows easily
that ψ0 ◦ α0 = ϕ0.

A similar argument gives β0 : G0 → F0, also a graded homomorphism
of degree zero, such that ϕ0 ◦ β0 = ψ0. Thus β0 ◦ α0 : F0 → F0, and if
1F0 : F0 → F0 denotes the identity map, then

(3.14) ϕ0 ◦ (1F0 − β0 ◦ α0) = ϕ0 − (ϕ0 ◦ β0) ◦ α0 = ϕ0 − ψ0 ◦ α0 = 0.

We claim that (3.14) and minimality imply that β0 ◦ α0 is an isomorphism.
To see why, first recall from the proof of Proposition (3.10) that the

columns of the matrix representing ϕ1 generate im(ϕ1). By minimal-
ity, the nonzero entries in these columns have positive degree. If we let
�x1, . . . , xn�F0 denote the submodule of F0 generated by xiej for all i, j,
it follows that im(ϕ1) ⊂ �x1, . . . , xn�F0.

However, (3.14) implies that im(1F0 − β0 ◦ α0) ⊂ ker(ϕ0) = im(ϕ1). By
the previous paragraph, we see that v − β0 ◦ α0(v) ∈ �x1, . . . , xn�F0 for
all v ∈ F0. In Exercise 11 at the end of the section, you will show that this
implies that β0 ◦ α0 is an isomorphism. In particular, α0 is one-to-one.

By a similar argument using the minimality of the graded resolution
· · · → G0 → M → 0, α0 ◦ β0 is also an isomorphism, which implies
that α0 is onto. Hence α0 is an isomorphism as claimed. Then Exercise
12 at the end of the section will show that α0 induces an isomorphism
ᾱ0 : ker(ϕ0) → ker(ψ0).

Now we can define α1. Since ϕ1 : F1 → im(ϕ1) = ker(ϕ0) is onto, we
get a minimal resolution

· · · → F1
ϕ1→ ker(ϕ0) → 0,

of ker(ϕ0) (see Exercise 7 of §1), and similarly

· · · → G1
ψ1→ ker(ψ0) → 0
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is a minimal resolution of ker(ψ0). Then, using the isomorphism ᾱ0 :
ker(ϕ0) → ker(ψ0) just constructed, the above argument easily adapts
to give a graded isomorphism α1 : F1 → G1 of degree zero such that
ᾱ0 ◦ ϕ1 = ψ1 ◦ α1. Since ᾱ0 is the restriction of α0 to im(ϕ1), it follows
easily that (3.12) commutes (with � = 1).

If we apply Exercise 12 again, we see that α1 induces an isomorphism
ᾱ1 : ker(ϕ1) → ker(ψ1). Repeating the above process, we can now define
α2 with the required properties, and continuing for all �, the theorem now
follows easily.

Since we know by Exercise 5 that a finitely generated R-module M has a
finite minimal resolution, it follows from Theorem (3.13) that all minimal
resolutions of M are finite. This fact plays a crucial role in the following
refinement of the Graded Syzygy Theorem.

(3.15) Theorem. If

· · · → F�
ϕ�→ F�−1 → · · · → F0 → M → 0,

is any graded resolution of M over k[x1, . . . , xn], then the kernel ker(ϕn−1)
is free, and

0 → ker(ϕn−1) → Fn−1 → · · · → F0 → M → 0

is a graded resolution of M .

Proof. We begin by showing how to simplify a given graded resolution
· · · → F0 → M → 0. Suppose that for some � ≥ 1, ϕ� : F� → F�−1 is
not minimal, i.e., the matrix A� of ϕ� has a nonzero entry of degree zero.
If we order the standard bases {e1, . . . , em} of F� and {u1, . . . , ut} of F�−1
appropriately, we can assume that

(3.16) ϕ�(e1) = c1u1 + c2u2 + · · · + ctut

where c1 is a nonzero constant (note that (c1, . . . , ct)T is the first column
of A�). Then let G� ⊂ F� and G�−1 ⊂ F�−1 be the submodules generated
by {e2, . . . , em} and {u2, . . . , ut} respectively, and define the maps

F�+1
ψ�+1→ G�

ψ�→ G�−1
ψ�−1→ F�−2

as follows:
• ψ�+1 is the projection F� → G� (which sends a1e1 + a2e2 + · · · + amem

to a2e2 + · · · + amem) composed with ϕ�+1.
• If the first row of A� is (c1, d2, . . . , dm), then ψ� is defined by ψ�(ei) =

ϕ�(ei − di

c1
e1) for i = 2, . . . , m. Since ϕ�(ei) = diu1 + · · · for i ≥ 2, it

follows easily from (3.16) that ψ�(ei) ∈ G�−1.
• ψ�−1 is the restriction of ϕ�−1 to the submodule G�−1 ⊂ F�−1.
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We claim that

· · · → F�+2
ϕ�+1→ F�+1

ψ�+1→ G�
ψ�→ G�−1

ψ�−1→ F�−2
ϕ�−2→ F�−3 → · · ·

is still a resolution of M . To prove this, we need to check exactness at F�+1,
G�, G�−1 and F�−2. (If we set M = F−1 and Fk = 0 for k < −1, then the
above sequence makes sense for all � ≥ 1.)

We begin with F�−2. Here, note that applying ϕ�−1 to (3.16) gives

0 = c1ϕ�−1(u1) + c2ϕ�−1(u2) + · · · + c2ϕ�−1(um).

Since c1 is a nonzero constant, ϕ�−1(u1) is an R-linear combination of
ϕ�−1(ui) for i = 2, . . . , m, and then im(ϕ�−1) = im(ψ�−1) follows from the
definition of ψ�−1. The desired exactness im(ψ�−1) = ker(ϕ�−2) is now an
easy consequence of the exactness of the original resolution.

Next consider G�−1. First note that for i ≥ 2, ψ�−1 ◦ ψ�(ei) = ψ�−1 ◦
ϕ�(ei − di

c1
e1) = 0 since ψ�−1 is just the restriction of ϕ�−1. This shows

that im(ψ�) ⊂ ker(ψ�−1). To prove the opposite inclusion, suppose that
ψ�−1(v) = 0 for some v ∈ G�−1. Since ψ�−1 is the restriction of ϕ�−1,
exactness of the original resolution implies that v = ϕ�(a1e1 + · · ·+amem).
However, since u1 does not appear in v ∈ G�−1 and ϕ�(ei) = diu1 + · · ·,
one easily obtains

(3.17) a1c1 + a2d2 + · · · + amdm = 0

by looking at the coefficients of u1. Then

ψ�(a2e2 + · · · + amem) = a2ψ�(e2) + · · · + amψ�(em)

= a2ϕ�(e2 − d2
c1

e1) + · · · + amϕ�(em − dm

c1
e1)

= ϕ�(a1e1 + · · · + amem) = v,

where the last equality follows by (3.17). This completes the proof of
exactness at G�−1.

The remaining proofs of exactness are straightforward and will be covered
in Exercise 13 at the end of the section.

Since the theorem we’re trying to prove is concerned with ker(ϕn−1), we
need to understand how the kernels of the various maps change under the
above simplification process. If e1 ∈ F� has degree d, then we claim that:

(3.18)

ker(ϕ�−1) ∼= R(−d) ⊕ ker(ψ�−1)

ker(ϕ�) ∼= ker(ψ�)

ker(ϕ�+1) = ker(ψ�+1)

We will prove the first and leave the others for the reader (see Exer-
cise 13). Since ψ�−1 is the restriction of ϕ�−1, we certainly have ker(ψ�−1) ⊂
ker(ϕ�−1). Also, ϕ�(e1) ∈ ker(ϕ�−1) gives the submodule Rϕ�(e1) ⊂
ker(ϕ�−1), and the map sending ϕ�(e1) �→ 1 induces an isomorphism
Rϕ�(e1) ∼= R(−d). To prove that we have a direct sum, note that (3.16)
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implies Rϕ�(e1)∩G�−1 = {0} since G�−1 is generated by u2, . . . , um and c1
is a nonzero constant. From this, we conclude Rϕ�(e1) ∩ ker(ψ�−1) = {0},
which implies

Rϕ�(e1) + ker(ψ�−1) = Rϕ�(e1) ⊕ ker(ψ�−1).

To show that this equals all of ker(ϕ�−1), let w ∈ ker(ϕ�−1) be arbitrary. If
w = a1u1 + · · ·+atut, then set �w = w − a1

c1
ϕ�(e1). By (3.16), we have �w ∈

G�−1, and then �w ∈ ker(ψ�−1) follows easily. Thus w = a1
c1

ϕ�(e1) + �w ∈
Rϕ�(e1) ⊕ ker(ψ�−1), which gives the desired direct sum decomposition.

Hence, we have proved that whenever we have a ϕ� with a nonzero matrix
entry of degree zero, we create a resolution with smaller matrices whose
kernels satisfy (3.18). It follows that if the theorem holds for the smaller
resolution, then it automatically holds for the original resolution.

Now the theorem is easy to prove. By repeatedly applying the above pro-
cess whenever we find a nonzero matrix entry of degree zero in some ψ�, we
can reduce to a minimal resolution. But minimal resolutions are isomorphic
by Theorem (3.13), and hence, by Exercise 5, the minimal resolution we get
has length ≤ n. Then Proposition (1.12) shows that ker(ϕn−1) is free for
the minimal resolution, which, as observed above, implies that ker(ϕn−1)
is free for the original resolution as well.

