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(Vol 28, n° 7, 1994, p 781 à 813)

FINDING THE CONDUCTORS IN CIRCULAR NETWORKS
FROM BOUNDARY MEASUREMENTS (*)

by E. CURTIS C), E. MOOERS 0) and J. MORROW (})

Communicated by G STRANG

Abstract — We give an algonthm for Computing the values of the conductors in a circular
network from voltages and currents measured at the boundary We charactenze the collections
of boundary measurements which can come from such networks We also give some results of
numencal reconstruction of the values of the conductors from boundary measurements

Résumé — Nous donnons un algorithme qui permet de calculer les valeurs des conducteurs
dans un réseau circulaire a partir des tensions et des courants qui s'en dérivent aux bornes
Nous donnons une caracterisation des mesures aux bornes qui dérivent de tels réseaux Nous
donnons aussi des résultats numériques

1. INTRODUCTION

We consider circular networks as in figure 1.
Such a network D with m circles and n rays will be called a circular

network of type C (m, n). Figure 1 shows a circular network of type
C (2, 12 ). Other circular networks will be considered in Section 9. The nodes
of £2 are the points in the plane consisting of the center node /?(0, 0) and
points p(i,j), for 1 =s i ==s m + 1 and l ^ j ^ n , The node p(i,j) is
described in polar coordinates by p(i,j) = (/, 2 TTJIU). We consider the
nodes labelled cyclically ; that is, p(i9 j + n) = p(i, j) for ail integers
j . The set of nodes is denoted Z20. The intenor of i20, called int
/2, consists of the nodes /?(/, j ) for 0 === / =s m and 1 =s= J =s n. The boundary
of /2, called 6/2, consists of the nodes p{m + l , y ) for 1 ===y ^ n. The
boundary nodes are labelled p} — p{m + l,j) for 1 =sy =s n. Each interior
node except the center node, has four neighboring nodes ; the center node
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782 E. CURTIS, E. MOOERS, J. MORROW

Figure 1.

/?(0, 0) has n neighbors. The set of nodes which are neighbors of
p is called Jf (p). Each boundary node has exactly one neighboring node
which is an interior node. A circular network of type C (m, n) has
1 + mn interior nodes and n boundary nodes. An edge pq of O is a radial line
segment p(i, j) p(i + 1,7) for 0 =s / =s m and 1 =5=7 =s n, or a circular are
pO\ j)p(i> J + 1 ) f° r 1 =s / =£ /re and 1 =s y =s n. The set of edges is denoted
Ov There are n(2 m + 1 ) edges.

A circular network of resistors of type C (m, n) is a network
H = (!20> nx) together with a positive real-valued function y on O^ The
function y is called the conductivity. For each edge pq in i2l9 the number
y(pq) is the conductance of /?#, and \iy(pq) is the résistance of
/?#. If M is a function on /20, Ohm's Law gives a current along each
conductor pq : I (pq)y = (pq)(u(p) - u(q)) is the current from /? to
q. The function M is called a y-harmonic function on O if for each interior
node p,

Y y(pqXu(p)-u(q)) = O.

This property of a y-harmonic function, which asserts that the sum of the
currents flowing out of each interior node is zero, is Kirchhoff's Law. If a
function </> is defined at the boundary nodes, there will be a unique y-
harmonic function M, defined on all the nodes with u(p) = </>(p) for each
boundary node/? (see Lemma 2.5). The function u is called thepotential due
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HNDING THE CONDUCTORS IN CIRCULAR NETWORKS 783

to <f>. The potential drop across the conductor pq is au(pq) = u(p) — u(q).
The potential u détermines a current Iu(p) into each boundary node
p by Iu(p) = y(pq)(u(p) - u(q)% where q is the interior neighbor of
P'

For each conductivity y on 12 u the linear map Ay from boundary functions
to boundary functions is defined by Ay(<)>) = Iu. The boundary function
4> is called Dirichlet data, and the boundary current Iu is called Neumann
data. The map Ay which takes potentials at the boundary of ft to currents
through the boundary nodes of O is called the Dirichlet-to-Neumann map.

The inverse problem is to recover the conductivity y from the map
Ay. In our situation, this leads to four problems.

(1) Uniqueness : if Ay = A^ does it necessarily follow that y = IJL ?
(2) Continuity : if Ay is near to AM, does it necessarily follow that

y is near to fx ?
(3) Reconstruction : give an algorithm for using Ay to compute y.
(4) Characterization : for each integer n, which n by n matrices are of the

form Ay for some y ?
In Section 5, we give an algorithm for Computing the conductivity

y from the Dirichlet-to-Neumann map Ay for circular Networks of type
C(m,n), where « ^ 4 m + 3. For these networks, we show that the
Dirichlet-to-Neumann map uniquely détermines the conductivity (see Theo-
rem 5.2). The algebraic formulas of the algorithm show the continuity of the
inverse. For circular networks of type C {mr n), where n = 4 m + 3, the set
of Dirichlet-to-Neumann maps forms a manifold of dimension n (n — 1 )/2 in
the space of n by n matrices. In Section 6, we show that the n(n — l)/2
entries of A above the diagonal parametrize this manifold, and we describe
explicitly the domain over which these parameters may vary. Theorem 6.2
gives a characterization of the Dirichlet-to-Neumann maps for such circular
resistor networks. By considérations of duality, there is a similar characteri-
zation of Neumann-to-Dirichlet maps. Some numerical results based on the
reconstruction algorithm of Section 5 are given in Section 13 and in [2].
Similar results may be obtained for other types of circular networks (e.g.,
where the ou ter conductors are not present), which are discussed in
Section 9. In [4] and [3] we solved the four problems above for square
resistor networks. The methods presented hère are simplifications of those of
[4] and [3]. For related work on the inverse conductivity problem see [1], [2],
[5] and [6].

2. FUNCTIONS ON NETWORKS

We collect some facts about y-harmonic functions on circular networks,
some of which were proved for rectangular networks in [3]. Throughout this
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Section, let f2 = (/20, f2 {) be a circular network of type C (m, «), with a
conductivity function y on f2 x.

LEMMA 2.1 : Let u be a y-harmonic function on f2, and let p be an interior
node. Then either u(p) = u{q)for all node s q e Jf' (p) or there is at least
one node q e Jf {p} for which u(p)>u{q) and there is at least one node
r e Jf (p) for which u(p) < u(r).

Proof : Kirchhoff's Law may be rewritten as

This says that the value of u at each interior node is the weighted average of
the values at the neighboring nodes. D

COROLLARY 2.2 : (Maximum Principle for Functions) Let u be a y-
harmonic function on f2. Then the maximum and minimum values of u occur
on the boundary of f2.

Proof : If the maximum value of u were to occur at an interior node, then
by Lemma 2.1, the value of « at all the neighbors would be the same. Thus
either M is a constant or the maximum and minimum values do not occur at an
interior node and so must occur at boundary nodes. D

COROLLARY 2.3 : Let u be a y-harmonic function of f2 such that
u(p) = 0 for all p e 3/2. Then u{p) = 0 for all p e f2.

LEMMA 2.4 : (Maximum Principle for Currents) Let u be a y-harmonic
function on f2. The current across any conductor pq is less than or equal to
the sum of the positive currents into the boundary nodes.

Proof: Assume that u(p)> u{q). Let Iu(pq) be the current through
pq in the direction of p to q. Construct a subnetwork F of f2 as follows. Let
-T(1)consist of all edges rp e F such that u{r)>u(p\ and r is a neighbor of
p. Inductively, having defined F^\ let r 0 + 1) consist of all edges in
r 0 ) and all edges st in f2 such that t e F{j) and u(s) > u{t). (Each edge
includes its endpoints.) This gives an increasing séquences of subnetworks

Eventually no new edges are added and the proces s ends. Let F be the union
of the r^\ For each boundary node r, let Iu(r) be the current into
f2 through r. The boundary of F consists of nodes of two types :

(i) nodes which are in 6/3
(ii) nodes which are not in d/2.

