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Abstract. A determinantal expansion due to Okada is used to derive both a deformation of Weyl’s denominator
formula for the Lie algebra sp(2n) of the symplectic group and a further generalisation involving a product of the
deformed denominator with a deformation of flagged characters of sp(2n). In each case the relevant expansion is
expressed in terms of certain shifted sp(2n)-standard tableaux. It is then re-expressed, first in terms of monotone
patterns and then in terms of alternating sign matrices.
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Introduction

By considering the trivial identity representation of a semisimple Lie algebra, Weyl’s char-
acter formula yields Weyl’s denominator formula [20]. This formula expresses a certain
product taken over the positive roots of the Lie algebra as a sum taken over the elements of
the corresponding Weyl group of the Lie algebra. Writing the roots in a standard euclidean
basis and replacing formal exponentials, eεi , of the basis elements by indeterminates xi ,
for i = 1, 2, . . . , n gives rise to an identity which for some Lie algebras, most notably
An−1 = sl(n) or gl(n), has a combinatorial interpretation [4].

In this setting it is natural to ask to what extent Weyl’s denominator formula may be
deformed through the introduction of a parameter t which generalises the sign factor −1
which is so crucial a feature of the original formula. Tokuyama [18] derived just such
a deformation in the case of the Lie algebra gl(n) of the general linear group. By using
certain strict Gelfand patterns he expressed the product form of the denominator as a sum
of terms whose coefficients have an explicit, very simple, t-dependence. This deformation
was inspired in part by the work of Mills et al. [9], which used both alternating sign matrices
and certain shifted plane partitions.

Since that time, deformations of Weyl’s denominator formula have been derived for each
of the other classical Lie algebras, Bn = so(2n + 1), Cn = sp(2n) and Dn = so(2n) by
Okada [11] and more recently by Simpson [13, 14]. In each case use is made of a variety of
combinatorial constructs such as partitions, Ferrers diagrams, plane partitions, alternating
sign matrices or weighted digraphs. The particular deformations studied are not all identical,
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and some differ from the most natural deformation of Weyl’s denominator formula in that
long and short roots are not treated in precisely the same way.

Remarkably, Tokuyama’s key result [18] for gl(n) went further and gave an explicit
formula for the expansion of not only the natural deformation of the product form of Weyl’s
denominator but also a product of this with the character of any irreducible representation
of gl(n) labelled by a partition λ. Such a character has combinatorial realisations in terms of
both Gelfand patterns and standard Young tableaux. The original proof offered by Tokuyama
exploited some representation theoretic methods, but a combinatorial proof has since been
provided by Okada [10]. This used shifted plane partitions, monotone triangles and lattice
paths.

Here, the intention is to consider the most natural deformation of Weyl’s denominator
formula in the case of the Lie algebra Cn = sp(2n) and to derive the direct generalisation
of Tokuyama’s result, and to do so by means of an extension of Okada’s methods.

1. Tokuyama’s result and its extension to sp(2n)

For any simple Lie algebra g of a Lie group G, Weyl’s denominator formula [20] takes the
form:

eδ
∏

α∈%+

(1 − e−α) =
∑

w∈W

sgn(w)ewδ, (1.1)

where the product on the left is over all α in the set, %+, of positive roots of g and the sum
on the right is over all elements w of the Weyl group, W , of g. The notation is such that δ

is half the sum of the positive roots and sgn(w) = (−1)&(w) where &(w) is the length of w

when expressed as a word in the generators of W .
One particularly simple deformation of the left hand side of (1.1) takes the form

Dg(t) = eδ
∏

α∈%+

(1 + te−α) (1.2)

where t is the deformation parameter.
In the case of the Lie algebra An−1 = sl(n) of the Lie group SL(n)

%+ = {εi − ε j | 1 ≤ i < j ≤ n}, (1.3)

with ε1 + ε2 +· · ·+ εn = 0. It follows that δ = nε1 + (n −1)ε2 +· · ·+ εn . The correspond-
ing Weyl group is W = Sn , the symmetric group. This acts naturally on the basis vectors
εi , that is each w = π ∈ Sn maps εi to επi for i = 1, 2, . . . , n. Setting xi = eεi for
i = 1, 2, . . . , n and x = (x1, x2, . . . , xn) this implies that

Dsl(n)(x ; t) =
∏

1≤i≤n

xn−i+1
i

∏

1≤i< j≤n

(

1 + t x−1
i x j

)

. (1.4)

Each finite-dimensional irreducible representation of sl(n) is specified by a highest weight
vector λ, which in the ε-basis takes the form λ = λ1ε1 + λ2ε2 + · · · + λnεn with λi an
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integer for i = 1, 2, . . . , n and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Equivalently, we may specify
this irreducible representation by the corresponding partition λ = (λ1, λ2, . . . , λn) and its
character is given by the Schur function [8, 15]:

sλ(x) = sλ(x1, x2, . . . , xn) =
∑

T ∈T λ(sl(n))

xwgt(T ), (1.5)

where the sum is over all sl(n)-standard tableaux T of shape λ and

xwgt(T ) = xm1(T )
1 xm2(T )

2 . . . xmn (T )
n (1.6)

with mk(T ) equal to the number of entries k in T .
Tokuyama [18] has established an explicit formula for the expansion of the product

Dsl(n)(x ; t) sλ(x) which thanks to the connection between strict Gelfand patterns and shifted
Young tableaux can be recast in the form:

Theorem 1.1 ([18]) Let λ be a partition into no more than n parts, and let δ be the parti-
tion (n, n − 1, . . . , 1) then

Dsl(n)(x ; t) sλ(x) =
∑

S∈ST λ+δ (sl(n))

thgt(S) (1 + t)str(S)−n xwgt(S) (1.7)

where the summation is taken over all sl(n)-standard shifted tableaux S of shape λ+ δ. The
notation is such that str(S) is the total number of connected components of all the ribbon
strips of S,

hgt(S) =
n

∑

k=1

(rowk(S) − conk(S)) (1.8)

where rowk(S) is the numbers of rows of S containing an entry k, and conk(S) is the number
of connected components of the ribbon strip of S consisting of all the entries k, while xwgt(S)

is defined as in (1.6) with the tableau T replaced by the shifted tableau S.

The main result of the present paper is the derivation of an analogue of (1.7) in the case
of the Lie algebra Cn = sp(2n) of the Lie group Sp(2n). In the case of sp(2n):

%+ = {2εi | 1 ≤ i ≤ n} ∪{ εi ± ε j | 1 ≤ i < j ≤ n}. (1.9)

Once again δ = nε1 + (n − 1)ε2 + · · · + εn , The corresponding Weyl group is W = Hn =
S2 &Sn , the hyperoctohedral group. This acts naturally on the basis vectors εi by sign changes
and permutations, that is each w = π̃ ∈ Hn maps εi to ±επi for i = 1, 2, . . . , n. Setting
xi = eεi for i = 1, 2, . . . , n gives

Dsp(2n)(x ; t) =
∏

1≤i≤n

xn−i+1
i

∏

1≤i≤n

(

1+t x−2
i

)

∏

1≤i< j≤n

(

1+t x−1
i x j

)(

1+t x−1
i x−1

j

)

. (1.10)
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As for sl(n), each finite-dimensional irreducible representation of sp(2n) is specified by
its highest weight vector λ which in the ε-basis again takes the form λ = λ1ε1 + λ2ε2 +· · ·+
λnεn with λi an integer for i = 1, 2, . . . , n and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Equivalently,
we may again specify the irreducible representation by the corresponding partition λ =
(λ1, λ2, . . . , λn) and its character may be defined in terms of tableaux [5, 6, 17] by:

spλ(x) = spλ(x1, x2, . . . , xn) =
∑

T ∈T λ(sp(2n))

xwgt(T ), (1.11)

where the sum is now over all sp(2n)-standard tableaux T of shape λ and

xwgt(T ) = xm1(T )−m 1̄(T )
1 xm2(T )−m 2̄(T )

2 . . . xmn (T )−mn̄ (T )
n (1.12)

with mk(T ) and mk̄(T ) equal to the number of entries k and k̄, respectively, in T . Thus
each entry k or k̄ contributes a factor xk or xk̄ = x−1

k to xwgt(S) for all k = 1, 2 , . . . , n. It is
convenient in the case of sp(2n) to deform not just the denominator, as in (1.10), but also
the character (1.11) by allowing each entry k̄ to contribute not just a factor xk̄ but t2xk̄ . This
leads to the definition

spλ(x ; t) =
∑

T ∈T λ(sp(2n))

t2bar(T ) xwgt(T ), (1.13)

where bar(T ) is the number of barred entries in T , that is

bar(T ) =
n

∑

k=1

mk̄(T ). (1.14)

With this notation we find:

Theorem 1.2 Let λ be a partition into no more that n parts and let δ be the partition
(n, n − 1 , . . . , 1), then

Dsp(2n)(x ; t) spλ(x ; t)

=
∑

S∈ST λ+δ (sp(2n))

thgt(S)+2bar(S) (1 + t)str(S)−n xwgt(S) (1.15)

where the summation is taken over all sp(2n)-standard shifted tableaux S of shape λ + δ.
The notation is such that bar(S) is the total number of barred entries in S, str(S) is the total
number of connected components of all the ribbon strips of S and

hgt(S) =
n

∑

k=1

(rowk(S) − conk(S) − rowk̄(S)), (1.16)

where rowk(S) and rowk̄(S) are the numbers of rows of S containing an entry k and k̄,

respectively, and conk(S) is the number of connected components of the ribbon strip of
S consisting of all the entries k, while xwgt(S) is defined as in (1.12) with the tableau T
replaced by the shifted tableau S.
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The precise meaning of the terminology used in Theorems 1.1 and 1.2 regarding standard
tableaux and ribbon strip subtableaux is explained in Section 2.