The final assertion of the theorem, that

0 → ker(ϕn−1) → Fn−1 → · · · → F0 → M → 0

is a free resolution, now follows immediately from Proposition (1.12).

The simplification process used in the proof of Theorem (3.15) can be
used to show that, in a suitable sense, every graded resolution of M is the
direct sum of a minimal resolution and a trivial resolution. This gives a
structure theorem which describes all graded resolutions of a given finitely
generated module over k[x1, . . . , xn]. Details can be found in Theorem 20.2
of [Eis].

Exercise 6. Show that the simplification process from the proof of Theo-
rem (3.15) transforms the homogenization of (1.11) into the homogenization
of (1.10) (see Exercise 4).

There is also a version of the theorem just proved which applies to partial
resolutions.

(3.19) Corollary. If

Fn−1
ϕn−1→ Fn−2 → · · · → F0 → M → 0

is a partial graded resolution over k[x1, . . . , xn], then ker(ϕn−1) is free, and

0 → ker(ϕn−1) → Fn−1 → · · · → F0 → M → 0

is a graded resolution of M .
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Proof. Since any partial resolution can be extended to a resolution, this
follows immediately from Theorem (3.15).

One way to think about Corollary (3.19) is that over k[x1, . . . , xn], the
process of taking repeated syzygies leads to a free syzygy module after at
most n−1 steps. This is essentially how Hilbert stated the Syzygy Theorem
in his classic paper [Hil], and sometimes Theorem (3.15) or Corollary (3.19)
are called the Syzygy Theorem. Modern treatments, however, focus on
the existence of a resolution of length ≤ n, since Hilbert’s version follows
from existence (our Theorem (3.8)) together with the properties of minimal
resolutions.

As an application of these results, let’s study the syzygies of a
homogeneous ideal in two variables.

(3.20) Proposition. Suppose that f1, . . . , fs ∈ k[x, y] are homogeneous
polynomials. Then the syzygy module Syz (f1, . . . , fs) is a twisted free
module over k[x, y].

Proof. Let I = �f1, . . . , fs� ⊂ k[x, y]. Then we get an exact sequence

0 → I → R → R/I → 0

by Proposition (1.2). Also, the definition of the syzygy module gives an
exact sequence

0 → Syz (f1, . . . , fs) → R(−d1) ⊕ · · · ⊕ R(−ds) → I → 0

where di = deg fi. Splicing these two sequences together as in Exercise 7
of §1, we get the exact sequence

0 → Syz (f1, . . . , fs) → R(−d1) ⊕ · · · ⊕ R(−ds)
ϕ1→ R → R/I → 0.

Since n = 2, Corollary (3.19) implies that ker(ϕ1) = Syz (f1, . . . , fs) is
free, and the proposition is proved.

In §4, we will use the Hilbert polynomial to describe the degrees of the
generators of Syz (f1, . . . , fs) in the special case when all of the fi have the
same degree.

ADDITIONAL EXERCISES FOR §3

Exercise 7. Assume that f1, . . . , fs ∈ k[x, y] are homogeneous and not
all zero. We know that Syz (f1, . . . , fs) is free by Proposition (3.20), so
that if we ignore gradings, Syz (f1, . . . , fs) ∼= Rm for some m. This gives
an exact sequence

0 → Rm → Rs → I → 0.
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Prove that m = s − 1 and conclude that we are in the situation of
the Hilbert-Burch Theorem from §2. Hint: As in Exercise 11 of §2, let
K = k(x1, . . . , xn) be the field of rational functions coming from R =
k[x1, . . . , xn]. Explain why the above sequence gives a sequence

0 → Km → Ks → K → 0

and show that this new sequence is also exact. The result will then follow
from the dimension theorem of linear algebra (see Exercise 8 of §1). The
ideas used in Exercise 11 of §2 may be useful.

Exercise 8. Prove Proposition (3.3). Hint: Show a ⇒ c ⇒ b ⇒ a.

Exercise 9. Prove Proposition (3.4).

Exercise 10. Complete the proof of Proposition (3.10).

Exercise 11. Suppose that M is a module over k[x1, . . . , xn] generated
by f1, . . . , fm. As in the proof of Theorem (3.13), let �x1, . . . , xn�M be the
submodule generated by xifj for all i, j. Also assume that ψ : M → M is a
graded homomorphism of degree zero such that v − ψ(v) ∈ �x1, . . . , xn�M
for all v ∈ M . Then prove that ψ is an isomorphism. Hint: By part b of
Exercise 3, it suffices to show that ψ : Mt → Mt is onto. Prove this by
induction on t, using part a of Exercise 3 to start the induction.

Exercise 12. Suppose that we have a diagram of R-modules and
homomorphisms

A
ϕ−→ B

α ↓ ↓ β

C
ψ−→ D

which commutes in the sense of Definition (3.11). If in addition ϕ, ψ are
onto and α, β are isomorphisms, then prove that α restricted to ker(ϕ)
induces an isomorphism ᾱ : ker(ϕ) → ker(ψ).

Exercise 13. This exercise is concerned with the proof of Theorem (3.15).
We will use the same notation as in that proof, including the sequence of
mappings

· · · → F�+1
ψ�+1→ G�

ψ�→ G�−1
ψ�−1→ F�−2 → · · · .

a. Prove that ϕ�(
�m

i=1 aiei) = 0 if and only if ψ�(
�m

i=2 aiei) = 0 and
a1c1 +

�m
i=2 aidi = 0.

b. Use part a to prove that the above sequence is exact at G�.
c. Prove that the above sequence is exact at F�+1. Hint: Do you see why

it suffices to show that ker(ϕ�+1) = ker(ψ�+1)?
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d. Prove the second line of (3.18), i.e., that ker(ϕ�) ∼= ker(ψ�). Hint: Use
part a.

e. Prove the third line of (3.18), i.e., that ker(ϕ�+1) = ker(ψ�+1). Hint:
You did this in part c!

Exercise 14. In the proof of Theorem (3.15), we constructed a certain
homomorphism ψ : G� → G�−1. Suppose that A� is the matrix of ϕ� :
F� → F�−1 with respect to the bases e1, . . . , em of F� and u1, . . . , ut of
F�−1. Write A� in the form

A� =
�

A00 A01
A10 A11

�

where A00 = c1 and A01 = (c2, . . . , ct) as in (3.16), and A10 =
(d2, . . . , dm)T , where the di are from the definition of ψ�. If we let B� be
the matrix of ψ� with respect to the bases e2, . . . , em of G� and u2, . . . , ut

of G�−1, then prove that

B� = A00 − A01A
−1
00 A10.

What’s remarkable is that this formula is identical to equation (6.5) in
Chapter 3. As happens often in mathematics, the same idea can appear in
very different contexts.

Exercise 15. In k[x0, . . . , xn], n ≥ 2, consider the homogeneous ideal In

defined by the determinants of the
�
n
2

�
2×2 submatrices of the 2×n matrix

M =
�

x0 x1 · · · xn−1
x1 x2 · · · xn

�
.

For instance, I2 = �x0x2 −x2
1� is the ideal of a conic section in P

2. We have
already seen I3 in different notation (where?).
a. Show that In is the ideal of the rational normal curve of degree n in

P
n—the image of the mapping given in homogeneous coordinates by

ϕ : P
1 → P

n

(s, t) �→ (sn, sn−1t, . . . , stn−1, tn).

b. Do explicit calculations to find the graded resolutions of the ideals I4, I5.
c. Show that the first syzygy module of the generators for In is generated

by the three-term syzygies obtained by appending a copy of the first
(resp. second) row of M to M , to make a 3 × n matrix M � (resp. M ��),
then expanding the determinants of all 3 × 3 submatrices of M � (resp.
M ��) along the new row.

d. Conjecture the general form of a graded resolution of In. (Proving this
conjecture requires advanced techniques like the Eagon-Northcott com-
plex . This and other interesting topics are discussed in Appendix A2.6
of [Eis].)
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§4 Hilbert Polynomials and Geometric Applications

In this section, we will study Hilbert functions and Hilbert polynomials.
These are computed using the graded resolutions introduced in §3 and con-
tain some interesting geometric information. We will then give applications
to the ideal of three points in P

2, parametric equations in the plane, and
invariants of finite group actions.

Hilbert Functions and Hilbert Polynomials
We begin by defining the Hilbert function of a graded module. Because we
will be dealing with projective space P

n, it is convenient to work over the
polynomial ring R = k[x0, . . . , xn] in n + 1 variables.

If M is a finitely generated graded R-module, recall from Exercise 3 of
§3 that for each t, the degree t homogeneous part Mt is a finite dimensional
vector space over k. This leads naturally to the definition of the Hilbert
function.

(4.1) Definition. If M is a finitely generated graded module over R =
k[x0, . . . , xn], then the Hilbert function HM (t) is defined by

HM (t) = dimk Mt,

where as usual, dimk means dimension as a vector space over k.

The most basic example of a graded module is R = k[x0, . . . , xn] itself.
Since Rt is the vector space of homogeneous polynomials of degree t in
n + 1 variables, Exercise 19 of Chapter 3, §4 implies that for t ≥ 0, we
have

HR(t) = dimk Rt =
�

t + n

n

�
,

If we adopt the convention that
�
a
b

�
= 0 if a < b, then the above formula

holds for all t. Similarly, the reader should check that the Hilbert function
of the twisted module R(d) is given by

(4.2) HR(d)(t) =
�

t + d + n

n

�
, t ∈ Z.