At those nodes of dF which are also in 9/2, the current into dF is positive
(except possibly at node q itself). At all other nodes of dF the current into
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is =s 0. The (algebraic) sum of the currents into èP is 0. Hence

r e a r n dû r e 312, /M{r) =- 0

D
The following lemma shows that there is a unique y-harmonic function

with prescribed boundary values.

LEMMA 2.5 : Let fl = (/20, nx) be a circular network of type C (m, n%
with a conductivity y. Suppose given the boundary values <f> (Pj) for all
boundary nodes Pj. Then there is a unique y-harmonie function u with
u(pj) = <f> (pj) for each boundary node p}.

Proof : For each interior node, Kirchhoff's Law becomes a linear équation
for the values of u. We then have a (1 + mn) by (1 + mn) matrix équation

Ku = b.

Here u is the vector of values u(p) as p varies over the interior nodes ;
b is obtained by moving the terms in Kirchhoff's Law which involve
boundary values of u to the right hand side. If the boundary values of
u are all 0, Corollary 2.3 shows that u must be zero at all interior nodes. Thus
the matrix K is non-singular. D

As a resuit, Ay is a well-defined linear map from boundary functions to
boundary functions. Lemma 2.2 shows that the kernel of Ay consists of the
constant functions.

LEMMA 2.6 : Let u be a y-harmonic function on il. Let p be an interior
node and q a neighbor ofp. The value ofu(q) is determined by the values of
yipr) for all neighbors r of p, the value of u(p), and the values of
u{r) for all neighbors r of p other than q.

Proof : In Kirchhoff s Law at nodep, all the terms except y(pq) u(q) are
given. The value of u(q) is then determined because of the assumption that
y(pq)^0. O

Let a be any real-valued function defined on the set of edges
Ox, For any function ƒ on Q0, let La f be the function defined on
/20by

£ a(pq)(f(p)~f(q))

La is a linear operator on the set of functions defined on int f2 0. In the case
where 7 is a conductivity function of 12 u a function ƒ which satisfies
Ly ƒ (p) = 0 for all nodes p e int ü is y-harmonic. For any boundary node
p, Ly fip) is the current through p due to ƒ, which is called //(p).

vol. 28» n° 7 t 1994
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LEMMA 2.7 : Let ft = (J70, f2x)be a circular network with conductivity y,
and let f and g be functions on f2 0 Then

I 7(pq)(f(p) - f(q))(g(p) - 007)) = X 9(P)Lyf(p).

Proof For each edge pq e 1219

-f(q))(g(p) -
= 9(p) y(pq){f(p) - ƒ(<?)) + g(q) r(pg)(f(p) -

Summing over all edges in Ox gives the result •

COROLLARY 2.8 : Let g be a function on i70 and let f be a y-harmomc
function on Q 0. Then

E y(pq)(f(p)-f(qM9(p)-9(q))= S 9(p)*f(p)-
pqef}} p£dn0

The following is a discrete form of one of Green's identities.

LEMMA 2.9 : Let f and g be y-harmonic functions on fl Then

E g(p)if(p)= Z

Proof By Lemma 2.8, both sides are equal to

X y(pq)(f(p)-f(<*mg(p)~g(q))-
pqsn}

•
The following lemma provides a way to construct y-harmonic functions

with prescnbed data, some of which are boundary values, and some of which
are boundary currents This wiU be used extensively in the reconstruction
algonthm of Section 5.

LEMMA 2.10: Let 12 = (Z20, ü^ be a circular network of type
C (m, 4 m + 3 ), with a conductivity y Suppose given the boundary values
u(pj) for O=s=j =s2m+ 1, and suppose given the values of the current
Iu(Pj) for U j ^ 2 m + 1 . Then there is a unique y-harmonie function u
with this boundary data

Proof Using Ohm's law, we find the value of u at the nodes
p(m,j) for l=s=j=£2ra + l Using Lemma 2.6 we find the values of
u at the nodes p(i,j) for i = m — 1, m - 2, .., 2, 1, and
j = m + 1 - iy ..., m + 1 4-1, and then at the center node /?((), 0). Workmg
outward from p(0, 0), using Lemma 2.6, the values of u are obtamed at all
the remaining nodes. •
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LEMMA 2.11 : Let 12 = (/20, nx) be a circuler network of type
C (m, 4 m + 3 ) with a conductivity y. Let u be a y-harmonic function on /2.
Suppose that u(p}) = 0 for l ^ / ^ 2 m + l, and also that the boundary
current Iu(Pj) = 0 for U j 5 2m + 1. Then either u is identically 0 or the
values of u(pj)for 2m + 2 ^ j ^ 4 m + 3 are all non-zero arîd alternate in
sign.

Proof :lfu(p4m + 3) = 0, Lemma 2.10 applies to show that u(p) = 0 for ail
nodes p. If u(p4m + 3) # 0, the values of u at all nodes are found by
Lemma 2.6 just as in the proof of Lemma 2.10. The following diagram
shows this situation for a network of type C (2, 11) where u(p4m + 3) is
assumed to be positive. At each node p where u(p) =£ 0, the sign of
u(p) is indicated by + or —.

Figure 2.

The results is that the values u(p2m + 2)> «(P2m + 3X ••*> «(P4m + 3) m u s t

alternate in sign. D
For any séquence of 2 m + 1 consécutive nodes where both the function

u and the current Iu are to be 0, there is a similar pattern. We will use these
special y-harmonic functions in the reconstruction algorithm of Section 5.

3. THE DIRICHLET-TO-NEUMANN MAP

Throughout this section, B = (i70, /2X) is a circular network of type
(C)m, n and y is a positive function on Qv Let A be the Dirichlet-to-
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Neumann map for £2 as defined in Section 2. The boundary nodes are
numbered sequentially by ph p2, ..., pn. As always, the convention is that
Po ~ Pn- We put the inner product on boundary functions :

A bilinear form Q ( . , . ) on boundary functions is defined by

For each index/ = 1, 2, ..., «, Iet <£y be the boundary function which is 1 at
node p , and 0 at all other boundary nodes. The Dirichlet-to-Neumann map
A is represented by a matrix A = {AltJ} as follows. The entries AtJ are
given by :

The entry Al} may be interpreted as the current at nodep, resulting from the
boundary potential which is 1 at node pp and 0 at all other boundary nodes. It
follows from Corollary 2.3 that if the boundary potential has value 1 at all
boundary nodes, then the potential will have value 1 at all interior nodes, and
hence the current is 0. This implies the sum relations : for each
i = 1, 2, ..., n,

From 2.9, it follows immediately that the matrix A is symmetrie ; that is,

Bef ore stating the remaining property of the matrix A, we need a
définition.

DEFINITION 3.1 : A k by k matrix B is said to have the Right Sign, if
(1) fc= 1 or 2 mod 4, then detfi < 0
(2) k=3 or 0 mod 4, then detB => 0.