2. Young diagrams and tableaux

Let λ = (λ1, λ2, . . . , λn) be a partition, that is a weakly decreasing sequence of non-
negative integers λi . The weight, |λ|, of the partition λ is the sum of its parts, and its length,
&(λ) ≤ n, is the number of its non-zero parts. Each such partition λ defines a Young diagram
Fλ consisting of |λ| boxes arranged in &(λ) rows of lengths λi that are left adjusted to a
vertical line. Formally, Fλ = {(i, j) | 1 ≤ i ≤ &(λ), 1 ≤ j ≤ λi }.

Recalling that δ is the partition δ = (n, n − 1 , . . . , 1), then µ = λ + δ is a partition
all of whose parts µi = λi + n − i + 1 are distinct and non-zero. Thus µ is a strongly
decreasing sequence of n positive integers. More generally, any partition µ all of whose
parts are distinct, defines a shifted Young diagram SFµ consisting of |µ| boxes arranged
in &(µ) rows of lengths µi that are left adjusted to a diagonal line. To be precise, SFµ =
{(i, j) | 1 ≤ i ≤ &(µ), i ≤ j ≤ µi + i − 1}.

For example, when λ = (4, 3, 3) and µ = (9, 7, 6, 2, 1) we have

Fλ = and SFµ = (2.1)

There exists a variety of useful sets of tableaux associated with Fλ and SFµ. The tableaux
are all formed by placing entries from some totally ordered set, or alphabet, into the boxes
of the relevant diagram subject to certain rules. The notation adopted here is that in forming
each tableau the entry in the box in the i th row and j th column of either Fλ or SFµ, as
appropriate, is signified by ηi j .

First, let A be a totally ordered set and let Ar be the set of all sequences a = (a1,

a2 , . . . , ar ) of elements of A of length r . In addition, let λ = (λ1, λ2 , . . . , λr ) be a partition
of length r . The set T λ(A; a) consists of all those standard tableaux, T , with respect to A, of
profile a and shape λ, formed by placing an entry from A in each of the boxes of Fλ in such
a way that the entries are weakly increasing from left to right across each row, and strictly
increasing from top to bottom down each column, with the entries in the first column being
given by the components of a, that is:

(T1) ηi j ∈ A for all (i, j) ∈ Fλ;

(T2) ηi1 = ai ∈ A for all (i, 1) ∈ Fλ;

(T3) ηi j ≤ ηi, j+1 for all (i, j), (i, j + 1) ∈ Fλ;

(T4) ηi j < ηi+1, j for all (i, j), (i + 1, j) ∈ Fλ.

(2.2)

Second, as before let A be a totally ordered set and let Ar be the set of all sequences
a = (a1, a2 , . . . , ar ) of elements of A of length r , but now let µ = (µ1, µ2 , . . . , µr ) be a
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partition of length r , all of whose parts are distinct. Then the set ST µ(A; a) is defined to
be the set of all standard shifted tableaux, S, with respect to A, of profile a and shape µ,
formed by placing an entry from A in each of the boxes of SFµ in such a way that the entries
are weakly increasing from left to right across each row and from top to bottom down each
column, and strictly increasing from top-left to bottom-right along each diagonal, with the
entries in the leading diagonal being given by the components of a, that is:

(S1) ηi j ∈ A for all (i, j) ∈ SFµ;

(S2) ηi i = ai ∈ A for all (i, i) ∈ SFµ;

(S3) ηi j ≤ ηi, j+1 for all (i, j), (i, j + 1) ∈ SFµ;

(S4) ηi j ≤ ηi+1, j for all (i, j), (i + 1, j) ∈ SFµ;

(S5) ηi j < ηi+1, j+1 for all (i, j), (i + 1, j + 1) ∈ SFµ.

(2.3)

Third, let D be a totally ordered set such that D = A ∪ B with A ∩ B = ∅, let Dr

be the set of all sequences d = (d1, d2 , . . . , dr ) of elements of D of length r , and let
µ = (µ1, µ2 , . . . , µr ) be a partition of length r , all of whose parts are distinct. Then the set
PST µ(A, B; d) is defined to be the set of all standard shifted supertableaux, P , formed by
placing an entry from D = A ∪ B in each of the boxes of SFµ in such a way that the entries
are weakly increasing from left to right across each row and from top to bottom down each
column. In addition, any entry from A appears at most once in each column, and any entry
from B appears at most once in each row, with the entries in the leading diagonal being the
components of d . These constraints take the form:

(P1) ηi j ∈ D = A ∪ B for all (i, j) ∈ SFµ;

(P2) ηi i = di ∈ D for all (i, i) ∈ SFµ;

(P3) ηi j ≤ ηi, j+1 if ηi j ∈ A for all (i, j), (i, j + 1) ∈ SFµ;

(P4) ηi j < ηi+1, j if ηi j ∈ A for all (i, j), (i + 1, j) ∈ SFµ;

(P5) ηi j < ηi, j+1 if ηi j ∈ B for all (i, j), (i, j + 1) ∈ SFµ;

(P6) ηi j ≤ ηi+1, j if ηi j ∈ B for all (i, j), (i + 1, j) ∈ SFµ.

(2.4)

As a consequence of the conditions (P3)–(P6), the entries are strictly increasing from top-left
to bottom-right along each diagonal.

With these definitions we are now in a position to specify all the standard tableaux of
interest in the present context:

Definition 2.1 Let λ = (λ1, λ2 , . . . , λr ) be a partition of length r . Then the set of all
sl(n)-standard tableaux of shape λ is defined by:

T λ(sl(n)) = {T ∈ T λ(A; a) | A = [n], a ∈ [n]r }, (2.5)

where the entries ηi j of each sl(n)-standard tableau T are subject to the conditions (T1)–
(T4) of (2.2), with A = [n] = {1, 2 , . . . , n} and the elements of [n] subject to the order
relations 1 < 2 < · · · < n.
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Definition 2.2 Let µ = (µ1, µ2 , . . . , µr ) be a partition of length r , all of whose parts are
distinct. Then the set of all sl(n)-standard shifted tableaux of shape µ is defined by:

ST µ(sl(n)) = {S ∈ ST µ(A; a) | A = [n], a ∈ [n]r }, (2.6)

where the entries ηi j of each sl(n)-standard shifted tableau S are subject to the conditions
(S1)–(S5) of (2.3), with A = [n] = {1, 2 , . . . , n} and the elements of [n] subject to the
order relations 1 < 2 < · · · < n.

Definition 2.3 ([10]) Let µ = (µ1, µ2 , . . . , µr ) be a partition of length r , all of whose
parts are distinct. Then the set of all sl(n)-standard primed shifted tableaux of shape µ is
defined by:

PST µ(sl(n)) = {P ∈ PST µ(A, B; d) | A = [n], B = [n′], d ∈ [n, n′]r

with di ∈ {i, i ′} for i = 1, 2 , . . . , r}, (2.7)

where the entriesηi j in each sl(n)-standard primed shifted tableau P subject to the conditions
(P1)–(P6) of (2.4), with A = [n] = {1, 2 , . . . , n}, B = [n′] = {1′, 2′ , . . . , n′} and the
elements of D = [n, n′] = [n] ∪ [n′] subject to the order relations 1′ < 1 < 2′ < 2 < · · · <

n′ < n.

By way of illustration, in the case n = 5, λ = (4, 3, 3) and µ = (9, 7, 6, 2, 1) we have
typically:

T =
1 1 2 4

2 3 3

4 4 5

∈ T 433(sl(5)), S =

1 1 1 2 2 3 3 4 5

2 2 2 3 4 4 4

3 4 5 5 5 5

4 5

5

∈ST 97621(sl(5)) (2.8)

and

P =

1 1 1 2′ 2 3 3 4′ 5

2′ 2 2 3′ 4′ 4 4

3 4′ 5′ 5 5 5

4′ 5′

5′

∈ PST 97621(sl(5)). (2.9)

The structure of each T ∈ T λ(sl(n)) is that of a sequence of horizontal strips [8]. Each
horizontal strip, strk(T ), which may or may not be connected, is the subtableau of T con-
sisting of all boxes of T for which the entries ηi j take the same value k. The rules (2.2) are
such that there are no two boxes of a horizontal strip in the same column. In the same way
the structure of each S ∈ ST µ(sp(2n)) is that of a sequence of what we shall call ribbon
strips. They appear in the literature as boundary strips [19] where they are used to calculate
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characters of Hecke algebras. In that context they are a generalisation of the more familiar
border strips [8], also known as skew hooks or rim hooks [12], that are used to calculate
characters of the symmetric group by means of the Murnaghan-Nakayama rule. Here, each
ribbon strip, strk(S), which may or may not be connected, is the subtableau of S consisting
of all boxes of S for which the entries ηi j take the same value k. In this case the rules (2.3)
are such that there are no two boxes of a ribbon strip on the same diagonal. These two types
of strip are illustrated by the following subtableaux of the tableaux of (2.8):

str4(T ) =
4

4 4

and str4(S) =
4

4 4 4

4

4

(2.10)

Similarly, the structure of each P ∈ PSTµ(sl(n)) is that of a sequence of ribbon strips.
This time each ribbon strip, strk,k ′ (T ), which may or may not be connected, is the subtableau
of P consisting of all boxes of P for which the entries ηi j take the value k or k ′. The rules
(2.4) are such that there are no two boxes of a ribbon strip on the same diagonal. These
primed ribbon strips are illustrated by the following subtableau of the primed tableau (2.9):

str4,4′ (P) =
4′

4′ 4 4

4′

4′

(2.11)

All of the above can be extended from the case of sl(n) to that of sp(2n). The essential
steps are to replace A = [n] = {1, 2 , . . . , n} by A = [n, n̄] = [n] ∪ [n̄] = {1, 2 , . . . , n} ∪
{1̄, 2̄ , . . . , n̄}, and to identify the appropriate order relations and constraints on the relevant
profiles. The required definitions are as follows:

Definition 2.4 ([5, 6, 17]) Let λ = (λ1, λ2 , . . . , λr ) be a partition of length r . Then the
set of all sp(n)-standard tableaux of shape λ is defined by

T λ(sp(2n)) = {T ∈ T λ(A; a) | A = [n, n̄], a ∈ [n, n̄]r

with ai ≥ i for i = 1, 2, . . . , r}, (2.12)

where the entries ηi j of each sp(2n)-standard tableau T satisfy the conditions (T1)–(T4) of
(2.2), with A = [n, n̄] = {1, 2 , . . . , n} ∪{ 1̄, 2̄ , . . . , n̄}, and the elements of [n, n̄] subject
to the order relations 1̄ < 1 < 2̄ < 2 < · · · < n̄ < n.