An important observation is that for t ≥ 0 and n fixed, the binomial
coefficient

�
t+n
n

�
is a polynomial of degree n in t. This is because

(4.3)
�

t + n

n

�
=

(t + n)!
t!n!

=
(t + n)(t + n − 1) · · · (t + 1)

n!
.
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It follows that HR(t) is given by a polynomial for t sufficiently large (t ≥ 0
in this case). This will be important below when we define the Hilbert
polynomial.

Here are some exercises which give some simple properties of Hilbert
functions.

Exercise 1. If M is a finitely generated graded R-module and M(d) is
the twist defined in Proposition (3.4), then show that

HM(d)(t) = HM (t + d)

for all t. Note how this generalizes (4.2).

Exercise 2. Suppose that M , N and P are finitely generated graded R-
modules.
a. The direct sum M ⊕ N was discussed in Exercise 1 of §3. Prove that

HM⊕N = HM + HN .
b. More generally, if we have an exact sequence

0 → M
α→ P

β→ N → 0

where α and β are graded homomorphisms of degree zero, then show
that HP = HM + HN .

c. Explain how part b generalizes part a. Hint: What exact sequence do
we get from M ⊕ N?

It follows from these exercises that we can compute the Hilbert func-
tion of any twisted free module. However, for more complicated modules,
computing the Hilbert function can be rather nontrivial. There are several
ways to study this problem. For example, if I ⊂ R = k[x0, . . . , xn] is a
homogeneous ideal, then the quotient ring R/I is a graded R-module, and
in Chapter 9, §3 of [CLO], it is shown than if �LT(I)� is the ideal of initial
terms for a monomial order on R, then the Hilbert functions HR/I and
HR/�LT(I)	 are equal. Using the techniques of Chapter 9, §2 of [CLO], it is
relatively easy to compute the Hilbert function of a monomial ideal. Thus,
once we compute a Gröbner basis of I, we can find the Hilbert function of
R/I. (Note: The Hilbert function HR/I is denoted HFI in [CLO].)

A second way to compute Hilbert functions is by means of graded
resolutions. Here is the basic result.

(4.4) Theorem. Let R = k[x0, . . . , xn] and let M be a graded R-module.
Then, for any graded resolution of M

0 → Fk → Fk−1 → · · · → F0 → M → 0,
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we have

HM (t) = dimk Mt =
k�

j=0

(−1)j dimk(Fj)t =
k�

j=0

(−1)jHFj (t).

Proof. In a graded resolution, all the homomorphisms are homogeneous
of degree zero, hence for each t, restricting all the homomorphisms to the
degree t homogeneous parts of the graded modules, we also have an exact
sequence of finite dimensional k-vector spaces

0 → (Fk)t → (Fk−1)t → · · · → (F0)t → Mt → 0.

The alternating sum of the dimensions in such an exact sequence is 0, by
Exercise 8 of §1. Hence

dimk Mt =
k�

j=0

(−1)j dimk(Fj)t,

and the theorem follows by the definition of Hilbert function.

Since we know the Hilbert function of any twisted free module (by (4.2)
and Exercise 2), it follows that the Hilbert function of a graded module
M can be calculated easily from a graded resolution. For example, let’s
compute the Hilbert function of the homogeneous ideal I of the twisted
cubic in P

3, namely

(4.5) I = �xz − y2, xw − yz, yw − z2� ⊂ R = k[x, y, z, w].

In Exercise 2 of §2 of this chapter, we found that I has a graded resolution
of the form

0 → R(−3)2 → R(−2)3 → I → 0.

As in the proof of Theorem (4.4), this resolution implies

dimk It = dimk R(−2)3t − dimk R(−3)2t

for all t. Applying Exercise 2 and (4.2), this can be rewritten as

HI(t) = 3
�

t − 2 + 3
3

�
− 2

�
t − 3 + 3

3

�

= 3
�

t + 1
3

�
− 2

�
t

3

�
.

Using the exact sequence 0 → I → R → R/I → 0, Exercise 2 implies that

HR/I(t) = HR(t) − HI(t) =
�

t + 3
3

�
− 3

�
t + 1

3

�
+ 2

�
t

3

�

for all t. For t = 0, 1, 2, one (or both) of the binomial coefficients from HI

is zero. However, computing HR/I(t) separately for t ≤ 2 and doing some
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algebra, one can show that

(4.6) HR/I(t) = 3t + 1

for all t ≥ 0.
In this example, the Hilbert function is a polynomial once t is sufficiently

large (t ≥ 0 in this case). This is a special case of the following general
result.

(4.7) Proposition. If M is a finitely generated R-module, then there is
a unique polynomial HPM such that

HM (t) = HPM (t)

for all t sufficiently large.

Proof. The key point is that for a twisted free module of the form

F = R(−d1) ⊕ · · · ⊕ R(−dm),

Exercise 2 and (4.2) imply that

HF (t) =
m�

i=1

�
t − di + n

n

�
.

Furthermore, (4.3) shows that this is a polynomial in t provided t ≥
max(d1, . . . , dm).

Now suppose that M is a finitely generated R-module. We can find a
finite graded resolution

0 → F� → · · · → F0 → M → 0,

and Theorem (4.4) tells us that

HM (t) =
��

j=0

(−1)jHFj (t).

The above computation implies that HFj (t) is a polynomial in t for t
sufficiently large, so that the same is true for HM (t).

The polynomial HPM given in Proposition (4.7) is called the Hilbert
polynomial of M . For example, if I is the ideal given by (4.5), then (4.6)
implies that

(4.8) HPR/I(t) = 3t + 1

in this case.
The Hilbert polynomial contains some interesting geometric information.

For example, a homogeneous ideal I ⊂ k[x0, . . . , xn] determines the pro-
jective variety V = V(I) ⊂ P

n, and the Hilbert polynomial tells us the
following facts about V :
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• The degree of the Hilbert polynomial HPR/I is the dimension of the
variety V . For example, in Chapter 9 of [CLO], this is the definition of
the dimension of a projective variety.

• If the Hilbert polynomial HPR/I has degree d = dim V , then one can
show that its leading term is (D/d!) td for some positive integer D. The
integer D is defined to be the degree of the variety V . One can also
prove that D equals the number of points where V meets a generic (n −
d)-dimensional linear subspace of P

n.

For example, the Hilbert polynomial HPR/I(t) = 3t+1 from (4.8) shows
that the twisted cubic has dimension 1 and degree 3. In the exercises at
the end of the section, you will compute additional examples of Hilbert
functions and Hilbert polynomials.

The Ideal of Three Points
Given a homogeneous ideal I ⊂ k[x0, . . . , xn], we get the projective variety
V = V(I). We’ve seen that a graded resolution enables us to compute the
Hilbert polynomial, which in turn determines geometric invariants of V
such as the dimension and degree. However, the actual terms appearing in
a graded resolution of the ideal I encode additional geometric information
about the variety V . We will illustrate this by considering the form of the
resolution of the ideal of a collection of points in P

2. For example, consider
varieties consisting of three distinct points, namely V = {p1, p2, p3} ⊂ P

2.
There are two cases here, depending on whether the pi are collinear or not.

We begin with a specific example.

Exercise 3. Suppose that V = {p1, p2, p3} = {(0, 0, 1), (1, 0, 1), (0, 1, 1)}.
a. Show that I = I(V ) is the ideal �x2 − xz, xy, y2 − yz� ⊂ R = k[x, y, z].
b. Show that we have a graded resolution

0 → R(−3)2 → R(−2)3 → I → 0

and explain how this relates to (1.10).
c. Compute that the Hilbert function of R/I is

HR/I(t) =
�

t + 2
2

�
− 3

�
t

2

�
+ 2

�
t − 1

2

�

=
�

1 if t = 0,
3 if t ≥ 1.

The Hilbert polynomial in Exercise 3 is the constant polynomial 3, so
the dimension is 0 and the degree is 3, as expected. There is also some nice
intuition lying behind the graded resolution

(4.9) 0 → R(−3)2 → R(−2)3 → I → 0
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found in part b of the exercise. First, note that I0 = {0} since 0 is the
only constant vanishing on the points, and I1 = {0} since the points of
V = {(0, 0, 1), (1, 0, 1), (0, 1, 1)} are noncollinear. On the other hand, there
are quadratics which vanish on V . One way to see this is to let �ij be the
equation of the line vanishing on points pi and pj . Then f1 = �12�13, f2 =
�12�23, f3 = �13�23 are three quadratics vanishing precisely on V . Hence
it makes sense that I is generated by three quadratics, which is what the
R(−2)3 in (4.9) says. Also, notice that f1, f2, f3 have obvious syzygies of
degree 1, for example, �23f1 − �13f2 = 0. It is less obvious that two of
these syzygies are free generators of the syzygy module, but this is what
the R(−3)2 in (4.9) means.

From a more sophisticated point of view, the resolution (4.9) is fairly
obvious. This is because of the converse of the Hilbert-Burch Theorem
discussed at the end of §2, which applies here since V ⊂ P

2 is a finite set
of points and hence is Cohen-Macaulay of dimension 2 − 2 = 0.

The example presented in Exercise 3 is more general than one might sus-
pect. This is because for three noncollinear points p1, p2, p3, there is a linear
change of coordinates on P

2 taking p1, p2, p3 to (0, 0, 1), (1, 0, 1), (0, 1, 1).
Using this, we see that if I is the ideal of any set of three noncollinear
points, then I has a free resolution of the form (4.9), so that the Hilbert
function of I is given by part c of Exercise 3.