Let A be the matrix representing the Dirichlet-to-Neumann map A for a
circular network of type C (m, n). Let B be a k by k submatrix of
A formed by choosing k rows and k columns which correspond to
2 k distinct nodes which occur in séquence (not necessarily consécutive)
around the boundary of 12. Such a matrix B is said to be sequentially
obtained from A. By a rotation of 12, we may assume that the rows are
ii, ..., ik, and the columns are Ju"-»jk w* t n

1 ^ * ! - < • • • < / k < j ! < • • • < j k =s= n. In this situation, the matrix B lies
strictly above the diagonal of A. Let ru r2, ..., rk be the boundary nodes

M2 AN Modélisation mathématique et Analyse numérique
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corresponding to the rows il9 i2, .., **, a n ^ let qx, q2, ..., qk be the boundary
nodes corresponding to the columns jX9j2, »..7*- The matrix B has the
following interprétation. Let v = (vu v2, ..., vk). Let <f> be the boundary
function with <£ (qt ) = vt for 1 =s / =s k and <£ (p) = 0 for all other boundary
nodes p. Let A(<f>) be the boundary current corresponding to <f>. Then
£ r is a vector whose entries are the values of A(<f>) at nodes rx, r2, ..., rk.

THEOREM 3.2 : Let A be the matrix representing the Dirichlet-to-Neumann
map for a circular network of type C {m, n), with n 5= 4 m + 3. Let k be an
positive integer with k ^ 2 m + 1 and let B be a k by k submatrix sequentially
obtained from A. Then B is nonsingular, and has the Right Sign.

The proof will follow several lemmas.

LEMMA 3.3 : Let us be a y-harmonic function on a circular network of type
C (m, n ). Suppose u has value 0 and current 0 at k consécutive boundary
nodes, where k + 2 m + l. Then either u = 0 or there is séquence of
k + 1 boundary nodes at which the values ofu are non-zero and alternate in
sign.

Proof : Dénote the set of boundary nodes where u is assumed to have value
0 and current 0 by V. Let W = {pl9 ..., pw} be the largest set of connected
boundary nodes where u has value 0 and current 0 and which contains
V. For each pt e W, let Rl be the ray from 0 to pt and let C be the largest
connected set of nodes on Rt containing pt for which the value of
u is 0. Let c( be the cardinality of C. Let cK = max {cL, ..., cw}. We consider
the following cases.

Case 1. Suppose there is an adjacent pair pt, pt + x e W such that
ci — ci + i = m + 2. Then either u = 0 or else there is a * trapezoidal ' set of
nodes where u = 0 which is bounded by at least 2 m + 2 nodes where the
values of u are non-zero and alternate in sign. Each of these nodes where
u is positive has a neighbor where u has greater positive value. Such a node is
connected by a chain of nodes of successively more positive value to a node
on the boundary of positive value. Each node of négative value is connected
by a chain of nodes of successively more négative value to a node on the
boundary of négative value. These chains cannot cross. This leads to a set of
2 m + 2 boundary nodes at which the values of u are non-zero and alternate
in sign. Since k + 1 ^ 2 m + 2 the lemma is true in Case 1.

Case 2. Suppose there is an adjacent pair pn pl + leW such that
cl — ct + l = cK < m + 2. Then c} _ t = c} — 1 for j < i and c} + x = c} — 1 for
y' =>Ï + 1. It follows that there will be a node on each ray Rp j =£ i,
/ + 1 at which u =£ 0 and which is adjacent to a node on Rj at which
u = 0. The sign of u alternâtes as we go from Rx to Rt _ : and as we go from
Rl+2 to Rw. In addition there must be non-zero values of u on Rn

Rt + x, at least one of which alternâtes with the signs of u on Ru ..., Rt _ lt
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Rt +2, ..., Rw. Consider the sign of u on ray Rv On the ray to the left of
Rx at the node which is one circle closer to the boundary of the network, the
sign of u is opposite to what it is on Rv A similar statement holds at
Rw an argument similar to Case 1 allows us to conclude that there are at least
k + 1 non-zero boundary values of u which alternate in sign.

Case 3. Suppose that the maximum value ck is assumed only once. Then as
in Case 2 we must have c} _ x — c} _ 1 for j < £, and c} + i = c} - 1 for
j > K. An argument similar to Case 1 allows us to conclude that there are at
least k + 1 non-zero boundary values of u which alternate in sign. •

LEMMA 3.4 : Let Q = (O09 Ox) be a circuler network of type C (m, n)
with n ^ 4 / n + 3. Let S be a set of contiguous boundary nodes, and let
T be the complementary set of boundary nodes. Let k be an integer with
k =s 2 m + 1. Suppose that u is a y-harmonie function with u(p) = 0 for all p
in S and for which the current Iu(p) = 0 at k distinct nodes p in S. Then either
u is identically zero or there are at least k + 1 boundary nodes p with
u(p)¥=0.

Proof : Suppose that there are g non-contiguous séquences of nodes from
S of lengths ku k2, ..., kg, with 2kt = k, and suppose that Iu = 0 at each of
these nodes and that Iu ^ 0 at all other noses in S. There must be a total of at
least k sign changes among the values at the nodes neighboring the régions of
zéros.

Each of these nodes where u is positive has a neighbor where
u has greater positive value. Such a node is connected by a chain of nodes of
successively more positive value to a node in T of positive value. Each node
of négative value is connected by a chain of nodes of successively more
négative value to a node on the boundary of négative value. These chains
cannot cross. Thus there must be at least k sign changes among the values of
u at the nodes in T. D

DEFINITION 3,5 : A k by k non-singular matrix B is said to have the
Alternating Property if the following condition holds. Suppose that
c = Bv and that the signs in c alternate. Then the signs in v must be the
négative of the reversai of the signs in c. That is, ifk even, and the pattern of
signs in c is ( — , + , - , + , . . . , + ) , the pattern of signs in v must also be
( — , + , - , + , ..., + ). If k is odd, and the pattern of signs in c is
( - , + * —, -h , . . . , - ) , the pattern of signs in v must be ( + , - , + ,

LEMMA 3.6 : Let A be the matrix representing the Dirichlet-to-Neumann
map for a circular network of type C (m, n). Let k be an positive integer with
k =s= 2 m + 1 and let B be a k by k submatrix sequentially obtained from A.
Then B has the Alternating Property.
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Proof : Let qu q2, ..., qk be the nodes corresponding to the choice of the
k columns of B, and let rls r2, ..., rk be the nodes corresponding to the choice
of the k rows of B. By a rotation of O, if necessary, we may assume that
U r 1 < " ' < ^ < ^ 1 < " ' ( ? i t ^ n . Let v = (vu ..., vk)be a vector of poten-
tials at nodes q{, ..., qk and let c = Bv. For each / = 1, ..., &, let
st be the interior neighbor of rt. Figure 3 illustrâtes the case of a circular
network of type C (2, 12)) and A: = 4.

The sign of the potential at node st must be opposite to the sign of the current
through rx. By repeated use of Lemma 2.1, the node st can be connected by a
chain of nodes with potential of the same sign and increasing magnitude to a
boundary node also with potential of the same sign. These chains cannot
cross. It follows that the potential at nodes qk9 qk_ l9 ..., q2, qx must have the
same signs as the potential at nodes su s2, ..., sk. Thus the values of the
potential at the nodes q^ q2, ..., qk must be the négatives of the reversai of
the values of the current through nodes rl9 r2, ..., rk. D.

For any positive integer k let D be the k by k matrix with nonzero entries
only on the diagonal, and Dt t = ( - 1 ) '+ l.

LEMMA 3.7 : Let B be a k by k non-singular matrix which has the
Alternating Property, Then each entry of the matrix (- 1 )* DB~ 1 D is non-
négative^ Ifin addition all of the k- 1 by k - 1 minors ofB are nonsingular,
then each entry of the matrix ( - 1 )* DB~ l D is positive.
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Proof : If any entry of ( - 1 )* DB~ l D were négative, then B would not be
alternating. If each k - 1 by k - 1 minor of B is nonsingular, then every entry
of B~ l is non-zero, and each entry of (- 1 f DB' 1 D must be positive. •

We proceed with the proof of Theorem 3.2.