Definition 2.5 Let µ = (µ1, µ2 , . . . , µr ) be a partition of length r , all of whose parts are
distinct. Then the set of all sp(2n)-standard shifted tableaux of shape µ is defined by:

ST µ(sp(2n)) = {S ∈ ST µ(A; a) | A = [n, n̄], a ∈ [n, n̄]r

with ai ∈ {i, ī} for i = 1, 2, . . . , r}, (2.13)
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where the entries ηi j of each sp(2n)-standard shifted tableau S satisfy the conditions (S1)–
(S5) of (2.3), with A = [n, n̄] = {1, 2 , . . . , n} ∪{ 1̄, 2̄ , . . . , n̄}, and the elements of [n, n̄]
subject to the order relations 1̄ < 1 < 2̄ < 2 < · · · < n̄ < n.

Definition 2.6 Let µ = (µ1, µ2 , . . . , µr ) be a partition of length r , all of whose parts are
distinct. Then the set of all sp(2n)-standard primed shifted tableaux of shape µ is defined
by:

PST µ(sp(2n)) = {P ∈ PST µ(A, B; d) | A = [n, n̄], B = [n′, n̄′], d ∈ [n, n̄, n′, n̄′]r

with di ∈ [i, ī, i ′, ī ′]} for i = 1, 2, . . . , r}, (2.14)

where the entries ηi j of each sp(2n)-standard primed shifted tableau P satisfy the conditions
(P1)–(P6) of (2.4), with A = [n, n̄] = {1, 2 , . . . , n} ∪{ 1̄, 2̄ , . . . , n̄} and B = [n′, n̄′] =
{1′, 2′ , . . . , n′} ∪{ 1̄′, 2̄′ , . . . , n̄′}, and the elements of D = [n, n̄, n′n̄′] = [n, n̄] ∪ [n′, n̄′]
subject to the order relation

1̄′ < 1̄ < 1′ < 1 < 2̄′ < 2̄ < 2′ < 2 < · · · < n̄′ < n̄ < n′ < n. (2.15)

Typically, for n = 5, λ = (4, 3, 3) and µ = (9, 7, 6, 2, 1) we have

T =
1̄ 1 2̄ 4

3 4̄ 4̄

4̄ 4 4

∈ T 433(sp(10)), S =

1̄ 1 2̄ 2 3̄ 3̄ 4̄ 4 5

2̄ 2̄ 2 3 4̄ 4̄ 4

3 4̄ 4 4 4 4

4 4

5̄

∈ ST 97621(sp(10))

(2.16)

and

P =

1̄ 1 2̄′ 2′ 3̄′ 3̄ 4̄′ 4′ 5

2̄′ 2̄ 2 3 4̄′ 4̄ 4′

3′ 4̄′ 4′ 4 4 4

4′ 4

5̄′

∈ PST 97621(sp(10)). (2.17)

As before all T ∈ T λ(sp(2n)), S ∈ ST µ(sp(2n)) and P ∈ PST µ(sp(2n)) are made up of
sequences of horizontal or ribbon strips, as appropriate. These strips, now associated with
entries all k, or all k̄, or all k and k ′, or all k̄ and k̄ ′ are exemplified by

str4̄(T ) = 4̄ 4̄

4̄
str4(T ) =

4

4 4

, (2.18)
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str4̄(S) =
4̄

4̄ 4̄

4̄

str4(S) =
4

4

4 4 4 4

4 4

(2.19)

and

str4̄,4̄′ (P) =
4̄′

4̄′ 4̄

4̄′

str4,4′ (P) =
4′

4′

4′ 4 4 4

4 4

. (2.20)

3. Okada’s Theorem

The proof of Tokuyama’s Theorem 1.1 offered by Okada [10] depends crucially on the
following:

Theorem 3.1 ([10]) Let D = A ∪ B with A ∩ B = ∅ be a totally ordered set, and
let d = (d1, d2 , . . . , dr ) be a strictly increasing sequence of elements of D. Let µ =
(µ1, µ2 , . . . , µr ) be a partition of length &(µ) = r, all of whose parts are distinct. Then

∑

P∈PST µ(A,B;d)

zwgt(P) =
∣

∣q̃ (d j )
µi (z) − q̃ (d j +1)

µi (z)
∣

∣

1≤i, j≤r , (3.1)

where the summation on the left hand side is taken over all primed shifted tableaux, P,

such that the entries ηi j satisfy the conditions (2.4), and

zwgt(P) =
∏

(i, j)∈SFµ

zηi j , (3.2)

while on the right hand side the q̃ (m)
k (z)’s are determined by the following generating function

in the indeterminate s

∞
∑

k=0

q̃ (m)
k (z) sk =

∏

a∈A;a≥m

(1 − zas)−1
∏

b∈B;b≥m

(1 + zbs). (3.3)

In order to derive Theorem 1.1 from Theorem 3.1 it is necessary to set r = n, µ = λ+ δ,
to identify A with [n] and B with [n′], to restrict di to be either i or i ′ for i = 1, 2 , . . . , r ,
as in (2.7), and to set za = xk for a = k ∈ A = [n] and zb = txk for b = k ′ ∈ B = [n′].
Provided that we make analogous assignments we can use precisely the same technique,
due to Okada [10], to derive Theorem 1.2 from Theorem 3.1. First we require
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Lemma 3.2 In the notation of Theorem 3.1, let r = n, A = [n] ∪ [n̄], B = [n′] ∪ [n̄′],
and let D(n, n′, n̄, n̄′) = {d = (d1, d2 , . . . , dn) | di ∈ {i, i ′, ī, ī ′} for i = 1, 2 . . . , n}. Let µ

be a partition of length &(µ) = n, all of whose parts are distinct. If

zk = xk, zk ′ = t xk, zk̄ = t2xk̄ = t2x−1
k and zk̄ ′ = t xk̄ = t x−1

k (3.4)

for all k = 1, 2 , . . . , n, then
∑

P∈PST µ([n,n̄],[n′,n̄′];d)
d∈D(n,n′,n̄,n̄′)

zwgt(P) =
∑

S∈ST µ(sp(2n))

thgt(S)+2bar(S)(1 + t)str(S) xwgt(S), (3.5)

where

xwgt(S) =
∑

(i, j)∈SFµ

xηi j , (3.6)

while bar(S) is the total number of barred entries in S, str(S) is the total number of connected
components of all ribbon strips of unbarred and barred entries of S, and

hgt(S) =
n

∑

k=1

(rowk(S) − conk(S) − rowk̄(S)). (3.7)

Proof: The requirement that di ∈ {i, i ′, ī, ī ′} for all i = 1, 2 . . . , n, when coupled with the
condition &(µ) = n, is sufficient to ensure that for each P ∈ PST µ([n, n̄], [n′, n̄′]; d) the
removal of all primes from the entries of P will yield some S ∈ ST µ(sp(2n)). Moreover,
every such S is obtained in this way. If we let P(S) be the set of primed tableaux P ∈
PST µ([n, n̄], [n′, n̄′]; d) such that the deletion of primes from P yields the tableau S ∈
ST µ(sp(2n)), then the x-dependence of zwgt(P) is the same for all P ∈P(S). In fact, by
virtue of the assignments (3.4) this x-dependence is just xwgt(S). Moreover, these same
assignments imply that the t-dependance of zwgt(P) is just tn′(P)+2n̄(P)+n̄′(P), where n′(P),
n̄(P) and n̄′(P) denote the numbers of entries ηi j in P that belong to [n′], [n̄] and [n̄′],
respectively. It follows that

∑

P∈PST µ([n,n̄],[n′,n̄′];d)
d∈D(n,n′,n̄,n̄′)

zwgt(P) =
∑

S∈ST µ(sp(2n))

∑

P∈P(S)

zwgt(P)

=
∑

S∈ST µ(sp(2n))

xwgt(S)
∑

P∈P(S)

tn′(P)+2n̄(P)+n̄′(P), (3.8)

To explore the t-dependence further it is worth considering the mapping from P to S
in more detail. The constraints (2.3) and (2.4) on S and P , respectively, are such that all
P ∈ P(S) giving rise to a particular S through the removal of primes are identical, save for
the entries of P in the bottom left hand box of each connected component of each ribbon
strip subtableau. These entries may be either primed or unprimed, as shown below in typical
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connected components of the ribbon strips strk,k ′ (P) and strk̄,k̄ ′ (P):

k ′ k k

k ′

k ′

k ′

k ′ k k k

k

,

k ′ k k

k ′

k ′

k ′

k ′ k k k

k ′

−→

k k k

k

k

k

k k k k

k

(3.9)

and

k̄ ′ k̄ k̄

k̄ ′

k̄ ′

k̄ ′

k̄ ′ k̄ k̄ k̄

k̄

,

k̄ ′ k̄ k̄

k̄ ′

k̄ ′

k̄ ′

k̄ ′ k̄ k̄ k̄

k̄ ′

−→

k̄ k̄ k̄

k̄

k̄

k̄

k̄ k̄ k̄ k̄

k̄

. (3.10)

The t-dependence of the left hand sides of (3.9) and (3.10) is completely determined by the
assignments (3.4) which imply that entries k, k̄, k ′ and k̄ ′ in P give rise to factors 1, t2, t
and t , respectively. Combining the contributions from the pairs of terms on the left hand
sides then fixes the contribution on the right hand sides as follows:

t 1 1

t

t

t

t 1 1 1

1

+

t 1 1

t

t

t

t 1 1 1

t

−→ (1 + t)

t 1 1

t

t

t

t 1 1 1

1

(3.11)

and

t t2 t2

t

t

t

t t2 t2 t2

t2

+

t t2 t2

t

t

t

t t2 t2 t2

t

−→ (1+ t)

t t2 t2

t

t

t

t t2 t2 t2

t

. (3.12)
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The right hand side of the latter can equally well be rewritten in the form:

(1 + t) t2b̄

t̄ 1 1

t̄

t̄

t̄

t̄ 1 1 1

t̄

, (3.13)

where t̄ = t−1 and b̄ is the total number of boxes in the relevant connected component of
the barred ribbon strip.