The next two exercises will study what happens when the three points
are collinear.

Exercise 4. Suppose that V = {(0, 1, 0), (0, 0, 1), (0, λ, 1)}, where λ �= 0.
These points lie on the line x = 0, so that V is a collinear triple of points.
a. Show that I = I(V ) has a graded resolution of the form

0 → R(−4) → R(−3) ⊕ R(−1) → I → 0.

Hint: Show that I = �x, yz(y − λz)�.
b. Show that the Hilbert function of R/I is

HR/I(t) =

⎧
⎨
⎩

1 if t = 0,
2 if t = 1,
3 if t ≥ 2.

Exercise 5. Suppose now that V = {p1, p2, p3} is any triple of collinear
points in P

2. Show that I = I(V ) has a graded resolution of the form

(4.10) 0 → R(−4) → R(−3) ⊕ R(−1) → I → 0,

and conclude that the Hilbert function of R/I is as in part b of Exercise 4.
Hint: Use a linear change of coordinates in P

2.

The intuition behind (4.10) is that in the collinear case, V is the intersec-
tion of a line and a cubic, and the only syzygy between these is the obvious
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one. In geometric terms, we say that V is a complete intersection in this
case since its dimension (= 0) is the dimension of the ambient space (=
2) minus the number of defining equations (= 2). Note that a noncollinear
triple isn’t a complete intersection since there are three defining equations.

This sequence of exercises shows that for triples of points in P
2, their

corresponding ideals I all give the same Hilbert polynomial HPR/I = 3.
But depending on whether the points are collinear or not, we get different
resolutions (4.10) and (4.9) and different Hilbert functions, as in part c of
Exercise 3 and part b of Exercise 4. This is quite typical of what happens.

Here is a similar but more challenging example.

Exercise 6. Now consider varieties V = {p1, p2, p3, p4} in P
2, and write

I = I(V ) ⊂ R = k[x, y, z] as above.
a. First assume the points of V are in general position in the sense that no

three are collinear. Show that I2 is 2-dimensional over k, and that I is
generated by any two linearly independent elements of I2. Deduce that
a graded resolution of I has the form

0 → R(−4) → R(−2)2 → I → 0,

and use this to compute HR/I(t) for all t. Do you see how the R(−2)2

is consistent with Bézout’s Theorem?
b. Now assume that three of the points of V lie on a line L ⊂ P

2 but the
fourth does not. Show that every element of I2 is reducible, containing
as a factor a linear polynomial vanishing on L. Show that I2 does not
generate I in this case, and deduce that a graded resolution of I has the
form

0 → R(−3) ⊕ R(−4) → R(−2)2 ⊕ R(−3) → I → 0.

Use this to compute HR/I(t) for all t.
c. Finally, consider the case where all four of the points are collinear. Show

that in this case, the graded resolution has the form

0 → R(−5) → R(−1) ⊕ R(−4) → I → 0,

and compute the Hilbert function of R/I for all t.
d. In which cases is V a complete intersection?

Understanding the geometric significance of the shape of the graded res-
olution of I = I(V ) in more involved examples is an area of active research
in contemporary algebraic geometry. A conjecture of Mark Green concern-
ing the graded resolutions of the ideals of canonical curves has stimulated
many of the developments here. See [Schre2] and [EH] for some earlier work
on Green’s conjecture. Recent articles of Montserrat Teixidor ([Tei]) and
Claire Voisin ([Voi]) have proved Green’s conjecture for a large class of
curves. [EH] contains articles on other topics concerning resolutions. Sec-
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tion 15.12 of [Eis] has some interesting projects dealing with resolutions,
and some of the exercises in Section 15.11 are also relevant.

Parametric Plane Curves
Here, we will begin with a curve in k2 parametrized by rational functions

(4.11) x =
a(t)
c(t)

, y =
b(t)
c(t)

,

where a, b, c ∈ k[t] are polynomials such that c �= 0 and GCD(a, b, c) = 1.
We also set n = max(deg a, deg b, deg c). Parametrizations of this form
play an important role in computer-aided geometric design, and a ques-
tion of particular interest is the implicitization problem, which asks how
the equation f(x, y) = 0 of the underlying curve is obtained from the
parametrization (4.11). An introduction to implicitization can be found in
Chapter 3 of [CLO].

A basic object in this theory is the ideal

(4.12) I = �c(t)x − a(t), c(t)y − b(t)� ⊂ k[x, y, t].

This ideal has the following interpretation. Let W ⊂ k be the roots of c(t),
i.e., the solutions of c(t) = 0. Then we can regard (4.11) as the function
F : k − W → k2 defined by

F (t) =
�

a(t)
c(t)

,
b(t)
c(t)

�
.

In Exercise 14 at the end of the section, you will show that the graph of
F , regarded as a subset of k3, is precisely the variety V(I). From here,
one can prove that the intersection I1 = I ∩ k[x, y] is an ideal in k[x, y]
such that V(I1) ⊂ k2 is the smallest variety containing the image of the
parametrization (4.11) (see Exercise 14). In the terminology of Chapter 2,
I1 = I ∩ k[x, y] is an elimination ideal, which we can compute using a
Gröbner basis with respect to a suitable monomial order.

It follows that the ideal I contains a lot of information about the curve
parametrized by (4.11). Recently, it was discovered (see [SSQK] and [SC])
that I provides other parametrizations of the curve, different from (4.11).
To see how this works, let I(1) denote the subset of I consisting of all
elements of I of total degee at most 1 in x and y. Thus

(4.13) I(1) = {f ∈ I : f = A(t)x + B(t)y + C(t)}.

An element in A(t)x + B(t)y + C(t) ∈ I(1) is called a moving line since
for t fixed, the equation A(t)x + B(t)y + C(t) = 0 describes a line in the
plane, and as t moves, so does the line.
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Exercise 7. Given a moving line A(t)x + B(t)y + C(t) ∈ I(1), suppose
that t ∈ k satisfies c(t) �= 0. Then show that the point given by (4.11) lies
on the line A(t)x + B(t)y + C(t) = 0. Hint: Use I(1) ⊂ I.

Now suppose that we have moving lines f, g ∈ I(1). Then, for a fixed t,
we get a pair of lines, which typically intersect in a point. By Exercise 7,
each of these lines contains (a(t)/c(t), b(t)/c(t)), so this must be the point
of intersection. Hence, as we vary t, the intersection of the moving lines
will trace out our curve.

Notice that our original parametrization (4.11) is given by moving lines,
since we have the vertical line x = a(t)/c(t) and the horizontal line y =
b(t)/c(t). However, by allowing more general moving lines, one can get
polynomials of smaller degree in t. The following exercise gives an example
of how this can happen.

Exercise 8. Consider the parametrization

x =
2t2 + 4t + 5
t2 + 2t + 3

, y =
3t2 + t + 4
t2 + 2t + 3

.

a. Prove that p = (5t + 5)x − y − (10t + 7) and q = (5t − 5)x − (t + 2)y +
(−7t + 11) are moving lines, i.e., p, q ∈ I, where I is as in (4.12).

b. Prove that p and q generate I, i.e., I = �p, q�.

In Exercise 8, the original parametrization had maximum degree 2 in t,
while the moving lines p and q have maximum degree 1. This is typical
of what happens, for we will show below that in general, if n is the max-
imum degree of a, b, c, then there are moving lines p, q ∈ I such that p
has maximum degree µ ≤ �n/2� in t and q has maximum degree n − µ.
Furthermore, p and q are actually a basis of the ideal I. In the terminology
of [CSC], this is the moving line basis or µ-basis of the ideal.

Our goal here is to prove this result—the existence of a µ-basis—and to
explain what this has to do with graded resolutions and Hilbert functions.
We begin by studying the subset I(1) ⊂ I defined in (4.13). It is closed
under addition, and more importantly, I(1) is closed under multiplication
by elements of k[t] (be sure you understand why). Hence I(1) has a natural
structure as a k[t]-module. In fact, I(1) is a syzygy module, which we will
now show.

(4.14) Lemma. Let a, b, c ∈ k[t] satisfy c �= 0 and GCD(a, b, c) = 1, and
set I = �cx − a, cy − b�. Then, for A, B, C ∈ k[t],

A(t)x + B(t)y + C(t) ∈ I ⇐⇒ A(t)a(t) + B(t)b(t) + C(t)c(t) = 0.

Thus the map A(t)x + B(t)y + C(t) �→ (A, B, C) defines an isomorphism
of k[t]-modules I(1) ∼= Syz (a, b, c).
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Proof. To prove ⇒, consider the ring homomorphism k[x, y, t] → k(t)
which sends x, y, t to a(t)

c(t) , b(t)
c(t) , t. Since the generators of I map to zero,

so does A(t)x + B(t)y + C(t) ∈ I. Thus A(t) a(t)
c(t) + B(t) b(t)

c(t) + C(t) = 0
in k(t), and multiplying by c(t) gives the desired equation.

For the other implication, let S = k[t] and consider the sequence

(4.15) S3 α→ S3 β→ S

where α(h1, h2, h3) = (ch1 + bh3, ch2 −ah3, −ah1 − bh2) and β(A, B, C) =
Aa+ Bb+ Cc. One easily checks that β ◦ α = 0, so that im(α) ⊂ ker(β). It
is less obvious that (4.15) is exact at the middle term, i.e., im(α) = ker(β).
This will be proved in Exercise 15 below. The sequence (4.15) is the Koszul
complex determined by a, b, c (see Exercise 10 of §2 for another example of
a Koszul complex). A Koszul complex is not always exact, but Exercise 15
will show that (4.15) is exact in our case because GCD(a, b, c) = 1.