Proof: Let B be a k by k submatrix sequentially obtained from
A. Suppose that Bv — c. Lemma 3.4 shows that if c = 0, then v — 0 also.
Thus B is nonsingular. The one by one submatrices of B have the Alternating
Property. This shows that the entries of B are négative. The proof that
B has the right sign foliows by Lemma 3.7 and induction on k, using
Cramer's rules for B1. D

REMARK 3.8 : Let O = (Z20, 12x) be a circular network of type
C (m, 4 m + 3 ). Let u be the y-harmonic function on f2 with the following
boundary data : i*(p,) = 0 for 0 =s j ^ 2 m + 1 ; /„(p,) = ( - 1 y for
I=s=j=s2m+1. Theorem 3.6 shows that the voltages at the remaining
nodes satisfy u (pj ) > 0 for 7 even and 2m + 2 ^ y ^ 4 m + 2 and u (p, ) < 0
for 7 odd and 2m + 3=£y=£4m+l . In this situation, the proof of
Theorem 3.2 actually proves more. For each U j ^ 2 m + 1 , boundary
node Pj can be joined by a chain of nodes with potential of the same sign and
of increasing magnitude to boundary node p4m + 3_j with potential of the
same sign. The chain of edges joining these nodes will be called a principal
flow pat h. Along a principal flow path the magnitude of the current is non-
decreasing from boundary node p} to the boundary node p4m + ̂ . The current
along an edge joining a node of positive potential to a neighboring node of
négative potential will be called transverse to the principal flow.

The principal flow paths for a circular network of type C (2, 11) are
illustrated in the figure 4. The boundary potentials (zero, positive or
négative) are indicated by the symbols (0, + , - ) respectively, placed
adjacent to the nodes.
For any edge in f2l9 there is a pattern of boundary data (obtained by a
suitable rotation offig. 4) that places the chosen edge along a principal flow
path. Similarly, for any edge in 12 u there is a pattern of boundary data that
places the chosen edge transverse to the principal flow.

4. THE DIFFERENTIAL OF T

Let 12 = (/20, i? j ) be a circular network of type C (m, n ). The number of
conductors is iV = « ( 2 m + l). For each conductivity function y on
f2l, let Qr ( . , . ) be the bilinear form in n variables as defined in Section 2.
Let &(n) be the space of bilinear forms in n variables. Let

T: (R+)N
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be the function given by T(y) = Qy(. > . ) . We want to compute the
differential of T. For this, we consider a small perturbation K of
7, and calculate the différence T(y + K) - T(y). Let <f> be a boundary
function. Let ƒ be the y-harmonic function on 12 which takes on the
boundary values <f> and let h be the (y + K )-harmoonic function on
ü which takes on the boundary values </>. Thus Lyf(p) = O and
Ly + K h{p) = 0 for all p e int ft. Let h = f + e. Then e(p) = 0 for all
p G ô ƒ2, and Ly + K e(p) = - L„ ƒ (p) for all p e int O. If c is a function out
int O, L"1 c is defined to be the solution v of Lv = c, with v = 0 on
617. Then L~! L r e = e, and we have

If is small, I + Ly
l LK is invertible, and

Thus e vanishes to order 1 in \\K \\ because LK f vanishes to order 1 in
K. Then

x(pq))(h(p)-h(q)f
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= Qr(<t>, <t>) + 2 £ (y(pq))(f(p)-f(q))(e(p)-e(q))
pqeOx

+ 2 £ K(pq)(f(p)-f(.qMe(p)-e(.q))

+ S K(pq)(f(p)-f<.q)?+ £ K(pq)(e(p)-e(q))2

pgsn1 pqefix

Using that e = 0 on 3/2 and Lemma 2.7, we have

pqe flx

Therefore the differential of 7* at the conductivity y, perturbed by
K, and evaluated at (<£, <£ ) is

dT= Y

Considered as a linear map from (R+ "f to J(n), the differential <iJ is given
by:

) (*,*)= ^ K(pq)(f(p)-f(q))(g(p)-g(q))

where ƒ and g are the y-harmonic functions which take on the boundary
values <f> and if/ respectively.

LEMMA 4.1 : Let O = (Z20, f2x) be a circular network of type C (m, n)
with n = 4 m + 3. Let K be any real-valued function on OY. Suppose that for
all y-harmonic functions f and g, that

Then K = 0.

Proof : Order the edges of O from the outside inwards ; that is, all the
outermost edges come first, then the edges on the outer circle, etc. Recall
from Lemma 2.11, that for each séquence of 2 m + 1 consécutive boundary
nodes of 12 0, there is a (non-zero) special y-harmonic function ƒ which has
value 0 and current 0 at these nodes. For each edge a E Ü, there is a pair of
such special functions ƒ and g, such that the product
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(f(p) ~ f (?)) (9(p) - 9(<?)) * 0 when /?<? = <r, and this product is 0 for all
edges pq which follow <r in the ordering. The proof that K(O-) = Q for all
er E Qx follows readily by induction using the ordering on the edges. •

THEOREM 4.2: Let O = (/20, O : ) be a circular network of type
C (ra, n) with n = 4 ra + 3. 7Y^n the differential of T is one-to-one.

Proof : This follows immediately from the expression for the differential
dT and lemma 4.1. •

5. AN ALGORITHM FOR COMPUTING CONDUCTANCES

Let ft = (/20, Qy) be a circular network with of type C (ra, 4 ra + 3). We
use the results of Sections 2 and 3 to give an algorithm for Computing
y from Ay.

Let A be the matrix representing A, as in Section 3. We will use
A to find the boundary values for the special y-harmonic functions described
by Lemma 2,11. Let w be the (column) vector whose entries are
wt = Al4m + 3) for i = 2 m + 2, ..., 4 ra + 2. Let B be the special submatrix
of A whose entries are Bl } = Atj, for i = 2 m + 2, ..., 4m + 2 and
y = l, . . . , 2 /w+l . Let v be the solution to the matrix équation Bv + w = 0,
guaranteed by Lemma 3.6. Let <f> be the boundary function whose values are

l - (1)
<t> (pj) = vj for j = 1, ..., 2 ra + 1 . (2)
<£(/?,) = 0 for j = 2 ra + 2, ..., 4 ra + 2 . (3)

Let A (<£ ) = ƒ be the resulting current. By the construction, I (pt ) = 0 for
i = 2 ra + 2, ..., 4 ra + 2. The pattern of zero voltages is indicated by the
circled nodes by figure 5.

Remark 5.1 : By a rotation there is a similar voltage pattern with any other
node Pj in the position of p0.

The algorithm will proceed inwards by levels. The outermost boundary
conductors are at level ra + 1. For each integer / = ra, ra - 1, ..., 1, the
circular conductors on the circle of radius / and the radial conductors
between this circle and the circle of radius i — 1 are at level /.

For each boundary node pp let q} be its interior neighbor. We first use the
boundary function <f> and / = A (<f> ) to calculate the conductance y (p0 q0).
The pattern of O's shows that u(q0) = 0. By Ohm's Law :

(«(Po)- «

Then, using Remark 5.1, we can calculate yiPjÇj) for all
j = 1, ..., 4m + 3.
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• PO = P4m+3

P2m+2 P4m+2

P2m+3

Figure 5.

Assuming now that we have calculated y{p} q}) for all boundary conduc-
tors we calculate yipq) for all circular conductors at level m as follows.
From the potential <f> and the current / = A (<f> ). We first calculate

y Ohm's Law :

r(Pi <7i) ( W ( P I ) - M(<7!)) = / (Pi ) .

All the current through p0 q0 must pass through ^0 qx. Then we compute
T ( ^ O ^ I ) by Ohm's Law.

