REM 2018 Day 3 S. Chepuri Electrical Networks

DEF'N: A resistor network is a finite graph (V, E) with a specified set $\phi \neq B \subset V$ called boundary vertices and a real nonnegative weight c_{e}, called conductance, associated to each edge e $e \in$. The other vertices are called internal vertices $I=V \cdot B$ The resistance $r_{e}=\frac{1}{c_{e}}$.

Example

$$
\begin{aligned}
& V=[a, b, c, d\} \\
& B=\{a, c\} \\
& I=\{b, d\} \\
& r_{a b}=\frac{1}{1}=1 \\
& r_{b c}=\frac{1}{2}
\end{aligned}
$$

DEN N: A potential function is a function $V \xrightarrow{f} \mathbb{R}_{\geqslant 0}$
The voltage across an edge $x y$

$$
\text { is } v_{x y}:=f(x)-f(y)
$$

Ohm's Law:

Inournotation, $v_{x y}=i_{x y} r_{x y}$

$$
\text { or } \quad i_{x y}=v_{x y} c_{x y}
$$

where $i_{x y}$ is the current flowing across $x y$.
NOTE: As wive defined them, $v_{x y}$ and $i_{x y}$ have direction, i.e. $v_{y x}=-v_{x y}, i_{y x}=-i_{x y}$. Not time for $r_{x y}=r_{y x}=\frac{1}{c_{x y}}=\frac{1}{c_{y x}}$.

Given a network and potential function, we can use ohm's law $t o d e f i n e$ all the currents.
egg.

$$
\begin{aligned}
& f(a)=1 \\
& f(b)=1 / 3 \\
& f(c)=0 \\
& f(d)=3 / 5
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow v_{a b}=f(a)-f(b)=\frac{2}{3} \\
v_{b c}=f(b)-f(c)=1 / 3 \\
i_{a b}=V_{a b} c_{a b}=2 / 3 \\
i_{b c}=V_{b c} c_{b c}=2 / 3
\end{gathered}
$$

Kirchhoff's current law (KCL)
Foromy node in on electrical circuit, the sum currents flowing in is zero.
We are interested in potential functions where KCL holds for all internal vertices.

$$
\begin{aligned}
& i_{a b}+i_{c b}= \\
& i_{a b}-i_{b c}= \\
& \frac{2}{3}-\frac{2}{3}=0
\end{aligned}
$$

theorem Given a resistor network and a potential function defined on the boundary vertices, there is a unique extension of the potential function to all vertices, insisting on KCL at all internal vertices.
Dirichlet Problem:
Find this unique extension.
How to find it?

We constmat the Kirchhoff matrix of the network as follows.
Index $v \in B$ as $\{1,2, \ldots, m\}$ and $v \in I$ as $\{m+1, \ldots, n\}$

$$
\begin{aligned}
& K_{i j}=\left\{\begin{array}{l}
\sum_{\substack{1 \\
\text { edges } e \\
\text { between } i \text { ord } j}} \quad i \neq j \\
-\sum_{\substack{\text { eddese } e \\
\text { incident to } i}} c_{c}
\end{array} \quad i=j\right. \\
& \text { (= negative of }[(G) \text { from Day } \\
& \text { if al } c_{i j}=1 \text {) }
\end{aligned}
$$

$$
K=\begin{gathered}
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
-5 & 1 & 1 & 3 \\
1 & -5 & 2 & 2 \\
1 & 2 & -3 & 0 \\
3 & 2 & 0 & -5
\end{array}\right]
$$

Given a potential function as a vector $v \in \mathbb{R}_{\geq 0}^{n}$, then $K v$ gives the current thawing into each vertex.
egg.

$$
\cdot\left[\begin{array}{cccc}
-5 & 1 & 1 & 3 \\
1 & -5 & 2 & 2 \\
1 & 2 & -3 & 0 \\
3 & 2 & 0 & -5
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
1 / 3 \\
3 / 5
\end{array}\right]=\left[\begin{array}{c}
-43 / 15 \\
43 / 15 \\
0 \\
0
\end{array}\right]
$$

e.g.