Now suppose that Aa + Bb + Cc = 0. We need to show that Ax +
By + C ∈ I. This is now easy, since our assumption on A, B, C implies
(A, B, C) ∈ ker(β). By the exactness of (4.15), (A, B, C) ∈ im(α), which
means we can find h1, h2, h3 ∈ k[t] such that

A = ch1 + bh3, B = ch2 − ah3, C = −ah1 − bh2.

Hence

Ax + By + C = (ch1 + bh3)x + (ch2 − ah3)y − ah1 − bh2

= (h1 + yh3)(cx − a) + (h2 − xh3)(cy − b) ∈ I,

as desired. The final assertion of the lemma now follows immediately.

(4.16) Definition. Given a parametrization (4.11), we get the ideal I =
�cx − a, cy − b� and the syzygy module I(1) from (4.13). Then we define µ
to the minimal degree in t of a nonzero element in I(1).

The following theorem shows the existence of a µ-basis of the ideal I.

(4.17) Theorem. Given (4.11) where c �= 0 and GCD(a, b, c) = 1, set
n = max(deg a, deg b, deg c) and I = �cx − a, cy − b� as usual. If µ is as
in Definition (4.16), then

µ ≤ �n/2�,

and we can find p, q ∈ I such that p has degree µ in t, q has degree n − µ
in t, and I = �p, q�.

Proof. We will study the syzygy module Syz (a, b, c) using the methods of
§3. For this purpose, we need to homogenize a, b, c. Let t, u be homogeneous
variables and consider the ring R = k[t, u]. Then ã(t, u) will denote the
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degree n homogenization of a(t), i.e.,

ã(t, u) = un a( t
u ) ∈ R

In this way, we get degree n homogeneous polynomials ã, b̃, c̃ ∈ R, and the
reader should check that GCD(a, b, c) = 1 and n = max(deg a, deg b, deg c)
imply that ã, b̃, c̃ have no common zeros in P

1. In other words, the only
solution of ã = b̃ = c̃ = 0 is t = u = 0.

Now let J = �ã, b̃, c̃� ⊂ R = k[t, u]. We first compute the Hilbert poly-
nomial HPJ of J . The key point is that since ã = b̃ = c̃ = 0 have only
one solution, no matter what the field is, the Finiteness Theorem from §2
of Chapter 2 implies that the quotient ring R/J = k[t, u]/J is a finite di-
mensional vector space over k. But J is a homogeneous ideal, which means
that R/J is a graded ring. In order for S/J to have finite dimension, we
must have dimk(R/J)s = 0 for all s sufficiently large (we use s instead of
t since t is now one of our variables). It follows that HPR/J is the zero
polynomial. Then the exact sequence

0 → J → R → R/J → 0

and Exercise 2 imply that

(4.18) HPJ (s) = HPR(s) =
�

s + 1
1

�
= s + 1

since R = k[t, u]. For future reference, note also that by (4.2),

HPR(−d)(s) =
�

s − d + 1
1

�
= s − d + 1.

Now consider the exact sequence

0 → Syz (ã, b̃, c̃) → R(−n)3 α→ J → 0,

where α(A, B, C) = Aã + Bb̃ + Cc̃. By Proposition (3.20), the syzygy
module Syz (ã, b̃, c̃) is free, which means that we get a graded resolution

(4.19) 0 → R(−d1) ⊕ · · · ⊕ R(−dm)
β→ R(−n)3 α→ J → 0

for some d1, . . . , dm. By Exercise 2, the Hilbert polynomial of the middle
term is the sum of the other two Hilbert polynomials. Since we know HPJ

from (4.18), we obtain

3(s − n + 1) = (s − d1 + 1) + · · · + (s − dm + 1) + (s + 1)

= (m + 1)s + m + 1 − d1 − · · · − dm.

It follows that m = 2 and 3n = d1 + d2. Thus (4.19) becomes

(4.20) 0 → R(−d1) ⊕ R(−d2)
β→ R(−n)3 α→ J → 0.

The matrix L representing β is a 3 × 2 matrix
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(4.21) L =

⎛
⎝

p1 q1
p2 q2
p3 q3

⎞
⎠,

and since β has degree zero, the first column of L consists of homogeneous
polynomials of degree µ1 = d1 − n and the second column has degree
µ2 = d2 − n. Then µ1 + µ2 = n follows from 3n = d1 + d2.

We may assume that µ1 ≤ µ2. Since the first column (p1, p2, p3) of (4.21)
satisfies p1ã + p2b̃ + p3c̃ = 0, setting u = 1 gives

p1(t, 1)a(t) + p2(t, 1)b(t) + p3(t, 1)c(t) = 0.

Thus p = p1(t, 1)x+p2(t, 1)y +p3(t, 1) ∈ I(1) by Lemma (4.14). Similarly,
the second column of (4.21) gives q = q1(t, 1)x + q2(t, 1)y + q3(t, 1) ∈ I(1).
We will show that p and q satisfy the conditions of the theorem.

First observe that the columns of L generate Syz (ã, b̃, c̃) by exactness.
In Exercise 16, you will show this implies that p and q generate I(1). Since
cx − a and cy − b are in I(1), we obtain I = �cx − a, cy − b� ⊂ �p, q�. The
other inclusion is immediate from p, q ∈ I(1) ⊂ I, and I = �p, q� follows.

The next step is to prove µ1 = µ. We begin by showing that p has degree
µ1 in t. This follows because p1(t, u), p2(t, u), p3(t, u) are homogeneous of
degree µ1. If the degree of all three were to drop when we set u = 1, then
each pi would be divisible by u. However, since p1, p2, p3 give a syzygy
on ã, b̃, c̃, so would p1/u, p2/u, p3/u. Hence we would have a syzygy of
degree < µ1. But the columns of L generate the syzygy module, so this is
impossible since µ1 ≤ µ2. Hence p has degree µ1 in t, and then µ ≤ µ1
follows from the definition of µ. However, if µ < µ1, then we would have
Ax + By + C ∈ I(1) of degree < µ1. This gives a syzygy of a, b, c, and
homogenizing, we would get a syzygy of degree < µ1 among ã, b̃, c̃. As we
saw earlier in the paragraph, this is impossible.

We conclude that p has degree µ in t, and then µ1 + µ2 = n implies that
q has degree µ2 = n−µ in t. Finally, µ ≤ �n/2� follows from µ = µ1 ≤ µ2,
and the proof of the theorem is complete.

As already mentioned, the basis p, q constructed in Theorem (4.17) is
called a µ-basis of I. One property of the µ-basis is that it can be used to
find the implicit equation of the parametrization (4.11). Here is an example
of how this works.

Exercise 9. The parametrization studied in Exercise 8 gives the ideal

I =
(
(t2 + 2t + 3)x − (2t2 + 4t + 5), (t2 + 2t + 3)y − (3t2 + t + 4)

)
.

a. Use Gröbner basis methods to find the intersection I ∩k[x, y]. This gives
the implicit equation of the curve.

b. Show that the resultant of the generators of I with respect to t gives
the implicit equation.
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c. Verify that the polynomials p = (5t + 5)x − y − (10t + 7) and q =
(5t − 5)x − (t + 2)y + (−7t + 11) are a µ-basis for I. Thus µ = 1, which
is the biggest possible value of µ (since n = 2).

d. Show that the resultant of p and q also gives the implicit equation.

Parts b and d of Exercise 9 express the implicit equation as a resultant.
However, if we use the Sylvester determinant, then part b uses a 4 × 4
determinant, while part d uses a 2 × 2 determinant. So the µ-basis gives a
smaller expression for the resultant. In general, one can show (see [CSC])
that for the µ-basis, the resultant can be expressed as an (n − µ) × (n − µ)
determinant. Unfortunately, it can also happen that this method gives a
power of the actual implicit equation (see Section 4 of [CSC]).

Earlier in this section, we considered the ideal of three points in P
2.

We found that although all such ideals have the same Hilbert polynomial,
we can distinguish the collinear and noncollinear cases using the Hilbert
function. The situation is similar when dealing with µ-bases. Here, we have
the ideal J = �ã, b̃, c̃� ⊂ R = k[t, u] from the proof of Theorem (4.17). In
the following exercise you will compute the Hilbert function of R/J .

Exercise 10. Let J = �ã, b̃, c̃� be as in the proof of Theorem (4.17). In
the course of the proof, we showed that the Hilbert polynomial of R/J is
the zero polynomial. But what about the Hilbert function?
a. Prove that the Hilbert function HR/J is given by

HR/J(s) =

⎧
⎪⎪⎨
⎪⎪⎩

s + 1 if 0 ≤ s ≤ n − 1
3n − 2s − 2 if n ≤ s ≤ n + µ − 1
2n − s − µ − 1 if n + µ ≤ s ≤ 2n − µ − 1
0 if 2n − µ ≤ s.

b. Show that the largest value of s such that HR/J(s) �= 0 is s = 2n −
µ− 2, and conclude that knowing µ is equivalent to knowing the Hilbert
function of the quotient ring R/J .

c. Compute the dimension of R/J as a vector space over k.