Using Remark 5.1 again, we can calculate all conductances on the outermost
circle. We next calculate the radial conductors y(rs) at level m - 1 as
follows. The boundary potential <f> and the boundary current I = A (<£ )
enables us to calculate the value of u at all nodes on the circle of radius
m. We then calculate the current across edges p(m, 0)/?(m, 1),
p{m + 1 , 1 )p(m, 1 ) and p(m, 1 )p(m, 2). Using Kirchhoff's Law, and the
known value of 0 atp(m - 1, 1 ) we can calculate y(p(m9 l)p(m - 1, 1 ))
by Ohm's Law. Using Remark 5.1 again, we calculate the conductances for
all radial edges at level m — 2. We then calculate the circular conductances at
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level m - 2. Continuing inwards, in a similar way we calculate all the
conductances.

THEOREM 5.2 : Let ft be a circular network of type C (m, n). The map
which sends conductivity yto the matrix representing Ay is 1-1. Let y and JJL
be two conductivities on O. If Ay is sufficiently ne ar to A^, then
y will be near to JA.

Proof : The algorithm shows that the Dirichlet-to-Neumann map Ay,
uniquely détermines the conductivity y. The algorithm also shows that each
conductivity can be calculated by an algebraic formula which never involves
division by 0. This shows the continuity of the inverse. •

Remark 53 : This method of special functions can be used to give an
algorithm for Computing conductances of a circular network of type
C (w, n) whenever n ^ 4 / n + 3. The uniqueness and continuity of inverse
also hold for such networks.

6. CHARACTERIZATION OF Ay

Let O — (/20, flx) be a circular network of type C (m, 4 m + 3 ). Suppose
the conductivity is y. The Dirichlet-to-Neumann map is represented by a
n by n matrix A = {AlfJ}y as in Section 3. We showed that the matrix
A has the following relations.

(RI) A is symmetrie : AtJ = AJt (.
(R2) For each i = 1, 2, .'.., n,

In Section 3, we showed that the matrix A has the following property,
which will be called the Determinantal Property.

(DP) Each square submatrix of A obtained by choosing k rows and
k columns sequentially from A the Right Sign (see Définition 3.1).

LEMMA 6.1 : Suppose that y is a conductivity on a circular network with n
boundary node s. Then the values of the n (n — 1 )/2 entries of A above the
diagonal détermine uniquely the remaining entries of A.

Proof : The entries below the diagonal are obtained from the symmetry
relation ; Al} = Ajr The diagonal entries are then obtained from the sum
relation. •

THEOREM 6.2 : Let m be a non-negative integer, and let n = Am + 3. Let
A be a n by n matrix whose entries satisfy the relations RI, R2, and which
has the DP. Then there is a unique conductivity function y on a circular
network of type C (m, n) such that A is the matrix representing Ay.
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The proof will foliow several lemnas. An nby n matrix A will be called a
A-matrix if it satisfies the relations Rl, R2, and has the DP. We will show
(Lemma 6.7) that the set of n by n A-matrices is path-connected. Thus the
given A-matrix A can be joined to the A-matrix corresponding to y = 1 by a
path of n by n A-matrices. The proof of the theorem will be completed by
showing that every matrix on this path must be of the form Ay.

We will need the following elementary facts from matrix algebra.

LEMMA 6.3 : LetB{k) be a séquence of nby n matrices with lim B{k) = B.
k-+co

Let v{k) be a séquence of vectors of bounded norms. Then the norms of
g(k)v(k) and tne magnitudes of (v{k\ B{k) v{k)) are bounded.

LEMMA 6.4 : LetBKk) be a séquence of n by n matrices with lim B{L) = B.

Assume that B and each B ̂  is nonsingular. Let c be a fixed vector, and let
v^k) be a séquence of vectors with B(k) v(k) = c for each k = 1, 2, ..., . Then
the norms of v^ are bounded.

Let M = {M^j} be a k by k matrix. For each (i, j \ let Af (i, j) be the
(i, j )-th minor, that is, the (k - 1 ) by {k - 1 ) matrix formed by deleting the
z-th row and the j-th column of M. The expansion of det (M) by its first
column gives

/ =k

det M - £ (- 1 y + l MIf ! det M(i, 1 ) .
i = i

For each integer t > l , we define a function fk as follows. fx is defined to
be the constant 0. For k ^ 2, fk is a function of the entries of a
k by k matrix M, defined by :

fk(M) = (' "£ ' ( - 1 )' + *+ 1 M,, ! det Af (i, 1 )) /det M(k, 1 ) .

Observe that fk{M) is a function of the k2-\ entries

(MhU ..., Mku ..., Mkk).

That is, fk(M) is independent of the entry Mk x ; fk(M) is well defined if
det M(k, 1 ) # 0. Recall (définition 3.1) that a k by k matrix M is said to have
the Right Sign (RS) if :

d e t M < 0 when & = l , 2 m o d 4 (1)
det M > 0 when k = 0, 3 mod 4 . (2)

LEMMA 6.5 : Let M be a k by k matrix such that the minor M (k, 1 ) has the
RS. Then if the entry MK x < f k{M\ M will have the RS also.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



THF CQNDUCTORS IN CIRCULAR NETWORKS 799

Proof : This follows by expanding det M by its first column, and using the
définition of the function f k. •

Lemma 6.1 shows that we may take the n(n — l)/2 entries above the
diagonal as parameters of A. Thus the total number of parameters is the same
as the number of conductors. Let N = 2 m (Am + 3) = n(n - 1 )/2.

It is convenient to consider an extended matrix Â. For all integers
p and q, the entries of À are given by At +pnj+qn = Aiy

The parameters are ordered as follows. For each integer h with
l^h^N, let

h = a+ {Am + 3 ) ( ib - 1)

where l=s=a=s=4m + 3 and U ^ 2 m - 1 . Then the Zz-th parameter is at
position {a, 2 m + 2 + a - b) of Â. By means of the définition of the entries
of Â, and symmetry, this corresponds to a unique entry of A above the
diagonal. If a — b ^2m + l the h-Ûv parameter is the entry
(a, 2m + 2 + a - & ) o f A ; i f a - è : > 2 m + 1 the &-th parameter is the entry
(a - b - 2 m - 1, a ) o f A . Figure 6 shows the séquence of parameter entries
in A for a circular network of type C (1, 7).

* 15 8 1 5 13 21

* 16 9 2 6 14

* 17 10 3 7

* 18 11 4

* 19 12

* 20

Figure 6.

For h > 4 m + 3, let ft = a + (4 m + 3 ) (b - 1 ), as above. Then the h-th
parameter position is in the lower left corner of a b by b submatrix of the
extended matrix A, which will be denoted B(h). The other entries of
B(h) correspond to parameters xt for i < h. For each integer 1 ̂ j =s Af, we
define a function F J{xl, ..., x; _ {) as follows. For 1 =s=y ^ 4 m + 3, F ; = 0.
Suppose inductively that F, has been defined for i < j \
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The domain of F j will be the set of A,, A2, ..., \j _ i such that for each
1 as i ss j , x, <: F, (x{, x2, ..., x, _ ! ). Then

Inductively, we see that F;(xu ..., x} _ x) is well-defined for each
7 = 1, ..„AT.

REMARK 6.6 : Let S be the set of parameter values xu x2, ..., JCW such that
for each l^j^N, x} ^ Fy(jcl9 x2, ..., x, _ ̂  An n by « matrix with
relations Rl and R2 will have the DP if and only if its parameter values lie in
the set S.

LEMMA 6.7 : S is a path-connected set in RN.

