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Abstract We collect some necessary concepts and principles in the theory of linear
algebraic monoids which apply to further investigation on other topics such as the
classification of reductive monoids, representations of algebraic monoids, monoids
of Lie type, cell decompositions, monoid Hecke algebra, and monoid schemes. We
use classical monoids as examples to demonstrate notions.
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1 Introduction

The Putcha-Renner theory of linear algebraic monoids is a big subject, which
is built on linear algebraic groups, torus embeddings, and semigroups [61, 82].
Over the last three decades the theory has made significant progress in different
fields: reductive monoids, Renner monoids, finite monoids of Lie type, monoids on
groups with BN -pairs, group embeddings, monoid schemes, semisimple monoids,
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J -irreducible monoids, combinatorics, and classical algebraic monoids [4, 12, 36,
40, 51, 61, 62, 64, 71, 75, 77, 80]. Unfortunately, the theory has a marketing problem
as Solomon mentioned in [85], which is a very engaging introduction to the theory.

The aim of this survey paper is two-fold. We first give an introduction to the
theory of linear algebraic monoids, and then focus on the recent developments in
Renner monoids, with the intent to attract readers with interests in algebraic groups,
combinatorics, Lie theory, and semigroup theory. We state the main theorems and
provide sources instead of giving proofs. Occasionally, for some statements of
conclusions we give short arguments.

Classical algebraic monoids are a special class of linear algebraic monoids.
Throughout the paper, classical algebraic monoids are used as examples extensively
to demonstrate important concepts.

The following section is devoted to algebraic monoids in general, including defi-
nitions, methods to construct algebraic monoids, classical monoids, J -class struc-
tures, irreducible algebraic monoids, Putcha lattices, and classical rook monoids.
In the next section we describe reductive monoids, with emphasis on Jordan
decomposition, parabolic subgroups, type maps, and J -irreducible monoids. The
finial section records various recent results on Renner monoids such as definitions
and properties, classical Renner monoids, standard form of elements in a Renner
monoid, reduced row echelon form, length function, generators and defining
relations, orders, conjugacy classes, generating functions, and generalized Renner
monoids.

2 Algebraic Monoids

Let M be an affine variety over an algebraically closed field K together with the
structure of a semigroup. We call M an affine algebraic semigroup, or simply
algebraic semigroup, if the associative operation in M is a morphism of varieties.
An affine algebraic monoid is an affine algebraic semigroup with an identity.
The unit group of an algebraic monoid M is the set of elements of M with an inverse
in M . We are concerned mainly with algebraic monoids, though we sometimes state
some results on algebraic semigroups.

There are so many interesting examples of algebraic monoids. Every algebraic
group is an algebraic monoid; every finite monoid is an algebraic monoid. Viewed
as an affine space of dimension n2, the set Mn of all n � n matrices over K is
an algebraic monoid under matrix multiplication, called the general linear monoid.
The unit group of Mn is the general linear group GLn. The monoid Dn of diagonal
matrices is algebraic with the group Tn of invertible diagonal matrices as its unit
group. Let Bn be the monoid of all upper triangular matrices. Then Bn is an algebraic
monoid with unit group Bn consisting of all invertible upper triangular matrices.

A Zariski closed submonoid of Mn is called a linear algebraic monoid. The
following theorem shows that every affine algebraic monoid is isomorphic to a linear
algebraic monoid.
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Theorem 1 ([11, II, §2, Theorem 3.3]; [51, Corollary 1.3]). Every affine
algebraic semigroup is isomorphic to a closed subsemigroup of some Mn. In
particular, every affine algebraic monoid is isomorphic to a closed submonoid of
some Mn.

Just as the closed embedding of an algebraic group into some GLn in algebraic
group theory reduces the study of algebraic groups to that of closed subgroups
in GLn, this theorem reduces the study of algebraic monoids to that of closed
submonoids in Mn. From now on, we identify an affine algebraic monoid with its
closed embedding in Mn, and simply refer to it as an algebraic monoid. Every
algebraic monoid M has a dimension, which is the dimension of M as an algebraic
variety [24]. If M is a point then its dimension is zero; if M is a curve then its
dimension is one; if M is a surface then its dimension is two. Also dim Mn D n2,
dim Dn D n and dim Bn D n.nC1/

2
.

The unit group of an algebraic monoid M determines the structure of M to
some extent, and it has been of primary interest in finding connections between the
structures of an algebraic monoid and its unit group [60]. Theorem 2 shows that
the unit group is an open subgroup in the monoid and is equal to the intersection of
the monoid with the general linear group.

Theorem 2 ([11, II, §2, Corollary 3.5]; [74, Corollary 2.2.3]). Let M be an
algebraic monoid. Then its unit group G D M \ GLn. Furthermore, G is an
algebraic group and there is a morphism ˛ W M ! K such that G D ˛�1.K�/,
where K� D K n f0g. In particular, G is open in M .

The set E.M / of idempotents of M contains certain controlling structural
information about M . This set carries the partial order

e � f , fe D e D ef:

In what follows, we assume that the partial order on any subset of E.M / is inherited
from this one.