Consideration of the general structure of these examples shows that each connected
component of a ribbon strip of S contributes a factor (1 + t), each barred entry contributes
a factor t2, while connected components of ribbon strips of unbarred and barred entries
contribute factors tr−1 and t−r , respectively, where r is the number of rows occupied by the
connected component.

By way of example, the sp(2n)-standard shifted tableau S displayed in (2.16) consists
of 6 connected components of ribbon strips of unbarred and 6 of barred entries. Applying
(3.11) and (3.12) to obtain the t-dependence of each connected components of type (3.9)
and (3.10), respectively, gives rise to the following t-dependence of (2.16):

(1 + t)12

t 1 t t t t2 t t 1

t t2 1 1 t t2 t

1 t t 1 1 1

1 1

t

= (1 + t)12 t18. (3.14)

More generally, these considerations lead, in the notation of Lemma 3.2 to the identity:
∑

P∈P(S)

tn′(P)+2n̄(P)+n̄′(P) = thgt(S)+2bar(S) (1 + t)str(S). (3.15)

Using this result (3.15) in (3.8) then completes the proof of Lemma 3.2. !

Turning to the right hand side of Okada’s identity (3.1) allows one to derive the following:

Lemma 3.3 In the notation of Theorem 3.1, let r = n, A = [n] ∪ [n̄], B = [n′] ∪ [n̄′],
and let µ be a partition of length &(µ) = n, all of whose parts are distinct. If

zi = xi , zi ′ = t xi , zī = t2xī = t2x−1
i and zī ′ = t xī = t x−1

i (3.16)

for all i = 1, 2 , . . . , n, then
∑

d∈D(n,n′,n̄,n̄′)

∣

∣q̃ (d j )
µi (z) − q̃ (d j +1)

µi (z)
∣

∣

1≤i, j≤n =
∣

∣q ( j)
µi

(x, t) − q ( j+1)
µi

(x, t)
∣

∣

1≤i, j≤n,

(3.17)



282 HAMEL AND KING

where

∞
∑

k=0

q (m)
k (x, t) sk =

n
∏

i=m

(1 + t xi s)
(

1 + t x−1
i s

)

(1 − xi s)
(

1 − t2x−1
i s

) . (3.18)

Proof: Our ordering (2.14) and the definition of D(n, n′, n̄, n̄′) involves four independent
choices from { j, j ′, j̄, j̄ ′} for each d j , with j̄ ′ + 1 = j̄ , j̄ + 1 = j ′, j ′ + 1 = j and j + 1 =
j + 1

′
. It follows that

∑

d∈D(n,n′,n̄,n̄′)

∣

∣q̃ (d j )
µi (z) − q̃ (d j +1)

µi (z)
∣

∣

1≤i, j≤n

=
∣

∣q̃ ( j̄ ′)
µi

(z) − q̃ ( j̄)
µi

(z) + q̃ ( j̄)
µi

(z) − q̃ ( j ′)
µi

(z) + q̃ ( j ′)
µi

(z) − q̃ ( j)
µi

(z)

+ q̃ ( j̄)
µi

(z) − q̃ ( j+1
′
)

µi
(z)

∣

∣

1≤i, j≤n

=
∣

∣q̃ ( j̄ ′)
µi

(z) − q̃ ( j+1
′
)

µi
(z)

∣

∣

1≤i, j≤n, (3.19)

where, from (3.3),

∞
∑

k=0

q̃ ( j̄ ′)
k (z) sk =

n
∏

i= j

(1 − zi s)−1(1 − zī s)−1
n

∏

i= j

(1 + zi ′s)(1 + zī ′s). (3.20)

The use of the specialisation (3.16) linking z to x and t , and comparison with the definition
(3.18) then completes the proof of Lemma 3.3. !

This brings us to our final Lemma, namely:

Lemma 3.4 Let X (m)
k be defined by

X (m)
k = 1

1 + t

(

q (m)
k − q (m+1)

k

)

for 1 ≤ k, m ≤ n, (3.21)

and let Y (m,p)
k be defined by the generating function

∞
∑

k=0

Y (m,p)
k sk = s p

n
∏

i=m+p

(1 + t xi s)
(

1 + t x−1
i s

)

n
∏

i=m

(1 − xi s)−1(1 − t2x−1
i s

)−1

for 1 ≤ k, m ≤ n and 1 ≤ p ≤ n − m + 1. (3.22)

Then
∣

∣X (m)
k

∣

∣

1≤k,m≤n = Dsp(2n)(x ; t)
∣

∣Y (m,n−m+1)
k

∣

∣

1≤k,m≤n, (3.23)

where Dsp(2n)(x ; t) is defined by (1.10)
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Proof: From (3.18)

∞
∑

k=0

X (m)
k sk

= 1
1 + t

(

(1 + t xms)
(

1 + t x−1
m s

)

− (1 − xms)
(

1 − t2x−1
m s

))

×
n

∏

i=m+1

(1 + t xi s)
(

1 + t x−1
i s

)

n
∏

i=m

(1 − xi s)−1(1 − t2x−1
i s

)−1

=
(

xm + t x−1
m

)

s
n

∏

i=m+1

(1 + t xi s)
(

1 + t x−1
i s

)

n
∏

i=m

(1 − xi s)−1(1 − t2x−1
i s

)−1

= xm
(

1 + t x−2
m

)

∞
∑

k=0

Y (m,1)
k sk . (3.24)

and

∞
∑

k=0

(

Y (m,p)
k − Y (m+1,p)

k

)

sk

=
(

(1 + t xm+ps)
(

1 + t x−1
m+ps

)

− (1 − xms)
(

1 − t2x−1
m s

))

× s p
n

∏

i=m+p+1

(1 + t xi s)
(

1 + t x−1
i s

)

n
∏

i=m

(1 − xi s)−1(1 − t2x−1
i s

)−1

=
(

xm + t xm+p + t x−1
m+p + t2x−1

m

)

× s p+1
n

∏

i=m+p+1

(1 + t xi s)
(

1 + t x−1
i s

)

n
∏

i=m

(1 − xi s)−1(1 − t2x−1
i s

)−1

= xm
(

1 + t x−1
m xm+p

)(

1 + t x−1
m x−1

m+p

)

∞
∑

k=0

Y (m,p+1)
k sk . (3.25)

Hence
∣

∣X (m)
k

∣

∣

1≤k,m≤n

=
n

∏

i=1

xi
(

1 − t x−2
i

)
∣

∣Y (m,1)
k

∣

∣

1≤k,m≤n

=
n

∏

i=1

xi
(

1 − t x−2
i

)

∏

1≤i< j≤n

xi
(

1 − t x−1
i x j

)(

1 − t x−1
i x−1

j

)
∣

∣Y (m,n−m+1)
k

∣

∣

1≤k,m≤n

= Dsp(2n)(x ; t)
∣

∣Y (m,n−m+1)
k

∣

∣

1≤k,m≤n, (3.26)

where the first step follows from (3.24), and the second from (3.25) by the subtraction of
column j in the determinant from every column m with m < j succesively for j = n, n −
1 , . . . , 2. This completes the proof of Lemma 3.4. !
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However,

∞
∑

k=0

Y (m,n−m+1)
k sk

= sn−m+1
n

∏

i=m

(1 − xi s)−1(1 − t2x−1
i s

)−1

= sn−m+1
∞

∑

&=0

h&(xm, t2xm̄, xm+1, t2xm+1, . . . , xn, t2xn̄) s&

=
∞

∑

k=0

hk−n+m−1(xm, t2xm̄, xm+1, t2xm+1, . . . , xn, t2xn̄) sk, (3.27)

where h& is the complete homogeneous symmetric function of degree & of its various
arguments. Hence

Y (m,n−m+1)
k = hk−n+m−1(xm, t2xm̄, xm+1, t2xm+1, . . . , xn, t2xn̄), (3.28)

Remarkably, we have the following [2]

Theorem 3.5 ([2]) Let λ be any partition of length &(λ) ≤ n. Then the character spλ(x) =
spλ(x1, x2 , . . . , xn) of the corresponding irreducible representation of sp(2n) is given by

spλ(x) =
∣

∣hλi −i+ j (xi , xī , xi+1, xi+1, . . . , xn, xn̄)
∣

∣

1≤i, j≤n . (3.29)