Proof: For each h = 1, ..., Af, let Sh be the set of parameter values
(x:, x2y ..., xh) such that x} -< F , (xu x2, ..., xy _ x), for each 1 ̂ y ^ /Ï. We
will show by induction on h that each Sh is path-connected set in
Rfr $i = {xi '• xi ^ O } , and so is path-connected. Assume inductively that
Sj is path-connected for j < /i. Let (xu ..., x^_1? X/^and (yu ..., v^_j , v^)be
two points in Sh. Take )S(r) = ( /^(O, ..., Ph-iiO) a path in 5 A - 1 joining
(xj, . . . ,**_!) and (vj, . . . , ^ - i ) - Let J = min, {FA(/3(r))}. We have three
paths :

(1) The straight line (xl5 ..., xh_x, xh) to (xu ..., xA_L, T ).
(2) (p(t\T).
(3) The straight line (yls ..., yn-u ^ ) t 0 (yi> •••> J A - I » ^ ) - These three

paths give a path from (x^ ..., xh_u xh) to (ylf ..., yh_l9 yh) in 5A. D

DEFINITION 6.8 : A matrix whose entries satisfy the relations Rl and R2
and has the property DP will be called a A-matrix.

Lemma 6.7 implies that the set of A-matrices is connected. Let A be a
n by n A-matrix. To prove Theorem 6.2 we need to show that there is a
unique conductivity function y such that A is the matrix representing
Ay. We dénote by L(n) the set of n by n matrices A which represent
Ay for some conductivity y on ft x. It follows from Theorem 4.2, Lemma 6.5
and the open mapping theorem that L(n) is an open subset of the set of
n by n A-matrices. Let A{t) for 0 =s= t ^ 1, be a path of A-matrices joining
A(0) with A(l), where A(0) is the A-matrix corresponding to y = 1, and
where A(l ) = A is the given A-matrix. We will show that each matrix along
this path is in L(n). Suppose the contrary. Since the set of t for which
A(t) is in L(n) is open, there is a the first value t0 for which A(t0) is not in
L(n). For each t<tQ, let y(t) be the conductivity corresponding to
A(t). For each conductor pq9 we piek a number fju (pq) which is zero,
infinity, or a positive real number and a séquence {tu t2, ..., tk9 ...} with
lim tk = t0, and such that lim y(tk)(pq) = /üt(pq). We will write
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y{k) for y (tk) and Aik) for A (tk). We know that lim A(k) = A(0) and each of

these is a À-matrix. It follows from Lemma 6.3 that for any fïxed boundary
potential <f>, the magnitudes of (<£, A^k)(<f> )> are bounded. Also, because of
the conditions on the values of the parameters, each sequentially obtained
square submatrix of A(0), and each sequentially obtained square submatric of
A(k) is non-singular.

We will make use of the principal flow patterns described in Remark 3.8.
Let c be the vector of currents c = ( - l , + l , . . . , - l ) at nodes
Pu P2* —>P2m + i- F o r e a c n *» l e t M(k) b e t n e sequentially obtained
2 m + 1 by 2 m + 1 submatrix of A{k) consisting of the entries from rows
1, 2, ..., 2 m + 1 and columns 2 m + 2, 2 m + 3, ..., 4 m + 2. Let rc*) be the
solution to M(k) v^k) = c. Let if/^k) be the boundary potential given by
$ ^(pj) = 0 for 0 =£7 === 2 m + 1, and tf/ (k)(pj) = v{k)(pj) for j = 2 m + 2,
2 m + 3, ..., 4 m + 2. ^ ( / : ) is the boundary potential which produces current
c at nodes px, p2, --^Pim + i- Let w(A) be the y(*^harmonie function with
boundary values *f/(k)(p}). This situation is illustrated by the flow diag-
ram Fig. 4.

LEMMA 6.9 : In this situation, there is an upper bound for the magnitudes
of | uik)(p)\ for all k and all nodes p. There is also an upper bound for the
currents \y{k)(u(k)(p) - u{k)(q))\ for all edgespq.

Proof : Lemma 6.4 shows that there is an upper bound for the values of
|^ ( / : ) (p ; ) | for all boundary nodes p} and all k. By the maximum principle,
this is also an upper bound for \u^k)(p)\ for all nodes p and all
k. Lemma 6.3 shows that there is an upper bound for the currents at all
boundary nodes p} and all k. This is also an upper bound for the current along
any edge. •

We continue with the proof of Theorem 6.2.

(i) Assume that for some conductor pq, }*>(pq) = 0. Whether radial or
circular, by a rotation of the figure, we may assume that pq lies along a
principle flow line as in Figure 7.

Let yKk)(pq) — ek, where lim ek = 0. Let the y-harmonic functions

u{k) be as in Lemma 3.8. Specifically, the boundary data is : u{k)(Pj) = 0 for
0=sj=s=2m + l and Iu&)(p}) = ( - 1 y for l = s j ^ 2 m + l .

Let r be the boundary node at the low end of the path of principal flow.
Suppose that the current at r is - 1 (a similar argument would apply if the
current at r is + 1). Then uik\q) > 0, and the current across pq is at least 1.

u(k)(p)-u(k\q)^ l/ek.

This would imply that lim u^k)(p) = oo, contradicting Lemma 6.3.
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r

Figure 7.

(11) Next suppose that JA {ab) = oo for some boundary conductor ab By a
rotation of 12 we may assume that & (p0 qö) = oo Refer to figure 8 for the
notation.

Given a positive real number /?, choose a positive integer Z so that if
k^Z, y{k)(Po^o)^R' F o r e a c h positive integer k, lztuik) be the
y ̂ -harmonie function on O as in Remark 3.8. Let <A(&) be the function
u(k) restneted to the boundary of f2. Let Y be an upper bound for all

))<Pj)\- Then

The current across conductor qx px is 1, so the current across q0 qx is at least
1. Then

and

Recall that <f>x is the function on 3/2 which is 1 at px and 0 at all other
boundary nodes. For each positive integer &, consider the network
O with conductivity y(k) Let v(k) be the potential on 12 which equals
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Figure 8.

4> j on the boundary of ü. Let W be an upper bound for \A{k){<f>i(pJ))\. Then

1 -WYIR .

The current y (k)(qQ q\)(p{k){q\) - v(k\qQ)) would tend to oo as k -+ oo. By
the maximum principle, the value of vk(q{) is s* the value of vk at any node
other than pv It follows that the current across px q1 is greater than or equal to
the current across qx q0 which contradicts the upper bound on the values of

From (i) and (ii), we can assume that s =s= y (k\ab) =s X for each boundary
conductor ab and each k s= 0.

(iii) Assume that for some interior conductor pq, f^ipq) = oo. Whether
radial or circular, by a rotation of the figure, we may assume that the edge
pq is trans verse to the principal current flow. Let r be the boundary node at
the low end of the principal path containing p. Similarly let s be the boundary
node at the low end of the principal path containing q. Let r' be the interior
neighbor of r and let s' be the interior neighbor of r, The situation is
illustrated by figure 9.

Let y {k)(pq) = Xa\ where lim X{k) = oo. Let c and the y-harmonic
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r

Figure 9.

functions u(k) be as in Remark 3.8. Again suppose that the current as
r is - 1. Then

- VX.

This would give a current through pq which is

7 (k)(pq)(uik)(p) - w

This has limit oo, which contradicts Lemma 6.9.
Let A be a n by « matrix which is a À-matrix. We have just shown that

A is of the form Ay. This complètes the proof of Theorem 6.2.