In the case of the ideal of three points, note that the noncollinear case
is generic. This is true in the naive sense that one expects three randomly
chosen points to be noncollinear, and this can be made more precise using
the notion of generic given in Definition (5.6) of Chapter 3. Similarly, for
µ-bases, there is a generic case. One can show (see [CSC]) that among
parametrizations (4.11) with n = max(deg a, deg b, deg c), the “generic”
parametrization has µ = �n/2�, the biggest possible value. More generally,
one can compute the dimension of the set of all parametrizations with a
given µ. This dimension decreases as µ decreases, so that the smaller the
µ, the more special the parametrization.

We should also mention that the Hilbert-Burch Theorem discussed in §2
has the following nice application to µ-bases.
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(4.22) Proposition. The µ-basis coming from the columns of (4.21) can
be chosen such that

ã = p2q3 − p3q2, b̃ = −(p1q3 − p3q1), c̃ = p1q2 − p1q2.

Dehomogenizing, this means that a, b, c can be computed from the coeffi-
cients of the µ-basis

(4.23)
p = p1(t, 1)x + p2(t, 1)y + p3(t, 1)

q = q1(t, 1)x + q2(t, 1)y + q3(t, 1).

Proof. To see why this is true, first note that the exact sequence (4.20)
has the form required by Proposition (2.6) of §2. Then the proposition
implies that if f̃1, f̃2, f̃3 are the 2 × 2 minors of (4.21) (this is the notation
of Proposition (2.6)), then there is a polynomial g ∈ k[t, u] such that
ã = gf̃1, b̃ = gf̃2, c̃ = gf̃3. However, since ã, b̃, c̃ have no common roots,
g must be a nonzero constant. If we replace pi with gpi, we get a µ-basis
with the desired properties.

Exercise 11. Verify that the µ-basis studied in Exercises 8 and 9 satisfies
Proposition (4.22) after changing p by a suitable constant.

It is also possible to generalize Theorem (4.17) by considering curves in
m-dimensional space km given parametrically by

(4.24) x1 =
a1(t)
c(t)

, . . . , xm =
am(t)
c(t)

,

where c �= 0 and GCD(a1, . . . , am) = 1. In this situation, the syzygy
module Syz (a1, . . . , am, c) and its homogenization play an important role,
and the analog of the µ-basis (4.13) consists of m polynomials

(4.25) pj = p1j(t, 1)x1 + · · · + pmj(t, 1)xm + pm+1j(t, 1), 1 ≤ j ≤ m,

which form a basis for the ideal I = �cx1 − a1, . . . , cxm − am�. If we fix t in
(4.25), then the equation pj = 0 is a hyperplane in km, so that as t varies,
we get a moving hyperplane. One can prove that the common intersection
of the m hyperplanes pj = 0 sweeps out the given curve and that if pj has
degree µj in t, then µ1 + · · · + µm = n. Thus we have an m-dimensional
version of Theorem (4.17). See Exercise 17 for the proof.

We can use the Hilbert-Burch Theorem to generalize Proposition (4.22)
to the more general situation of (4.24). The result is that up to sign, the
polynomials a1, . . . , am, c are the m × m minors of the matrix (pij(t, 1))
coming from (4.25). Note that since pj has degree µj in t, the m×m minors
(pij(t, 1)) have degree at most µ1 + · · · + µm = n in t. So the degrees work
out nicely. The details will be covered in Exercise 17 below.

The proof given of Theorem (4.17) makes nice use of the results of §3,
especially Proposition (3.20), and the generalization (4.24) to curves in
km shows just how powerful these methods are. The heart of what we did
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in Theorem (4.17) was to understand the structure of the syzygy module
Syz (ã, b̃, c̃) as a free module, and for the m-dimensional case, one needs
to understand Syz (ã1, . . . , ãm, c̃) for ã1, . . . , ãm, c̃ ∈ k[t, u]. Actually, in
the special case of Theorem (4.17), one can give a proof using elementary
methods which don’t require the Hilbert Syzygy Theorem. One such proof
can be found in [CSC], and another was given by Franz Meyer, all the way
back in 1887 [Mey].

Meyer’s article is interesting, for it starts with a problem completely
different from plane curves, but just as happened to us, he ended up with
a syzygy problem. He also considered the more general syzygy module
Syz (ã1, . . . , ãm, c̃), and he conjectured that this was a free module with
generators of degrees µ1, . . . , µm satisfying µ1 + · · ·+µm = n. But in spite
of many examples in support of this conjecture, his attempts at a proof
“ran into difficulties which I have at this time not been able to overcome”
[Mey, p. 73]. However, three years later, Hilbert proved everything in his
groundbreaking paper [Hil] on syzygies. For us, it is interesting to note
that after proving his Syzygy Theorem, Hilbert’s first application is to
prove Meyer’s conjecture. He does this by computing a Hilbert polynomial
(which he calls the characteristic function) in a manner remarkably similar
to what we did in Theorem (4.17)—see [Hil, p. 516]. Hilbert then concludes
with the Hilbert-Burch Theorem in the special case of k[t, u].

One can also consider surfaces in k3 parametrized by rational functions

x =
a(s, t)
d(s, t)

, y =
b(s, t)
d(s, t)

, z =
c(s, t)
d(s, t)

,

where a, b, c, d ∈ k[s, t] are polynomials such that d �= 0 and

GCD(a, b, c, d) = 1.

As above, the goal is to find the implicit equation of the surface. Surface
implicitization is an important problem in geometric modeling.

This case is more complicated because of the possible presence of base
points, which are points (s, t) at which a, b, c, d all vanish simultaneously.
As in the curve case, it is best to work homogeneously, though the commu-
tative algebra is also more complicated—for example, the syzygy module
is rarely free. However, there are still many situations where the im-
plicit equation can be computed using syzygies. See [Cox2] and [Cox3]
for introductions to this area of research and references to the literature.

Rings of Invariants
The final topic we will explore is the invariant theory of finite groups.
In contrast to the previous discussions, our presentation will not be self-
contained. Instead, we will assume that the reader is familiar with the
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material presented in Chapter 7 of [CLO]. Our goal is to explain how graded
resolutions can be used when working with polynomials invariant under a
finite matrix group.

For simplicity, we will work over the polynomial ring S = C[x1, . . . , xm].
Suppose that G ⊂ GL(m, C) is a finite group. If we regard g ∈ G as giving
a change of coordinates on C

m, then substituting this coordinate change
into f ∈ S = C[x1, . . . , xm] gives another polynomial g · f ∈ S. Then
define

SG = {f ∈ C[x1, . . . , xm] : g · f = f for all g ∈ G}.

Intuitively, SG consists of all polynomials f ∈ S which are unchanged (i.e.,
invariant) under all of the coordinate changes coming from elements g ∈ G.
The set SG has the following structure:

• (Graded Subring) The set of invariants SG ⊂ S is a subring of S, meaning
that S is closed under addition and multiplication by elements of SG.
Also, if f ∈ SG, then every homogeneous component of f also lies in SG.

(See Propositions 9 and 10 of Chapter 7, §2 of [CLO].) We say that SG is
a graded subring of S. Hence the degree t homogeneous part SG

t consists
of all invariants which are homogeneous polynomials of degree t. Note that
SG is not an ideal of S.

In this situation, we define the Molien series of SG to be the formal
power series

(4.26) FG(u) =
∞�

t=0

dimC(SG
t ) ut.

Molien series are important objects in the invariant theory of finite groups.
We will see that they have a nice relation to Hilbert functions and graded
resolutions.

A basic result proved in Chapter 7, §3 of [CLO] is:

• (Finite Generation of Invariants) For a finite group G ⊂ GL(m, C), there
are f1, . . . , fs ∈ SG such that every f ∈ SG is a polynomial in f1, . . . , fs.
Furthermore, we can assume that f1, . . . , fs are homogeneous.

This enables us to regard SG as a module over a polynomial ring as follows.
Let f1, . . . , fs be homogeneous generators of the ring of invariants SG, and
set di = deg fi. Then introduce variables y1, . . . , ys and consider the ring
R = C[y1, . . . , ys]. The ring R is useful because the map sending yi to fi

defines a ring homomorphism

ϕ : R = C[y1, . . . , ys] −→ SG

which is onto since every invariant is a polynomial in f1, . . . , fs. An impor-
tant observation is that ϕ becomes a graded homomorphism of degree zero
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provided we regard the variable yi as having degree di = deg fi. Previously,
the variables in a polynomial ring always had degree 1, but here we will
see that having deg yi = di is useful.

The kernel I = ker ϕ ⊂ R consists of all polynomial relations among
the fi. Since ϕ is onto, we get an isomorphism R/I ∼= SG. Regarding
SG as an R-module via yi · f = fif for f ∈ SG, R/I ∼= SG is an
isomorphism of R-modules. Elements of I are called syzygies among the
invariants f1, . . . , fs. (Historically, syzygies were first defined in invariant
theory, and only later was this term used in module theory, where the
meaning is slightly different).

For going any further, let’s pause for an example. Consider the group
G = {e, g, g2, g3} ⊂ GL(2, C), where

(4.27) g =
�

0 −1
1 0

�
.

The group G acts on f ∈ S = C[x1, x2] via g · f(x1, x2) = f(−x2, x1).
Then, as shown in Example 4 of Chapter 7, §3 of [CLO], the ring of
invariants SG is generated by the three polynomials

(4.28) f1 = x2
1 + x2

2, f2 = x2
1x

2
2, f3 = x3

1x2 − x1x
3
2.