However, the deformation of the character spλ(x), given in terms of sp(2n)-standard
tableaux by (1.10), to give spλ(x ; t) as in (1.11) is brought about by associating a factor of
t2 with every barred entry k̄ in each of the relevant tableaux T ∈ T ([n, n̄]). Applying this
additional weighting to each factor of x−1

k arising in the lattice path derivation of (3.29)
leads immediately to the identity

spλ(x ; t) =
∣

∣hλi −i+ j (xi , t2xī , xi+1, t2xi+1, . . . , xn, t2xn̄)
∣

∣

1≤i, j≤n. (3.30)

Combining our sequence of Lemmas with this result gives

∑

S∈ST λ+δ (sp(2n))

thgt(S)+2bar(S)(1 + t)str(S)−n xwgt(S)

= (1 + t)−n
∑

P∈PST λ+δ ([n,n̄],[n′,n̄′];d)
d∈D(n,n′,n̄,n̄′)

zwgt(P)

= (1 + t)−n
∑

d∈D(n,n′,n̄,n̄′)

∣

∣q̃ (d j )
µi (z) − q̃ (d j +1)

µi (z)
∣

∣

1≤i, j≤n

= (1 + t)−n
∣

∣q ( j)
µi

(x, t) − q ( j+1)
µi

(x, t)
∣

∣

1≤i, j≤n
=

∣

∣X ( j)
µi

∣

∣

1≤i, j≤n
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= Dsp(2n)(x ; t)
∣

∣Y ( j,n− j+1)
λi +n−i+1

∣

∣

1≤i, j≤n

= Dsp(2n)(x ; t)
∣

∣hλi −i+ j (x j , t2x j̄ , x j+1, t2x j+1, . . . , xn, t2xn̄)
∣

∣

1≤i, j≤n

= Dsp(2n)(x ; t)spλ(x ; t), (3.31)

where recourse has been made succesively to (3.5) of Lemma 3.2, (3.1) of Theorem 3.1,
(3.17) of Lemma 3.3, (3.21) and (3.23) of Lemma 3.4, (3.28) and, finally, (3.30) which is
really a corollary of Theorem 3.5. This completes the proof of Theorem 1.2.

4. Specialisations

Theorem 1.2 is rich in corollaries which arise by specialising, both in turn and in various
combinations, the parameter t , the partition λ and the indeterminates x = (x1, x2 , . . . , xn).

First of all, the case t = −1 and allowing λ to be any fixed partition of length &(λ) ≤ n,
we obtain Weyl’s character formula for sp(2n) from Theorem 1.2.

Corollary 4.1 ([20]) Let W be the Weyl group of sp(2n), let δ be half the sum of the
positive roots of sp(2n) and let λ be an arbitrary partition of length &(λ) ≤ n. Then the
irreducible representation of sp(2n) specified by λ has character:

spλ(x) =
∑

w∈W

sgn(w)ew(λ+δ)
/

∑

w∈W

sgn(w)ew(δ). (4.1)

Proof: Setting t = −1 in (1.15) of Theorem 1.2 gives

Dsp(2n)(x ; −1)spλ(x) =
∑

S∈ST λ+δ (sp(2n))
str(S)=n

(−1)hgt(S)xwgt(S), (4.2)

with δ = (n, n − 1 , . . . , 1). It should be noted that setting t = −1 has reduced spλ(x ; t)
to spλ(x), as can be seen from (1.13) and (1.11), whilst at the same time restricting the
summation over S to those S for which str(S) = n.

This condition str(S) = n, together with the fact that &(λ + δ) = n, implies that there
are precisely n ribbon strips in S and that each of these ribbon strips consists of a single
connected component. In addition, the conditions (2.13) on the entries in sp(2n)-standard
shifted tableaux imply that the entry dk(S) = ak in the kth box of the main diagonal of each
S ∈ST λ+δ(sp(2n)) must be either k or k̄. Thus, the ribbon strip emanating from this box is
either strk(S) or strk̄(S). Moreover, the final condition of (2.3) implies that each diagonal
contains distinct entries. The lengths of the diagonals of SFλ+δ now vary from n to 1 in such
a way that in moving from one diagonal to the next at most one entry is dropped. If one entry,
say k or k̄, is dropped then this terminates the corresponding ribbon strip, strk(S) or strk̄(S),
and all preceding ribbon strips, stri (S) or strī (S) with i < k, are extended horizontally by
one box, while all succeeding ribbon strips, str j (S) or str j̄ (S) with j > k, are extended



286 HAMEL AND KING

vertically by one box. The length of a ribbon strip is just the number of diagonals it spans.
Thus, the ribbon strips of any S ∈ ST λ+δ(sp(2n)) with str(S) = n must have distinct lengths
equal to the various parts of λ + δ.

This is exemplified in the case n = 5, λ = (4, 3, 3) and λ + δ = (9, 7, 6, 2, 1) by the fol-
lowing tableau S ∈ST λ+δ(sp(2n)) with str(S) = n, which is displayed along with its con-
tribution to the right hand side of both (4.2) and the numerator of (4.1),

1̄ 1̄ 2̄ 2̄ 2̄ 2̄ 2̄ 2̄ 2̄

2̄ 2̄ 4 4 4 4 4

3 4 5̄ 5̄ 5̄ 5̄

4 5̄

5̄

−→
{

(−1)−2+2−3−1+0x9
2̄ x7

4 x6
5̄ x2

1̄ x1
3

= sgn
(

1 2 3 4 5
2̄ 4 5̄ 1̄ 3

)

x−2
1 x−9

2 x1
3 x7

4 x−6
5 ,

(4.3)

Quite generally, for each k = 1, 2 , . . . , n, the exponent of xk in xwgt(S) is either the length
|strk(S)| of strk(S) or minus the length |strk̄(S)| of strk̄(S), according as dk(S) is either k or
k̄, respectively. These lengths are just the parts of λ + δ. The corresponding contribution to
hgt(S) is either rowk(S) − 1 or −rowk(S), as appropriate.

To make contact with the Weyl group W = Hn = S2 & Sn of sp(2n) as required in (4.1),
it is necessary, as in the example (4.3), to identify wS ∈ W . For given S ∈ ST λ+δ(sp(2n))
with str(S) = n the identification of wS proceeds by noting the sequence formed by the
labels of the ribbon strips of S when placed in order of decreasing length λ1 + n, λ2 + n −
1 , . . . , λn + 1. Thus

wS =
(

1
w1

2
w2

· · ·
· · ·

n
wn

)

(4.4)

where, for i = 1, 2 , . . . , n, wi is the label k or k̄ of the unique ribbon strip of S having
length λi + δi , that is

wi =
{

k if |strk(S)| = λi + δi and dk(S) = k;

k̄ if |strk̄(S)| = λi + δi and dk(S) = k̄.
(4.5)

This is exemplified in (4.3) by

wS =
(

1 2 3 4 5
2̄ 4 5̄ 1̄ 3

)

. (4.6)

It follows from the above definition of wS that

xwgt(S) = xλ1+δ1
w1

xλ2+δ2
w2

· · · xλn+δn
wn

= wS
(

xλ1+δ1
1 xλ2+δ2

2 · · · xλn+δn
n

)

= wS(eλ+δ) = ewS (λ+δ) = xwS (λ+δ)1
1 xwS (λ+δ)2

2 · · · xwS (λ+δ)n
n , (4.7)

where in the first line wS acts naturally on the subscripts of the various xi in eλ+δ , and the
transformation of that action in the second line defines the action of wS on λ + δ, and indeed
on any vector in the same n-dimensional weight space of sp(2n). It follows from (4.7) and
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(4.5) that for all k = 1, 2 , . . . , n

wS(λ + δ)k =
{

λi + δi if wi = k;

−(λi + δi ) if wi = k̄,
=

{|strk(S)| if dk(S) = k;

−|strk̄(S)| if dk(S) = k̄.
(4.8)

Since µ = λ+ δ has length &(µ) = n, it follows from Definition 2.5 and the conditions (2.3)
that the profile a = (a1, a2 , . . . , an) = (d1(S), d2(S) , . . . , dn(S)) of each S ∈ ST µ(sp(2n))
is just a signed permutation of (1, 2 , . . . , n). Furthermore the action of wS by permutation
and sign changes on the components of µ = λ + δ in the ε-basis is precisely the action
described in Section 1 which ensures that wS ∈ W = Hn = S2 & Sn .

Turning to the sign factors, we have

(−1)hgt(S) = (−1)
∑

k:dk (S)∈[n](rowk (S)−1)−
∑

k:dk (S)∈[n̄] rowk̄ (S)

= (−1)#{k | dk (S)∈[n̄]}(−1)
∑n

k=1(rowk (S)+rowk̄ (S)−1), (4.9)

where use has been made of the fact that if dk(S) ∈ [n] then rowk̄(S) = 0, whereas if
dk(S) ∈ [n̄] then rowk(S) = 0. It follows from (4.5) that

(−1)#{k | dk (S)∈[n̄]} = (−1)#{k | wk∈[n̄]}. (4.10)

Furthermore the argument regarding vertical steps given prior to the illustrative example
(4.3), when coupled with the ordering of the sequence of ribbon strips in the definition of
wS , implies that

(−1)
∑n

k=1(rowk (S)+rowk̄ (S)−1) = (−1)#{(k, j) | 1≤k< j≤n,wk>w j }. (4.11)

Using (4.10) and (4.11) in (4.9) gives

(−1)hgt(S) = (−1)#{k | wk∈[n̄]}(−1)#{(k, j) | 1≤k< j≤n,wk>w j } = sgn(wS), (4.12)

where the last step involves the recognition that each barred entry in wS involves a change
of sign and hence a single reflection in weight space, while the permutation πS of the
components of vectors in this weight space, which is identified by deleting the bars from
wS , contributes a sign factor given by −1 to a power equal to the number of its inversions.