$$
\begin{aligned}
&-5(1)+1(0)+1\left(\frac{1}{3}\right)+3\left(\frac{3}{5}\right) \\
&=-(1+1+3)(1)+1(0)+1\left(\frac{1}{3}\right)+3\left(\frac{3}{5}\right) \\
&= 1(0-1)+1\left(\frac{1}{3}-1\right)+3\left(\frac{3}{5}-1\right)
\end{aligned}
$$

$$
\text { = current flowing into } 1 .
$$

We can divide K into 4 parts

$$
K=m\left\{\left[\begin{array}{cc}
n & n-m \\
B_{n}^{t} & C
\end{array}\right]\right.
$$

and same for potential $m\left[\left[\begin{array}{l}x \\ n-m\end{array}\right]\right.$

$$
\left[\begin{array}{ll}
A & B \\
B^{t} & C
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
A x+B y \\
B^{t} x+C y
\end{array}\right]
$$

Solution to Dirichlet Problem
Given x, want to find y such that $B^{t} x+C y=0$.
Hence $y=-\bar{C}^{-1} B^{t} x$.
NOTE: $C_{\text {is invertible by the theorem. }}$.

We also found the current flowing into the boundary vertices.
In fact, we can think about the map directly from potential on the boundary vertices to the boundary currents

$$
\begin{aligned}
A x+B y & =A x-B C^{-1} B^{t} x \\
& =\underbrace{\left(A-B C^{-1} B^{t}\right) x}_{\text {Schur complement }}
\end{aligned}
$$

DEF'N: The response matrix L of a network is the Schur complement of the Kirchhoff matrix.

Inverse Problem
a) Gen a response matrix and a network with unknown conductances, when can we uniquely recover the oonductances?
b) Which matrices are response matrices?
Curtis. Ingerman-Morrow (1998)
saved this for
arcular planar vests for networks (cpo).
DEF .N: A cpr is a network that can te embedded in a disk, with all boundary vertices on the disk boundary.

NON-EXAMPLES

DEFN/EXAMPLE of medial graph

Two strands:

Draw strands from boundary vertices to each other passing through internals like DEEN: A cor is critical if the medial graph has these properties:

1) no closed loops
2) no self-intersecting strands
3) no 2 strands intersect more than once

THEOREM: The following local moves do not change the response matrix:

$\rightarrow \cdots \rightarrow 1 \begin{aligned} & \log _{\text {removal }}\end{aligned}$
$\pi-\cdots \Rightarrow \begin{gathered}\text { pendant } \\ \text { femoral }\end{gathered}$

'DEEN: Two corn's are electrically equivalent if they have the same response matrix.

THEAREM (Curbs-Ingerman-Momow1998)
(1) Any pron is electrically equivalent to a ential open
(2) Any 2 electrically equivalent corn's can be connected by the local moves. If both are critical, then only $Y-\Delta$ moves are needed.
(3) The condu ctances of a open an be recovered uniquely itandonly if it is critical.
(4) L is the vesponsematix of a corn, with B labeled clockwise, if and only if
(a) L is symmetric
(b) Hows sum to 0
(c) for any $P, Q \subset B$ disjoint, with $|P|=|Q|$,
having no $a<b<c<d$ with $a, c \in P, b, d \in Q$,
then $\operatorname{det}, \stackrel{Q}{p} \geq 0$
$C_{\text {submataix of } L \text { with } n \text { wow } P a}$ chum n Q

We seek an analogue for networks that are not quite corn's.
We'll consider those that have all butione boundary vertex on the disk boundary.

Introduce a new local move called autenna-jumping

It's not a sequence of the previous local moves, but preserver response matrix.

If we want an analogue of (2) in theorem, we need to add antennajumping.
PROPUSED DEF N: A network is critical it \# of edges cant be reduced using a local move.
REU Exercise 7
Show the \#of edges in this

can't be reduced by applying bal moves.

ExAmple

has responsematix

$$
L=\left[\begin{array}{llll}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right]
$$

determined by the 6 circled entries (using $L^{t}=L$, rows sum to zero) But there are 7 edges/conductances, so L cannot recover them uniquely.

So with the proposed definition, (3) in theorem would fail.
Lets introduce a new to cal move: antennur absorption

Rel Exercise 8
Find $u, v w, x, y, z$ so the response matrix is unchanged.

REU Problem 3(a)
Does an analogue of (3) now hold? If not, how to modify def n of critical to fix it?
Problem 3(b) Is the analogue of (2) tee?
Problem 3(c)
Find a description of the response matrices for these new kinds of networks in a cone