7. THE NEUMANN-TO-DIRICHLET MAP

Let O = (fi0, / 2 j ) b e a circular network of type Cx{m, 4m + 3). If
boundary currents /(py) are put at each boundary node p} of /2, with

£ f(pj) = 0, there will resuit a potential u throughout 12, which is unique to
j = i

within an additive constant. Let <f> (p} ) be the boundary potentials of
M. The map which takes ƒ to 0 is called the Neumann-to-Dirichlet map
1P\ TP gives rise to a bilinear form F on the set of boundary functions with
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sum 0, by

F is well defined, independent of the additive constants. From the bilinear
form F, a matrix représentation B of the Neumann-to-Dirichlet map is
obtained as follows. For each 1 =sj '^n, let f} be the function on the
boundary nodes of 12, givenby ƒ (p,) = + 1, fj(pJ + i) = - 1 andfj(pk) = 0
for all k #y , j + 1. Then the entries of B are given by

The matrix B represents the Neumann-to-Dirichlet map on the network in the
following way. Let a current of + 1 be put at node p} and — 1 at node
Pj + i- Then Bt } is the voltage différence between nodes pt and pt + L.

The relation between the matrix A for the Dirichlet-to-Neumann map
A for fl and the matrix B for the Neumann-to-Dirichlet map !P for
/2 is the following. Let P be the matrix, whose entries are Pt1 — + 1,
Pl + lil = - 1, F l t„ = - 1 and ƒ>,̂  = 0 for all other entries. Let PT be the
transpose of P.

Then

B = Pl A'{ P
and

A - P B 1 P T .

This requires some explanation, because A and B each have rank
n — 1. A~l is defined on each column of P, and gives a column which is
unique to within an additive constant. Multiplying on the left by P T removes
the ambiguity, so the product PT A~l P is well defined and it is the matrix
5. Similarly, PB' l PT is well defined and is the matrix A.

A reconstruction algorithm which is similar to that given in Section 5
based on the Neumann-to-Dirichlet map can be given.

8. EFFECTIVE RESISTANCES

Measurements at boundary nodes are made as follows. A current of
4- 1 is put at node pn and a current of - 1 is put at node p} ; at all other
boundary nodes, the currents is 0. From this Neumann data, there will result
a potential u throughout /2, unique to within an additive constant. Let
RtJbe the potential différence measured between node pt and p} ; is called the
effective résistance between nodes pt and pr The set of measurements
Rt j may be used to reconstruct the matrix B which represents the Neumann-
to-Dirichlet map as follows. For each pair of integers i and j between 1 and
n, let cltJ be the current described above. That is cl }(pt ) = 1, cl }{pj) = - 1
and ct j(pk) = 0 for all other boundary nodes pk.
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Then

using

we see that

From this, it follows that for each i,

and for j :> z,

The entries of the matrix B may be computed from the entries of
/?, by induction on the différence y — i. From the reconstruction algorithm of
Section 5, it follows that the effective résistances uniquely détermine the
values of the conductors in the network.

9. OTHER CIRCULAR NETWORKS

In this Section, we will consider other types of networks with m circles and
n rays. There are four types of circular networks labelled Cx(m,n\
C2{m, «), C3(m, n) and C4(w, /i). The circular networks of type C (m, n)
defined in Section 1 will now be labelled C1(m, n).

For each pair of positive integers m, «, the circular network of type
C2(/w, n) has m circles and n rays. Figure 10 illustrâtes a circular network of
type C2(3, 12).

The nodes of C2(/w, n) are the pointspzw for 1 =s= / === m and 0 =£7 =s n - 1.
The node /?, y is given in polar coordinates by pI>y = (/ - 1/2,7 2 TT/H).
There are mn nodes. The interior consists of those nodes pl} for
1 sï i <: m and 0 ^ 7 ^ n — 1. This includes the nodes on innermost circle,
but not on the outermost circle. The boundary consists of the nodes on the
outermost circle, but not the nodes on the innermost circle. Each interior
node not on the innermost circle has four neighboring nodes ; each node on
the innermost circle has three neighbors. Each boundary node has two

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



FINDING THE CONDUCTORS IN CIRCULAR NETWORKS 807

Figure 10.

neighbors which are also boundary nodes and one neighboring node which is
an interior node. An edge is a radial line segment p(i, j )p (i + l ,y ) or a
circular are/?(/, y )/?(/, y + 1). There are n(2m-\) edges. A circular
network of resistors of type C2(m, n) is such a network together with a
conductivity function y on the edges. An algorithm for recovering
y from Ay like that of Section 5 can be given for circular networks of type
C2(m, n) if n 5= 4 m + 3.

For each pair of positive integer s m, n, a circular network of type
C3(m, n) has m circles and n rays. Figure 11 illustrâtes a circular network of
type C3(3, 12).

Figure 11.
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The nodes of C 3 (m, n ) are the points p, , for 0 ^ / ^ m and 0 =s j- === n - 1.
The node pt } is given in polar coordinates by px } = (/, j lirln). There are
1 + mn nodes. The interior consists of those nodes pl} for 0 === / <: m and
0 =sy *s n - 1. The boundary consists of the nodes pm } for 0 =sy =s n - 1.
The boundary consists of the nodes pm } for 0 =s j =s n — 1. Each interior
node, except the center node, has four neighboring nodes ; the center node
p(0, 0 ) has n neighbors. Each boundary node has three neighboring nodes :
and two neighbors which are boundary nodes and one neighbor which is an
interior node. An edge is a radial line segmentp{i, j)p{i + 1, j ) or a circular
arcpO', y )p0", j 4- 1 ). there are 2 mn edges. A circular network of resistors
of type Cz{m^ n) is such a network together with a conductivity function
y on the set of edges. An algorithm for recovering y from Ay like that of
Section 5 can be given for circular networks of type C 3 (m, n ) i f n ^ 4 m + l .

For each pair of positive integers m, n, a circular network of type
C4(m, n) has m circles and n rays. Figure 12 illustrâtes a circular network of
type C4(2, 8).

Figure 12.

The nodes are the points in the plane pt } for 1 =s= / =s m and 0 ===7 =s « - 1.
The nodes /?, 7 are given in polar coordinates by pt } = (i — 1/2, j 2 n/n),
There are mn nodes. The interior consists of those nodes pt } for
1 =s= / < m and O e j ^ n - 1 . This includes the innermost circle. The
boundary consists of those nodes pm } for 0 =s j' ^ n - 1. Each interior node
not on the innermost circle has four neighboring nodes ; each node on the
innermost circle has three neighbors. Each boundary node has one neighbor-
ing node which is an interior node. An edge is a radial line segment
p(i>j)p(i + 1> j)or acircular arcp(z, j)p(i, j + 1 ). There are 2 mn edges.
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A circular network of resistors of type C4(m, n) is such a network together
with a conductivity function on the set of edges. An algorithm for recovering
y from Ay like that of Section 5 can be given for circular networks of type
C4(m, n) if n s= 4 m + 1.

10. DUAL NETWORKS

Let üx be a network of type , n) and let 12 2 be a network of type
C2(m + 1, «). Z^! is dual to the network fî2

 a s follows. /22 is rotated
clockwise by ir In SO that each edge a in /2X is perpendicular to an edge
a1- in ü 2- The orientation of a 1 is to be that of a rotated clockwise by
TT/2. Figure 13 shows /22, a network of type C2(2, 8) (solid Unes), and
/2j (dotted lines), a network of type Cl(lf 8).

If y t is a conductivity on Ou the dual conductivity y2 on F2 is defined by
72(a-L) = 1 /y^a ) . For each ypharmonic function M on Du let P be the
y2-harmonic function on F2J where

The function i; is well defined to within additive constant. Each boundary
node pl of O1 lies between two boundary nodes of F2J which will be
numbered qt and qx + ^ (with qn+ { = qx). For each 1 =<y =s /z, left / y be the
function on the boundary nodes of F2, given by f} {q} ) = + 1,
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ƒ,(<?/ + ï ) = - 1 and fj (q( ) = O for all l ¥= j \ j + 1 • Let v} be the r 2 - h a r m o n i c

function on F2 with boundary current f}. The Neumann-to-Dirichlet map for
F2 is represented by a matrix #", where

The matrix W for the Neumann-to-Dirichlet map on the network F2 is the
same as the matrix A for the Dirichlet-to-Neumann map on f2 which was
constructed in Section 2. Thus the matrix W has the same properties as
A.