By way of example, in the case of wS defined by (4.6) we have

sgn
(

1 2 3 4 5
2̄ 4 5̄ 1̄ 3

)

= (−1)3sgn
(

1 2 3 4 5
2 4 5 1 3

)

= (−1)3 (−1)0+1+0+2+2 = +1. (4.13)

The first exponent 3 is just the number of barred ribbon strips of S in (4.3), while the other
exponents 0, 1, 0, 2, 2 enumerated by counting the inversions of πS are nothing other than
the numbers of vertical steps of the various ribbon strips of S. The resulting sign factor +1
is consistent, as it must be, with the sign factor appearing in (4.3).

It follows from the results (4.7) and (4.12) that for each S ∈ ST λ+δ(sp(2n)) such that
str(S) = n,

(−1)hgt(S)xwgt(S) = sgn(wS)ewS (λ+δ), (4.14)

with wS ∈ W .
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The next step is to note, conversely, that for all w ∈ W there exists S ∈ ST λ+δ(sp(2n))
with str(S) = n, such that w = w(S). Every element w of the Weyl group W of sp(2n) is
of the form (4.4) with wi = k or k̄ for some k ∈ [n] for all i = 1, 2 , . . . , n and w j -= wi

or w̄i for all j -= i . Given such a w ∈ W the corresponding sp(2n)-standard shifted tableau
S is created by entering the sequence (w1, w2 , . . . , wn) in the boxes of the main diagonal,
subject to the required constraints ηi i < ηi+1,i+1 for i = 1, 2 , . . . , n − 1, and then deleting
wn , . . . , w2, w1 one at a time in turn as one moves from any diagonal to its immediate
successor if and only if that successor is shorter in length. No omissions are required if
successive diagonals have the same length, and as already pointed out successive diagonals
differ in length by at most one box. This process ensures that S is of shape SFλ+δ and that
it consists of precisely n connnected ribbon strips wrapped around one another in such a
way as to automatically satisfy all the constraints (2.3).

It follows that (4.2) can be rewritten in the form

Dsp(2n)(x ; −1)spλ(x) =
∑

S∈ST λ+δ (sp(2n))
str(S)=n

sgn(wS)ewS (λ+δ) =
∑

w∈W

sgn(w)ew(λ+δ). (4.15)

Setting λ = 0 it follows that

Dsp(2n)(x ; −1) =
∑

w∈W

sgn(w)ew(δ). (4.16)

Taking the ratio of (4.15) and (4.16) immediately gives (4.1), thereby completing the proof
of Corollary 4.1. !

From the Definition (1.2), setting t = −1 in Dsp(2n)(x ; t) gives the undeformed Weyl
denominator function for sp(2n). It follows that (4.16) is just the original denominator
formula of Weyl [20] for the case of the Lie algebra sp(2n):

Corollary 4.2 ([20]) Let %+ be the set of positive roots of sp(2n), let δ be half the sum of
these positive roots, and let W be the Weyl group of sp(2n). Then

eδ
∏

α∈%+

(1 − e−α) =
∑

w∈W

sgn(w) ew(δ). (4.17)

It might be thought that the case t = 0 of Theorem 1.2 might provide something new.
This is not the case however, since it leads only to the confirmation of the fact that

spλ(x ; 0) = sλ(x). (4.18)

Turning to a more interesting case, setting t = 1 in Theorem 1.2 leads directly to:

Corollary 4.3 Let λ be a partition into no more than n parts and let δ be the partition
(n, n − 1 , . . . , 1), then

Dsp(2n)(x ; 1) spλ(x) =
∑

S∈ST λ+δ (sp(2n))

2str(S)−n xwgt(S). (4.19)
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This represents what might be called a symplectic version of the formula given by Stanley
[16] for the t = −1 case of the Hall-Littlewood function Pµ(x ; t) with µ = λ + δ.

Making the further specialisation xi = 1 for all i = 1, 2 , . . . , n in Corollary 4.3, and
using (1.10) to note that under the same specialisation Dsp(2n)(x ; 1) is just 2n2

, leads to:

Corollary 4.4 Let λ be a partition into no more than n parts and let δ be the partition
(n, n − 1 , . . . , 1), then

2n2
dim2n(spλ) =

∑

S∈ST λ+δ (sp(2n))

2str(S)−n, (4.20)

where dim2n(spλ) = spλ(1, 1 , . . . , 1) is the dimension of the irreducible representation of
sp(2n) having character spλ(x).

This, in turn, is the symplectic version of a formula due to Mills et al. [9]. The relevant
formula is that of their Theorem 2 which involves a factor that can be identified as nothing
other than dimn(slλ) where λi = an−i+1 − n + i − 1 for i = 1, 2 , . . . , n.

Alternatively, making the further specialisation λ = 0 in Corollary 4.3, and employing
(1.10) in Theorem 1.2, leads to:

Corollary 4.5 Let δ = (n, n − 1 , . . . , 1). Then
∏

1≤i≤n

xn−i+1
i

∏

1≤i≤n

(

1 + x−2
i

)

∏

1≤i< j≤n

(

1 + x−1
i x j

)(

1 + x−1
i x−1

j

)

=
∑

S∈ST δ (sp(2n))

2str(S)−n xwgt(S).
(4.21)

Generalising this for all t , if one sets λ = 0 in Theorem 1.2 and replaces xi by its
inverse x−1

i for all i = 1, 2 , . . . , n, then one obtains an identity which is reminiscent of, but
somewhat simpler than, the deformations of Weyl’s denominator formulae due to Okada
[11] and Simpson [13, 14]:

Corollary 4.6 Let δ = (n, n − 1 , . . . , 1). Then
∏

1≤i≤n

(

1 + t x2
i

)

∏

1≤i< j≤n

(1 + t xi x j )
(

1 + t xi x−1
j

)

=
∑

S∈ST δ (sp(2n))

thgt(S)+2bar(S) (1 + t)str(S)−n xδ−wgt(S), (4.22)

where xδ−wgt(S) = xδx−wgt(S) with xδ = xn
1 xn−1

2 . . . xn.

5. Monotonic patterns

One of the combinatorial devices used by Tokuyama [18] was that of Gelfand patterns [3].
While we have favoured here the use of Young tableaux, there exist bijections between
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sl(n)-standard tableaux and Gelfand patterns whose rows are specified by partitions satis-
fying certain betweenness conditions [1, 5] and between sl(n)-standard shifted tableaux and
certain monotone triangles. Such monotone triangles are strict Gelfand patterns for which
each row is specified by a partition all of whose parts are distinct [10, 18]. Similar bijections
may be established for both sp(2n)-standard tableaux and sp(2n)-standard shifted tableaux.
The first of these between sp(2n)-standard tableaux and a symplectic version of Gelfand
patterns has already been identified [5]. The symplectic Gelfand patterns involve interweav-
ing consecutive rows of pairs of patterns due to Zhelobenko [21] to give a single pattern.
The bijection is exemplified in the case of the sp(2n)-standard tableau T of (2.16) by:

1̄ 1 2̄ 4

3 4̄ 4̄

4̄ 4 4

←→

4 3 3 0 0

4 3 3 0 0

4 3 3 0

3 3 1 0

3 1 0

3 0 0

3 0

3 0

2

1

(5.1)

The non-zero entries in the topmost row of the pattern Z are just the parts of the partition λ

defining the shape of T . In this example n = 5, λ = (4, 3, 3) and the non-zero entries in the
mth row of the pattern Z , counted from the top, are the parts of the partition defining the shape
of the subtableau of T consisting of entries ηi j ≤ k with k = (2n + 1 − m)/2 = (11 − m)
if m is odd, and ηi j ≤ k̄ with k = (2n + 2 − m)/2 = (12 − m) if m is even, for
m = 1, 2 , . . . , 2n = 1, 2 , . . . , 10.

More generally, we specify and display the entries zki and zk̄i of a symplectic Gelfand
pattern, Z , as follows:

zn1 zn2 · · · · · · · · · znn

zn̄1 zn̄2 · · · · · · · · · zn̄n

zn−1,1 zn−1,2 · · · · · · zn−1,n−1

zn−1,1 zn−1,2 · · · · · · zn−1,n−1

· · · · · · · · · · · ·
· · · · · · · · · · · ·

z21 z22

z2̄1 z2̄2

z11

z1̄1

(5.2)

With this notation, we have:
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Definition 5.1 [5] Let λ be a partition with length &(λ) ≤ n. Then Z is said to belong to
the set, Zλ(sp(2n)), of sp(2n)-patterns with top-most row λ if and only if all the entries, zki

and zk̄i , of Z are non-negative integers satisfying the boundary and betweenness conditions:

(Z1) zni = λi for 1 ≤ i ≤ n with λi = 0 for i > &(λ);

(Z2) zki ≥ zk̄i ≥ zk,i+1 for 1 ≤ i < k ≤ n;

(Z3) zk̄i ≥ zk−1,i ≥ zk̄,i+1 for 1 ≤ i < k ≤ n;

(Z4) zkk ≥ zk̄k ≥ 0 for 1 ≤ k ≤ n.

(5.3)

If, in our usual notation, T ∈ T λ(sp(2n)) is such that the entry in the (i, j)th box of T is
ηi j for all (i, j) ∈ Fλ, then the corresponding sp(2n)-pattern Z ∈ Zλ(sp(2n)) has entries
defined by:

zki = #{ j | ηi j ≤ k} and zk̄i = #{ j | ηi j ≤ k̄} for 1 ≤ i ≤ k ≤ n. (5.4)

The conditions on ηi j , as given by (T1)–(T4) of (2.2) applied to (2.5) in Definition 2.1, then
imply that zki and zk̄i automatically satisfy (5.3), as required.