This gives ϕ : R = C[y1, y2, y3] → SG where ϕ(yi) = fi. Note that y1 has
degree 2 and y2, y3 both have degree 4. One can also show that the kernel
of ϕ is I = �y2

3 − y2
1y2 + 4y2

2�. This means that all syzygies are generated
by the single relation f2

3 − f2
1 f2 + 4f2

2 = 0 among the invariants (4.28).
Returning to our general discussion, the R-module structure on SG shows

that the Molien series (4.26) is built from the Hilbert function of the R-
module SG. This is immediate because

dimC(SG
t ) = HSG(t).

In Exercises 24 and 25, we will see more generally that any finitely
generated R-module has a Hilbert series

∞�

t=−∞
HM (t) ut.

The basic idea is that one can compute any Hilbert series using a graded
resolution of M . In the case when all of the variables have degree 1, this is
explained in Exercise 24.

However, we are in a situation where the variables have degree deg yi =
di (sometimes called the weight of yi). Formula (4.2) no longer applies, so
instead we use the key fact (to be proved in Exercise 25) that the Hilbert
series of the weighted polynomial ring R = C[y1, . . . , ys] is

(4.29)
∞�

t=0

HR(t) ut =
∞�

t=0

dimC(Rt) ut =
1

(1 − ud1) · · · (1 − uds)
.
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Furthermore, if we define the twisted free module R(−d) in the usual way,
then one easily obtains

(4.30)
∞�

t=0

HR(−d)(t) ut =
ud

(1 − ud1) · · · (1 − uds)

(see Exercise 25 for the details).
Let us see how this works in the example begun earlier.

Exercise 12. Consider the group G ⊂ GL(2, C) given in (4.27) with
invariants (4.28) and syzygy f2

3 + f2
1 f2 + 4f2

2 = 0.
a. Show that a minimal free resolution of SG as a graded R-module is given

by

0 −→ R(−8)
ψ−→ R

ϕ−→ RG −→ 0

where ψ is the map represented by the 1 × 1 matrix (y2
3 + y2

1y2 + 4y2
2).

b. Use part a together with (4.29) and (4.30) to show that the Molien series
of G is given by

FG(u) =
1 − u8

(1 − u2)(1 − u4)2
=

1 + u4

(1 − u2)(1 − u4)

= 1 + u2 + 3u4 + 3u6 + 5u8 + 5u10 + · · ·

c. The coefficient 1 of u2 tells us that we have a unique (up to constant)
invariant of degree 2, namely f1. Furthermore, the coefficient 3 of u4

tells us that besides the obvious degree 4 invariant f2
1 , we must have two

others, namely f2 and f3. Give similar explanations for the coefficients
of u6 and u8 and in particular explain how the coefficient of u8 proves
that we must have a nontrivial syzygy of degree 8.

In general, one can show that if the invariant ring of a finite group G is
generated by homogeneous invariants f1, . . . , fs of degree d1, . . . , ds, then
the Molien series of G has the form

FG(u) =
P (u)

(1 − ud1) · · · (1 − uds)

for some polynomial P (u). See Exercise 25 for the proof. As explained in
[Sta2], P (u) has the following intuitive meaning. If there are no nontrivial
syzygies between the fi, then the Molien series would have been

1
(1 − ud1) · · · (1 − uds)

.

Had RG been generated by homogeneous elements f1, . . . , fs of degrees
d1, . . . , ds, with homogeneous syzygies S1, . . . , Sw of degrees β1, . . . , βw

and no second syzygies, then the Molien series would be corrected to
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1 − �
ju

βj

�
i(1 − udi)

.

In general, by the Syzygy Theorem, we get

FG(u) = (1 − �
ju

βj +
�

kuγk − · · ·
� �� �

at most s sums

)/
�

i(1 − udi).

One important result not mentioned so far is Molien’s Theorem, which
states that the Molien series (4.26) of a finite group G ⊂ GL(m, C) is given
by the formula

FG(u) =
1

|G|
�

g∈G

1
det(I − ug)

where |G| is the number of elements in G and I ∈ GL(m, C) is the identity
matrix. This theorem is why (4.26) is called a Molien series. The importance
of Molien’s theorem is that it allows one to compute the Molien series in
advance. As shown by part c of Exercise 12, the Molien series can predict
the existence of certain invariants and syzygies, which is useful from a
computational point of view (see Section 2.2 of [Stu1]). A proof of Molien’s
Theorem will be given in Exercise 28.

A second crucial aspect we’ve omitted is that the ring of invariants SG

is Cohen-Macaulay. This has some far-reaching consequences for the in-
variant theory. For example, being Cohen-Macaulay predicts that there are
algebraically independent invariants θ1, . . . , θr such that the invariant ring
SG is a free module over the polynomial ring C[θ1, . . . , θr]. For example,
in the invariant ring SG = C[f1, f2, f3] considered in Exercise 12, one can
show that as a module over C[f1, f2],

SG = C[f1, f2] ⊕ f3C[f1, f2].

(Do you see how the syzygy f2
3 − f1f

2
2 + 4f2

2 = 0 enables us to get rid
of terms involving f2

3 , f3
3 , etc?) This has some strong implications for the

Molien series, as explained in [Sta2] or [Stu1].
Hence, to really understand the invariant theory of finite groups, one

needs to combine the free resolutions discussed here with a variety of
other tools, some of which are more sophisticated (such as Cohen-Macaulay
rings). Fortunately, some excellent expositions are available in the litera-
ture, and we especially recommend [Sta2] and [Stu1]. Additional references
are mentioned at the end of Chapter 7, §3 of [CLO].

This brings us to the end of our discussion of resolutions. The exam-
ples presented in this section—ideals of three points, µ-bases, and Molien
series—are merely the beginning of a wonderful collection of topics related
to the geometry of free resolutions. When combined with the elegance of
the algebra involved, it becomes clear why the study of free resolutions is
one of the richer areas of contemporary algebraic geometry.
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To learn more about free resolutions, we suggest the references [Eis],
[Schre2] and [EH] mentioned earlier in the section. The reader may also
wish to consult [BH, Chapter 4] for a careful study of Hilbert functions.

ADDITIONAL EXERCISES FOR §4

Exercise 13. The Hilbert polynomial has the property that HM (t) =
HPM (t) for all t sufficiently large. In this exercise, you will derive an explicit
bound on how large t has to be in terms of a graded resolution of M .
a. Equation (4.3) shows that the binomial coefficient

�
t+n
n

�
is given by a

polynomial of degree n in t. Show that this identity holds for all t ≥ −n
and also explain why it fails to hold when t = −n − 1.

b. For a twisted free module M = R(−d1) ⊕ · · · ⊕ R(−dm), show that
HM (t) = HPM (t) holds for t ≥ maxi(di − n).

c. Now suppose we have a graded resolution · · · → F0 → M where
Fj = ⊕iR(−dij). Then show that HM (t) = HPM (t) holds for all
t ≥ maxij(dij − n).

d. For the ideal I ⊂ k[x, y, z, w] from (4.5), we found the graded resolution

0 → R(−3)2 → R(−2)3 → R → R/I → 0.

Use this and part c to show that HR/I(t) = HPR/I(t) for all t ≥ 0.
How does this relate to (4.6)?

Exercise 14. Given a parametrization as in (4.11), we get the ideal I =
�c(t)x − a(t), c(t)y − b(t)� ⊂ k[x, y, t]. We will assume GCD(a, b, c) = 1.
a. Show that V(I) ⊂ k3 is the graph of the function F : k − W → k2

defined by F (t) = (a(t)/c(t), b(t)/c(t)), where W = {t ∈ k : c(t) = 0}.
b. If I1 = I ∩ k[x, y], prove that V(I1) ⊂ k2 is the smallest variety con-

taining the parametrization (4.11). Hint: This follows by adapting the
proof of Theorem 1 of Chapter 3, §3 of [CLO].

Exercise 15. This exercise concerns the Koszul complex used in the proof
of Proposition (4.14).
a. Assuming GCD(a, b, c) = 1 in S = k[t], prove that the sequence (4.15)

is exact at its middle term. Hint: Our hypothesis implies that there
are polynomials p, q, r ∈ k[t] such that pa + qb + rc = 1. Then if
(A, B, C) ∈ ker(β), note that

A = paA + qbA + rcA

= p(−bB − cC) + qbA + rcA

= c(−pC + rA) + b(−pB + qA).

b. Using Exercise 10 of §2 as a model, show how to extend (4.15) to the
full Koszul complex
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0 → S → S3 α→ S3 β→ S → 0

of a, b, c. Also, when GCD(a, b, c) = 1, prove that the entire sequence
is exact.

c. More generally, show that a1, . . . , am ∈ k[t] give a Koszul complex and
prove that it is exact when GCD(a1, . . . , am) = 1. (This is a challenging
exercise.)

Exercise 16. In the proof of Theorem (4.17), we noted that the columns
of the matrix (4.20) generate the syzygy module Syz (ã, b̃, c̃). If we define
p, q using (4.23), then prove that p, q generate I(1).