Similarly, each network of type C3(/n, n) is dual to a network of type
, n).

11. THE INVERSE CONDUCTIVITY PROBLEM FOR CONTINUUA

Let ft be a compact, connected région in Rk with boundary 3/2. Let
y be a positive C00 scalar-valued function on 12 ; y is called conductivity.
The conductivity équation is :

The (forward) Dirichlet problem is the following. Given a function
ƒ on 3 /2, find a function u on O such that :

V ( T V M ) = 0

u = f on 3/2 .

Similarly, the (forward) Neumann problem is the following. Given a
function g on a/2, find a function u on /2 such that :

y ~ = g on 8/2 .

If r (x ) is the constant function y(x) = 1, the conductivity équation is the
Laplace. Equation V. Vu = 0, and we have the ordinary Dirichlet or
Neumann Problem.

EXAMPLE 1 : Let a material with electric conductivity y(x) occupy the
région 12. If a potential ƒ is imposed on 3/2 there will be a potential
u throughout 12 which satisfies the conductivity équation. This potential

u gives rise to a current I = y — at the boundary of /2.
dn

The Dirichlet-to-Neumann map

A: C0 O(3/2)^C c o(3/2)
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is defined by

where u solves the conductivity équation in f2 with u = ƒ on 3/2. In
example 1, the Dirichlet-to-Neumann map takes a potential on the boundary
of O to the resulting current at the boundary of /2.

The linear map A = Ay dépends on y. The Inverse Problem is to détermine
y from A. Physically, this means to use measurements of potentials and
currents at the boundary of O to détermine the conductivity inside
fl. As in the discrete case, the Inverse Problem breaks into four problems.

1. Uniqueness : Does Ay = A^ imply y = fx ?
2. Reconstruction : calculate y from the map

Ay : CGO(a/2)^CÛO(3/2).

3. Continuity of Inverse : If Ay is near to A^, does it follows that
y is near to /i ?

4. Characterization : Which linear maps

are of the form A = Ay for some y.
For compact, connected régions fl in Rk with k s= 2, and piecewise

analytic conductivity r , the uniqueness (1) was shown by Kohn and
Vogelius [5]. In the case of a conductivity y which is assumed to be
C00, the uniqueness was shown for dimensions k^3, by Sylvester and
Uhlmann [6]. For k = 2, the result is unknown. For k =* 3, the continuity of
the inverse (3) was shown by Allesandrini (1988). Some work on the
reconstruction has been done by Wexler, Kohn and Vogelius and others
(1983-1988). See [5], [3], characterization problem in the continuüm case.

Our methods show that there is an Altemating Property for the Dirichlet-
to-Neumann map in the continuüm case, which is analagous to the
Altemating Property (Theorem 3.2) for the discrete case. Let /2 be a
compact, connected and simply connected région with conductivity
y. The outward normal to 3/2 will be called n. Let P and Q be distinct points
on 3/2. Assume that 3/2 is homeomorphic to a circle, so that P and
Q separate 3/2 into two arcs which we call Cx and C2.

THEOREM 11.1 : Let <f> be a function on 3/2 which is identically O on
C j and for which A(tf>) changes sign k times on C Y. Then <f> must change sign
at least k times in C2.

Proof : Let u be the y-harmonic function which solves the conductivity
équation with boundary values <t>. Then A(<f>)= y— is the resulting

3/Î

vol. 28, n° 7, 1994



8 1 2 E. CURTIS, E. MOOERS, J MORROW

boundary current. Suppose that pu p2, --^Pk+i i s a séquence of points in
order along C l9 for which the values A<j> (p^, A<j> (p2), ..., A<f> (pk+l)
alternate in sign. W e will show that there are points sly s2, ..., sk+l in
C2 where the function <f> alternâtes in sign. Suppose that at some point

pt e C IJ y — ( p , ) < 0. There is a line segment pt qt in O along which
on

u is monotone increasing. Suppose that u(qt) = e. Let Ut —
{x e O : u(x) > s/2}. Let Vt be the connected component of Ul in
f2 which contains qr By the maximum principle, Vt must contain a point
st on S f2 with u(st)>0; necessarily s, e C2. Similarly, for a point

pt e Cx, where y — (Pi)>0 there is a line segment pJ qx along which

M is monotone decreasing, and there is a connected open set Vt containing
qt and a point st on the boundary where u (s{ ) < 0. The values of
^ at the points su s2, .., sk + l must be the négatives of the reversai of the
signs of the values A(<f> ) at the points pu p2, ..., pk+i. D

12. COMPLEX IMPEDANCES

In this Section, we consider networks where each edge has a complex
frequency-dependent impédance z (pq ; <o ). The admittance y (pq ; <o ) is
defined by ;y(p<7 ; w ) = l/z(pq ; <w ). We assume that the real part of each
z(pq ; o) ) is positive ; then the real part of y (pq ; <o ) will also be positive. For
each frequency <o, we consider functions on Ï2O which have the form
u(p ; a>)f — (p ; (o) elüit. That is, for each node p e I20, f(p ; <o ) is a
complex number, depending on <o. The identity of Lemma 2.8 can be used to
show that the analogue to Lemma 2.5 is valid in the case of complex
admittances with positive real part. Thus the Dirichlet-to-Neumann map is a
well-defined linear map which takes (steady-state) boundary potentials of
frequency a> to (steady-state) boundary currents of frequency o>. An inner
product on complex boundary functions is defined by :

where the bar stands for complex conjugate. For each index y = 1, 2, ..., «,
let <f>j be the boundary function which is eltût at node p} and 0 at all other
boundary nodes. The Dirichlet-to-Neumann map A is represented by a
matrix A = {AkfJ} of complex numbers. The entries Akj are given by :

^\ <t>k) .

The algorithm of Section 5 applies to show that, for each frequency
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o), measurements of the steady-state potentials and currents at the boundary
of the network can be used to calculate the (frequency dependent) impédance
along each interior edge. Section 9 shows that it is sufficient to measure the
effective impédance between each pair of boundary nodes to détermine the
interior impédances.

13. SOME NUMERICAL RESULTS

A program based on the algorithm for reconstructing the network of type
Cj(3, 15) has been written and several numerical experiments have been
performed. Here we will report on the results of reconstructing the network in
which all conductors have value 1. All computations were made in double
précision using Fortran on a Decstation 5000. The largest error was
approximately 1.5 x 10~10, which means that roughly 6 digits were lost in
the computation. If the entries of the lambda matrix were perturbed randomly
by terms of magnitude 10~8 then the largest error in the computation of the
conductors was approximately 0.5. If the lambda matrix was perturbed
randomly by terms of magnitude 10"7 then some of the conductors were
computed to have négative values. This would indicate that the reciprocal
condition number of this problem is about 10"8. Linpack estimâtes the
reciprocal condition number of the derivative of the Dirichlet-to-Neumann
map, considered as a map of/?105 to /?105, to be 5.3 x 10" 9. Figure 14 shows
a plot of the logarithm to base ten of the singular values of the derivative of
the Dirichlet to Neumann map. Notice the values seem to occur in families of
15, 30, 30 and 30 éléments. The families of 30 are further subdivided into
subfamilies of 15 éléments.

20 40 60 80

Figure 14.
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