Conversely, for given Z ∈ Zλ(sp(2n)) with entries zki and zk̄i satisfying (5.3), let the
partitions ζ (k) and ζ (k̄) be defined for k = 1, 2 , . . . , n by ζ (k)i = zki and ζ (k̄)i = zk̄i for
i = 1, 2 , . . . , k, and let ζ (0) = 0. Then for all (i, j) ∈ Fλ with λ = ζ (n) the entry in the
(i, j)th box of T ∈ T λ(sp(2n)) is given for all k ∈ [n] by

ηi j =
{

k if (i, j) ∈ F ζ (k)/ζ (k̄);

k̄ if (i, j) ∈ F ζ (k̄)/ζ (k−1),
(5.5)

where F τ/σ signifies the skew diagram [8] obtained by deleting all the boxes of Fσ from
those of Fτ . This time the conditions (5.3) on all the entries zmi of Z imply that the entries
ηi j of T automatically satisfy the required conditions (2.2) as applied to (2.5).

Thus for any partition λ with &(λ) ≤ n, (5.4) and (5.5) serve to define a bijection between
all T ∈ T λ(sp(2n)) and all Z ∈ Zλ(sp(2n)).

In exactly the same way there exists a bijection between sp(2n)-standard shifted tableaux,
S, and certain sp(2n)-monotonic patterns, M . This is exemplified in the case of n = 5,
µ = (9, 7, 6, 2, 1) and the sp(2n)-standard shifted tableau S of (2.16) by:

1̄ 1 2̄ 2 3̄ 3̄ 4̄ 4 5

2̄ 2̄ 2 3 4̄ 4̄ 4

3 4̄ 4 4 4 4

4 4

5̄

←→

9 7 6 2 1

8 7 6 2 1

8 7 6 2

7 6 2 0

6 4 1

6 3 0

4 3

3 2

2

1

(5.6)
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The major difference now is that the shifted nature of S implies that the partition associated
with each row of the corresponding monotonic pattern M necessarily has distinct parts.

Definition 5.2 Let µ be a partition of length &(µ) = n all of whose parts are distinct. Spec-
ifying the entries zki and zk̄i of M as in (5.2), M is said to belong to the set, MZµ(sp(2n)),
of sp(2n)-monotonic patterns with top-most row µ if and only if all the entries, zki and zk̄i ,
of M are non-negative integers satisfying the boundary and betweenness conditions:

(M1) zni = µi for 1 ≤ i ≤ n;

(M2) zki > zk,i+1 and zk̄i > zk̄,i+1 for 1 ≤ i < k ≤ n;

(M3) zkk > 0 and zk̄k ≥ 0 for 1 ≤ k ≤ n;

(M4) zki ≥ zk̄i ≥ zk,i+1 for 1 ≤ i < k ≤ n;

(M5) zk̄i ≥ zk−1,i ≥ zk̄,i+1 for 1 ≤ i < k ≤ n;

(M6) zkk ≥ zk̄k ≥ 0 for 1 ≤ k ≤ n.

(5.7)

If, in our usual notation, S ∈ ST µ(sp(2n)) is such that the entry in the (i, j)th box of S
is ηi j for all (i, j) ∈ SFµ, then the corresponding sp(2n)-pattern M ∈ MZµ(sp(2n)) has
entries zki and zk̄i defined once again by (5.4). This time the conditions on ηi j , as given by
(S1)–(S5) of (2.3) applied to (2.6) of Definition 2.2, then imply that the entries zki and zk̄i
in M automatically satisfy (5.7), as required.

Conversely, given M ∈ MZµ(sp(2n)) with entries zki and zk̄i satisfying (5.7), let the
partitions ζ (k) and ζ (k̄) be defined for k = 1, 2 , . . . , n by ζ (k)i = zki and ζ (k̄)i = zk̄i for
i = 1, 2 , . . . , k, and let ζ (0) = 0. Then for all (i, j) ∈ SFµ with µ = ζ (n) the entry in the
(i, j)th box of S ∈ ST µ(sp(2n)) is given for all k ∈ [n] by

ηi j =
{

k if (i, j) ∈ SFζ (k)/ζ (k̄);

k̄ if (i, j) ∈ SFζ (k̄)/ζ (k−1),
(5.8)

where SFτ/σ signifies the skew shifted diagram obtained by deleting all the boxes of SFσ

from those of SFτ . Now the conditions (5.7) on all zki and zk̄i of M imply that the entries
ηi j of S automatically satisfy the required conditions (2.3) as applied to (2.6).

Thus for any partition µ of length n whose parts are distinct, (5.4) and (5.8) serve to
define a bijection between the set of sp(2n)-standard shifted tableaux, ST µ(sp(2n)) and the
set of sp(2n)-monotonic patterns, MZµ(sp(2n)).

The significance of this bijection is that Theorem 1.2 and several of its Corollaries
involving sp(2n)-standard shifted tableaux, S, may be re-expressed in terms of sp(2n)-
monotonic patterns, M .

First, it is convenient to define wgt(M) in terms of differences between the weights of the
partitions defining the rows of the corresponding monotonic pattern M . To be precise, let

xwgt(M) = xwgt1(M)−wgt1̄(M)
1 xwgt2(M)−wgt2̄(M)

2 · · · xwgtn (M)−wgtn̄ (M)
n , (5.9)

where

wgtk(M) = |ζ (k)| −| ζ (k̄)| and wgtk̄ = |ζ (k̄)| −| ζ (k − 1)| for 1 ≤ k ≤ n.

(5.10)
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Then in the notation of (5.10), it is convenient to sum over just the barred weights in defining

bar(M) =
n

∑

k=1

wgtk̄(M). (5.11)

The weights of the partitions defining the rows of M in (5.6) are such that in this example
bar(M) = (24 − 23) + (15 − 11) + (9 − 7) + (5 − 2) + 1 = 11.

Furthermore, let btw(M) be the number of instances of strict betweenness that occur in
M , that is the number of entries c appearing in triples of the form a b

c with a > c > b ≥ 0
or virtual triples of the form a

c with a > c > 0 and b absent. Thus

btw(M) = #{(k, i) | zki > zk̄i > zk,i+1 for 1 ≤ i < k ≤ n}
+ #{(k̄, i) | zk̄i > zk−1,i > zk̄,i+1 for 1 ≤ i < k ≤ n}
+ #{k | zkk > zk̄k > 0 for 1 ≤ k ≤ n}. (5.12)

In the case of the monotonic pattern of (5.6) the relevant entries c at the apex of each
betweenness triple may be identified in boldface type as shown below:

9 7 6 2 1

8 7 6 2 1

8 7 6 2

7 6 2 0

6 4 1
6 3 0

4 3

3 2
2

1

(5.13)

It follows in this example that btw(M) = 7.
Finally, let the index of M , ind(M), be defined by the number of entries a appearing in

triples of the form a b
b with a > b > 0 and a in the mth row of M counting from the top

with m odd, minus the number of entries a appearing in either a triple of the form a b
c , with

a > c ≥ b ≥ 0 with a in the mth row of M with m even, or in a singlet a with a > 0 at the
end of the mth row of M with m even. Thus

ind(M) = #{(k, i) | zki > zk̄i = zk,i+1 for 1 ≤ i < k ≤ n}
− #{(k̄, i) | zk̄i > zk−1,i ≥ zk̄,i+1 for 1 ≤ i < k ≤ n}
− #{k | zk̄k > 0 for 1 ≤ k ≤ n}. (5.14)
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Once again, in the case of the monotonic pattern of (5.6) the relevant entries a contributing
to ind(M) may be identified in boldface type, and overlined if their contribution is negative,
as shown below:

9 7 6 2 1

8 7 6 2 1̄
8 7 6 2

7̄ 6̄ 2̄ 0

6 4 1

6̄ 3 0

4 3

3̄ 2̄
2

1̄

(5.15)

Hence, in this example ind(M) = 4 − 8 = −4.
With this notation it is not difficult to see that Theorem 1.2 implies the validity of the

following:

Corollary 5.3 Let λ be a partition into no more than n parts and let δ be the partition
(n, n − 1 , . . . , 1), then

Dsp(2n)(x ; t) spλ(x ; t)

=
∑

M∈MZλ+δ (sp(2n))

t ind(M)+2bar(M) (1 + t)btw(M) xwgt(M) (5.16)

where the summation is taken over all sp(2n)-monotonic patterns with top-most row λ+ δ.

In the case of the sp(2n)-monotonic pattern M displayed in (5.6) it follows from (5.9) to
(5.15) that the contribution to the right hand side of (5.16) is given by

t ind(M)+2bar(M) (1 + t)btw(M) xwgt(M)

= t−4+2·11 (1 + t)7 x1−1
1 x2−3

2 x2−2
3 x8−4

4 x1−1
5

= t18 (1 + t)7 x−1
2 x4

4 . (5.17)

Further Corollaries analogous to those of Section 4 may be obtained by specialising
various combinations of λ, t and x = (x1, x2 , . . . , xn).

6. Alternating sign matrices

A further combinatorial construct that has been found to be useful in the context of defor-
mations of Weyl’s denominator formula is that of alternating sign matrices [11, 14, 18].
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Conventionally [9], any square matrix n × n matrix A = (ai j ) belongs to the set A(n) of
n × n alternating sign matrices if and only if all its matrix elements ai j are 1, 0 or −1, every
row and column has sum 1, and in every row and column the non-zero matrix elements
alternate in sign, that is

ai j ∈ {−1, 0, 1} for 1 ≤ i, j ≤ n;
n

∑

j=k

ai j ∈ {0, 1} for 1 ≤ i, k ≤ n;

n
∑

i=k

ai j ∈ {0, 1} for 1 ≤ k, j ≤ n;

n
∑

j=1

ai j = 1 for 1 ≤ i ≤ n;

n
∑

i=1

ai j = 1 for 1 ≤ j ≤ n.