Exercise 17. In this exercise, you will study the m-dimensional version
of Theorem (4.17). Thus we assume that we have a parametrization (4.24)
of a curve in km such that c �= 0 and GCD(a1, . . . , am) = 1. Also let

I = �cx1 − a1, . . . , cxm − am� ⊂ k[x1, . . . , xm, t]

and define

I(1) = {f ∈ I : f = A1(t)x1 + · · · + Am(t)xm + C(t)}.

a. Prove the analog of Lemma (4.14), i.e., show that there is a natural
isomorphism I(1) ∼= Syz (a1, . . . , am, c). Hint: You will use part c of
Exercise 15.

b. If n = max(deg a1, . . . , deg am, c) and ãi, c̃ ∈ R = k[t, u] are the degree
n homogenizations of ai, c, then explain why there is an injective map

β : R(−d1) ⊕ · · · ⊕ R(−ds) → R(−n)m+1

whose image is Syz (ã1, . . . , ãm, c̃).
c. Use Hilbert polynomials to show that s = m and that d1 + · · · + dm =

(m + 1)n.
d. If L is the matrix representing β, show that the jth column of L consists

of homogeneous polynomials of degree µj = dj − n. Also explain why
µ1 + · · · + µs = n.

e. Finally, by dehomogenizing the entries of the jth column of L, show that
we get the polynomial pj as in (4.25), and prove that I = �p1, . . . , pm�.

f. Use the Hilbert-Burch Theorem to show that if p1 is modified by a
suitable constant, then up to a constant, a1, . . . , am, c are the m × m
minors of the matrix (pij(t, 1)) coming from (4.25).

Exercise 18. Compute the Hilbert function and Hilbert polynomial of the
ideal of the rational quartic curve in P

3 whose graded resolution is given in
(3.6). What does the Hilbert polynomial tell you about the dimension and
the degree?
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Exercise 19. In k[x0, . . . , xn], n ≥ 2, consider the homogeneous ideal In

defined by the determinants of the
�
n
2

�
2×2 submatrices of the 2×n matrix

M =
�

x0 x1 · · · xn−1
x1 x2 · · · xn

�
.

(We studied this ideal in Exercise 15 of §3.) Compute the Hilbert functions
and Hilbert polynomials of I4 and I5. Also determine the degrees of the
curves V(I4) and V(I5) and verify that they have dimension 1. Hint: In
part b of Exercise 15 of §3, you computed graded resolutions of these two
ideals.

Exercise 20. In this exercise, we will show how the construction of the
rational normal curves from the previous exercise and Exercise 15 of §3
relates to the moving lines considered in this section.
a. Show that for each (t, u) ∈ P

1, the intersection of the lines V(tx0 +ux1)
and V(tx1 + ux2) lies on the conic section V(x0x2 − x2

1) in P
2. Express

the equation of the conic as a 2 × 2 determinant.
b. Generalizing part a, show that for all n ≥ 2, if we construct n moving

hyperplanes Hi(t, u) = V(txi−1 + uxi) for i = 1, . . . , n, then for each
(t, u) in P

1, the intersection H1(t, u) ∩ · · · ∩ Hn(t, u) is a point on the
standard rational normal curve in P

n given as in Exercise 15 of §3, and
show how the determinantal equations follow from this observation.

Exercise 21. In k[x0, . . . , xn], n ≥ 3, consider the homogeneous ideal Jn

defined by the determinants of the
�
n−1

2

�
2×2 submatrices of the 2×(n−1)

matrix

N =
�

x0 x2 · · · xn−1
x1 x3 · · · xn

�
.

The varieties V(Jn) are surfaces called rational normal scrolls in P
n. For

instance, J3 = �x0x3 − x1x2� is the ideal of a smooth quadric surface in
P

3.
a. Find a graded resolution of J4 and compute its Hilbert function and

Hilbert polynomial. Check that the dimension is 2 and compute the
degree of the surface.

b. Do the same for J5.

Exercise 22. The (degree 2) Veronese surface V ⊂ P
5 is the image of the

mapping given in homogeneous coordinates by

ϕ : P
2 → P

5

(x0, x1, x2) �→ (x2
0, x

2
1, x

2
2, x0x1, x0x2, x1x2).

a. Compute the homogeneous ideal I = I(V ) ⊂ k[x0, . . . , x5].
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b. Find a graded resolution of I and compute its Hilbert function and
Hilbert polynomial. Also check that the dimension is equal to 2 and the
degree is equal to 4.

Exercise 23. Let p1 = (0, 0, 1), p2 = (1, 0, 1), p3 = (0, 1, 1), p4 = (1, 1, 1)
in P

2, and let I = I({p1, p2, p3, p4}) be the homogeneous ideal of the variety
{p1, p2, p3, p4} in R = k[x0, x1, x2].
a. Show that I3 (the degree 3 graded piece of I) has dimension exactly 6.
b. Let f0, . . . , f5 be any vector space basis for I3, and consider the rational

mapping ϕ : P
2 – – → P

5 given in homogeneous coordinates by

ϕ(x0, x1, x2) = (y0, . . . , y5) = (f0(x0, x1, x2), . . . , f5(x0, x1, x2)).

Find the homogeneous ideal J of the image variety of ϕ.
c. Show that J has a graded resolution as an S = k[y0, . . . , y5]-module of

the form

0 → S(−5) → S(−3)5 A→ S(−2)5 → J → 0.

d. Use the resolution above to compute the Hilbert function of J .

The variety V = V(J) = ϕ(P2) is called a quintic del Pezzo surface, and
the resolution given in part d has some other interesting properties. For
instance, if the ideal basis for J is ordered in the right way and signs are
adjusted appropriately, then A is skew-symmetric, and the determinants of
the 4×4 submatrices obtained by deleting row i and column i (i = 1, . . . , 5)
are the squares of the generators of J . This is a reflection of a remarkable
structure on the resolutions of Gorenstein codimension 3 ideals proved by
Buchsbaum and Eisenbud. See [BE].

Exercise 24. One convenient way to “package” the Hilbert function HM

for a graded module M is to consider its generating function, the formal
power series

H(M, u) =
∞�

t=−∞
HM (t)ut.

We will call H(M, u) the Hilbert series for M .
a. Show that for M = R = k[x0, . . . , xn], we have

H(R, u) =
∞�

t=0

�
n + t

n

�
ut

= 1/(1 − u)n+1,

where the second equality comes from the formal geometric series
identity 1/(1 − u) =

�∞
t=0 ut and induction on n.

b. Show that if R = k[x0, . . . , xn] and

M = R(−d1) ⊕ · · · ⊕ R(−dm)
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is one of the twisted graded free modules over R, then

H(M, u) = (ud1 + · · · + udm)/(1 − u)n+1.

c. Let I be the ideal of the twisted cubic in P
3 studied in Exercise 2 of §2,

and let R = k[x, y, z, w]. Find the Hilbert series H(R/I, u).
d. Using part b and Theorem (4.4) deduce that the Hilbert series of any

graded k[x0, . . . , xn]-module M can be written in the form

H(M, u) = P (u)/(1 − u)n+1

where P is a polynomial in u with coefficients in Z.

Exercise 25. Consider the polynomial ring R = k[y1, . . . , ys], where yi

has weight or degree deg yi = di > 0. Then a monomial ya1 · · · yas
s has

(weighted) degree t = d1a1 + · · · + dsas. This gives a grading on R such
that Rt is the set of k-linear combinations of monomials of degree t.
a. Prove that the Hilbert series of R is given by

∞�

t=0

dimk(Rt) ut =
1

(1 − ud1) · · · (1 − uds)
.

Hint: 1/(1 − udi) =
�∞

ai=0 udiai . When these series are multiplied to-
gether for i = 1, . . . , s, do you see how each monomial of weighted
degree t contributes to the coefficient of ut?

b. Explain how part a relates to part a of Exercise 24.
c. If R(−d) is defined by R(−d)t = Rt−d, then prove (4.30).
d. Generalize parts b, c and d of Exercise 24 to R = k[y1, . . . , ys].

Exercise 26. Suppose that a, b, c ∈ k[t] have maximum degree 6. As
usual, we will assume c �= 0 and GCD(a, b, c) = 1.
a. If a = t6 + t3 + t2, b = t6 − t4 − t2 and c = t6 + t5 + t4 − t − 1, show

that µ = 2 and find a µ-basis.
b. Find an example where µ = 3 and compute a µ-basis for your example.

Hint: This is the generic case.

Exercise 27. Compute the Molien series for the following finite matrix
groups in GL(2, C). In each case, the ring of invariants C[x1, x2]G can be
computed by the methods of Chapter 7, §3 of [CLO].

a. The Klein four-group generated by
�

1 0
0 −1

�
and

�
−1 0
0 1

�
.

b. The two-element group generated by g =
�

−1 0
0 −1

�
.

c. The four-element group generated by g = 1√
2

�
1 −1
1 1

�
.

Exercise 28. Let G ⊂ GL(m, C) be a finite group and let S =
C[x1, . . . , xm]. The goal of this exercise is to prove Molien’s Theorem, which
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asserts that
∞�

t=0

dimC(SG
t )ut =

1
|G|

�

g∈G

1
det(I − ug)

.

a. By Chapter 7, §3 of [CLO], the Reynolds operator RG(f)(x) =
1

|G|
�

g∈G f(g · x) defines a projection operator RG : St → SG
t . Use

this to prove that

dimC(SG
t ) =

1
|G|

�

g∈G

trace(gt),

where gt : St → St is defined by f(x) �→ f(g · x). Hint: First explain
why the trace of a projection operator is the dimension of its image.

b. Fix g ∈ G and a basis y1, . . . , ym of S1 ∼= C
m such that g1 is upper

triangular on S1 with eigenvalues λ1, . . . , λm. Prove that yα for |α| = t
give a basis of St such that gt is upper triangular on St with eigenvalues
λα. Conclude that trace(gt) =

�
|α|=t λα.

c. Explain why

�

α

λαu|α| =
m�

i=1

1
1 − λiu

=
1

det(I − ug)

and use this to complete the proof of Molien’s Theorem.