(6.1)

The generalisation of this notion required in a restatement of Tokuyama’s result for gl(n)
and sl(n), Theorem 1.1, is that of a µ-alternating sign matrix [11]. For each partition µ, all
of whose parts are distinct and for which &(µ) = n and µ1 ≤ m, an n × m matrix A = (aiq )
belongs to the setAµ(sp(2n)) of n×m µ-alternating sign matrices if the following conditions
are satisfied:

aiq ∈ {−1, 0, 1} for 1 ≤ i ≤ n, 1 ≤ q ≤ m;
m

∑

q=p

aiq ∈ {0, 1} for 1 ≤ i ≤ n, 1 ≤ p ≤ m;

n
∑

i= j

aiq ∈ {0, 1} for 1 ≤ j ≤ n, 1 ≤ q ≤ m;

m
∑

q=1

aiq = 1 for 1 ≤ i ≤ n;

n
∑

i=1

aiq =
{

1 if q = µ j for some j

0 otherwise
for 1 ≤ q ≤ m.

(6.2)

The further generalisation needed here in the case of sp(2n) takes the form:

Definition 6.1 Let µ be a partition of length &(µ) = n, all of whose parts are distinct,
and for which µ1 ≤ m. Then the matrix A = (aiq ) is said to belong to the set Aµ(sp(2n))
of sp(2n)-generalised alternating sign matrices if it is a 2n × m matrix whose elements aiq
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satisfy the conditions:

(A1) aiq ∈ {−1, 0, 1} for 1 ≤ i ≤ 2n, 1 ≤ q ≤ m;

(A2)
m

∑

q=p

aiq ∈ {0, 1} for 1 ≤ i ≤ 2n, 1 ≤ p ≤ m;

(A3)
2n

∑

i= j

aiq ∈ {0, 1} for 1 ≤ j ≤ 2n, 1 ≤ q ≤ m.

(A4)
m

∑

q=1

(a2i−1,q + a2i,q ) = 1 for 1 ≤ i ≤ n;

(A5)
2n

∑

i=1

aiq =
{

1 if q = µk for some k;

0 otherwise,
for 1 ≤ q ≤ m, 1 ≤ k ≤ n.

(6.3)

In the special case for which µ = δ = (n, n − 1 , . . . , 1) and m = n, for which (A5)
becomes

∑2n
i=1 aiq = 1 for 1 ≤ q ≤ n, this definition is such that the set Aδ(sp(2n)) co-

incides with the set of U-turn alternating sign matrices, UASM, defined by Kuperberg
[7].

More generally, the connection with what has gone before here comes about through
the recognition that there exists a bijection between the monotonic patterns defined by
(5.7) and the µ-alternating sign matrices defined by (6.3). Following a route ana-
logous to that described in the gl(n) case by Okada [11], the passage from M ∈MZµ

(sp(2n)) to A ∈Aµ(sp(2n)) is accomplished by first constructing the 2n × m matrix B
by placing entries 1 in the i th row of B in precisely those columns q for which q is
itself a non-vanishing part of the partition whose distinct parts constitute the i th row
of M , and setting all the other elements of B to 0. With this convention, B = (biq )
with

biq =











1 if i = 2n + 1 − 2k and ζ (k) j = zk j = q for some j with 1 ≤ j ≤ k;

1 if i = 2n + 2 − 2k and ζ (k̄) j = zk̄ j = q for some j with 1 ≤ j ≤ k;

0 otherwise.
(6.4)

for 1 ≤ i ≤ 2n and 1 ≤ q ≤ m. The passage from B to A ∈ Aµ(sp(2n)) is accomplished
by subtracting each row of B from its predecessor to give A = (aiq ) with

aiq =
{

biq − bi+1,q if 1 ≤ i ≤ 2n − 1;

biq if i = 2n.
(6.5)

for 1 ≤ i ≤ 2n and 1 ≤ q ≤ m.
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The map , from M to A = ,(M) by way of B is illustrated in the case of the example
(5.6) by:

9 7 6 2 1

8 7 6 2 1

8 7 6 2

7 6 2 0

6 4 1

6 3 0

4 3

3 2

2

1

−→









































1 1 0 0 0 1 1 0 1

1 1 0 0 0 1 1 1 0

0 1 0 0 0 1 1 1 0

0 1 0 0 0 1 1 0 0

1 0 0 1 0 1 0 0 0

0 0 1 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0









































−→









































0 0 0 0 0 0 0 1̄ 1

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

1̄ 1 0 1̄ 0 0 1 0 0

1 0 1̄ 1 0 0 0 0 0

0 0 0 1̄ 0 1 0 0 0

0 1̄ 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1̄ 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0









































0

1

1

0

1

0

0

1

0

1
1 1 0 0 0 1 1 0 1 (6.6)

The row and column sums of A have been indicated on the extreme right and immediately
below A, respectively. Those columns q for which the column sum is 1 are those for
which q = 1, 2, 6, 7, 9. It is clear in this example that the resulting matrix A satisfies (A1)–
(A5) of (6.3) with n = 5, m = 9 and µ = (9, 7, 6, 2, 1), and thus belongs, as required to
A97621(sp(10)).

More generally, we have

Lemma 6.2 Let µ be a partition of length &(µ) = n, all of whose parts are distinct,
and with largest part µ1 ≤ m. Let , be the map defined by (6.4) and (6.5) which takes
each monotonic pattern M ∈ MZµ(sp(2n)) with entries zi j for i ∈ [n, n̄] and j ∈ [n]
to the 2n × (m + 1) matrix A = ,(M). Then A ∈ Aµ(sp(2n)) and , is a bijection from
MZµ(sp(2n)) to Aµ(sp(2n)).

The existence of the bijection , implies that the main result Theorem 1.2, which had
already been reformulated in terms of the sp(2n)-monotonic patterns of MZλ+δ(sp(2n)) in
Corollary 5.1, can now be reformulated in terms of the sp(2n)-generalised alternating sign
matrices of Aλ+δ(sp(2n)).

To this end we require some further definitions. First of all, let wgt(A) be such that

xwgt(A) = xm1(A)−m 1̄(A)
1 xm2(A)−m 2̄(A)

2 · · · xmn (A)−mn̄ (A)
n (6.7)

with

mk(A) =
m

∑

q=1

q a2n+1−2k,q and mk̄(A) =
m

∑

q=1

q a2n+2−2k,q . (6.8)
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With this notation, let bar(A) be defined by

bar(A) =
n

∑

k=1

mk̄(A) (6.9)

and let neg(A) be the total number of elements −1 = 1̄ in A, that is

neg(A) = #{(i, q) | aiq = −1 for 1 ≤ i ≤ 2n, 1 ≤ q ≤ m}. (6.10)

Within A there are a number of sites of special interest, namely those sites (i, q) for which
ai,q−1 is 0 for i odd, and either 0 or −1 for i even, and for which there exist nearest nonzero
neighbours to the right and below (i, q − 1) which are both equal to 1, together with those
sites (i, 1) in the first column of A for which i is even and either ai1 = 1 or for which there
exists a nearest nonzero neighbour to the right which is 1. If the set of all such sites of
special interest is denoted by S(A), then let ssi(A) be defined to be the signed sum of sites
of special interest of A, that is

ssi(A) = #{(2n + 1 − 2k, q) ∈ S(A)} − #{(2n + 2 − 2k, q) ∈ S(A)}. (6.11)

These definitions may be illustrated by application to the example (6.6). To find the
2n component vector wgt(A) = (mi (A)) one merely multiplies the m-component vector
X = (xq ) = (q) by A and reverses the order of its components. In the case of (6.6) one
obtains wgt(A) = (1, 1, 3, 2, 2, 2, 4, 8, 1, 1), so that

xwgt(A) = x0
1 x−1

2 x0
3 x4

4 x0
5 = x−1

2 x4
4 and bar(A) = 1 + 3 + 2 + 4 + 1 = 11. (6.12)

The various sites (i, q) contributing to neg(A) and ssi(A) as defined by (6.10) and (6.11),
respectively, are indicated in the case of the matrix A of example (6.6) by the boldface
entries shown below.









































0 0 0 0 0 0 0 1̄ 1

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

1̄ 1 0 1̄ 0 0 1 0 0

1 0 1̄ 1 0 0 0 0 0

0 0 0 1̄ 0 1 0 0 0

0 1̄ 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1̄ 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

















































































0 0 0 0 0 0 0 1̄ 1

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

1̄ 1 0 1̄ 0 0 1 0 0

1 0 1̄ 1 0 0 0 0 0

0 0 0 1̄ 0 1 0 0 0

0 1̄ 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1̄ 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0









































(6.13)

From these, remembering the sign factors in ssi(A) we obtain

neg(A) = 7 and ssi(A) = 0 − 1 + 3 − 3 + 0 − 1 + 1 − 2 + 0−1 = 4 − 8 = −4.

(6.14)
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These results are all in accord with those obtained for xwgt(M), bar(M), btw(M) and ind(M)
in the preceding section.

In fact with these definitions we have

Corollary 6.2 Let λ be a partition into no more than n parts and let δ be the partition
(n, n − 1 , . . . , 1), then

Dsp(2n)(x ; t) spλ(x ; t)

=
∑

A∈Aλ+δ (sp(2n))

t ssi(A)+2bar(A) (1 + t)neg(A) xwgt(A) (6.15)

where the summation is taken over all sp(2n)-generalised alternating sign matrices of shape
2n × (λ1 + n + 1), whose non-vanishing column sums are 1 or 0 according as the column
number is or is not a part of λ + δ.

Proof: The result follows immediately from Corollary 5.1, by noting that the map from
M to A is such that wgt(A) = wgt(M), bar(A) = bar(M), neg(A) = btw(M) and ssi(A) =
ind(M). The first three are rather obvious identities, while the last is a consequence of
the rather careful definition of the set S(A) of sites of special interest, in which each term
contributing to ind(M) in (5.14), together with its sign, has its precise counterpart identified
as a signed site of special interest in A. !
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