Proposition 1 ([61, Corollary 3.26]; [82, Proposition 3.12]). Let M be an alge-
braic monoid and e 2 E.M /. Then eMe is an algebraic monoid; its unit group
is precisely the H -class of e. This unit group is an algebraic group and is open
in eMe.

The Zariski closures of subsets of M are fundamental in the theory of algebraic
monoids. Lemma 1 below is useful technically in dealing with these closures. If X

is a subset of M , we use X to denote the Zariski closure of X in M . In particular, if
M D Mn, then GLn D Mn, Tn D Dn and Bn is the Zariski closure of Bn.

Lemma 1 ([53, Lemma 1.2]). Let X and Y be subsets of an algebraic monoid M

with unit group G. Then

(1) XY D X Y .
(2) If a; b 2 G, then aXb D aXb.
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How to construct algebraic monoids? It is an easy task, based on the obvious fact
that a closed submonoid of an algebraic monoid is again an algebraic monoid. The
following corollary provides us with a great deal of examples of algebraic monoids.

Corollary 1. If S is a submonoid of Mn, then S is an algebraic monoid.

Indeed, it follows from Lemma 1 that S S � S S D S S D S . Thus S is a
closed submonoid of Mn.

Corollary 2. Let G be a subgroup of Mn. Then G � Mn is an algebraic monoid.
If G � GLn, then the unit group of G is the Zariski closure of G in GLn.
Furthermore, if G is an algebraic group then the unit group of G is G.

Algebraic monoids are special semigroups, of which Green relations J , L , R,
and H are fundamental structure elements. Let S be a semigroup and a; b 2 S .
Then by definition

aJ b if S1aS1 D S1bS1I
aL b if S1a D S1bI
aRb if aS1 D bS1I

aH b if aL b and aRb:

where S1 D S if S is a monoid and S1 D S [ f1g with obvious multiplication if S

is not a monoid. We use Ja and Ha to denote the J -classes and H -classes of a,
respectively.

Algebraic semigroups are special kinds of strongly �-regular semigroups.
A semigroup S is strongly �-regular if for any a 2 S there exists a positive
integer k such that ak lies in He for some idempotent e 2 E.S/. A strongly
�-regular semigroup is also refereed to as an epigroup or a group-bound semigroup
in the literature of semigroup theory [14, 17, 27–30]. Every finite semigroup is
strongly �-regular; so is the full matrix monoid consisting of all square matrices
over a field. The concept of strongly �-regular captures the semigroup essence
of algebraic semigroups [82]. Putcha [51, 52, 61] and Brion and Renner [5] in
this proceedings contain more information on algebraic semigroups and strongly
�-regular semigroups. Okninski [48] is a very comprehensive reference on strongly
�-regular matrix semigroups.

A nonempty subset I of S is an ideal if S1IS1 � I . Clearly S is an ideal of S .
If S is strongly �-regular and S is its only ideal then we say that S is completely
simple. The minimal ideal, if it exists, is called the kernel of S . The reader who
is interested in kernel of linear algebraic monoids can find useful results in Huang
[20–22]. The following two theorems confirm that every algebraic semigroup and
hence algebraic monoid is strongly �-regular, and contains a closed completely
simple kernel.
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Theorem 3 ([51, Corollary 1.4]). Let S be an algebraic semigroup. Then there
exists a positive integer n such that an lies in a subgroup of S for all a 2 S . In
particular, every algebraic monoid is strongly �-regular.

Theorem 4 ([51, Corollary 1.5]). Every algebraic semigroup has a kernel which
is closed and completely simple.

2.1 Some Classical Monoids

We introduce some families of algebraic monoids, called classical monoids, which
are closely related to classical groups. These monoids play an important role in the
theory of algebraic monoids [31–33,36]. The parameter l in each case is 1 less than
the dimension of the closed subgroup of diagonal matrices in the unit group G of the
monoid under discussion. This l is also the dimension of the Cartan subalgebra of
the Lie algebra of G.

Al : The general linear monoid Mn with n D l C 1: Let G D K�SLn where SLn is
the special linear group consisting of the matrices of determinant 1 in GLn. Then
G D GLn, and Mn D G.

Cl : The symplectic monoid MSpn with n D 2l : The symplectic group is

Spn D fA 2 GLn j A>JA D J g

where J D
�

0 Jl

�Jl 0

�
with Jl D

�
1��

1

�
of size l . Let G D K�Spn. Then

G � GLn. The monoid G is called the symplectic monoid which will be denoted
by MSpn. It is usually hard to give a concrete algebraic description of the Zariski
closure of a subset of an algebraic monoid. It follows, however, from Doty [12]
that

MSpn D fA 2 Mn j A>JA D AJA> D cJ for some c 2 Kg:

Bl : The odd special orthogonal monoid MSOn with n D 2l C 1: If the
characteristic of K is not 2, then the odd special orthogonal group is by definition

SOn D fA 2 SLnj A>JA D J g

where J D
0
@ 0 0 Jl

0 1 0

Jl 0 0

1
A. Let G D K�SOn � GLn. The monoid G is called the

odd special orthogonal monoid, denoted by MSOn. By [12] we have

MSOn D fx 2 Mn j A>JA D AJA> D cJ for some c 2 Kg:
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Dl : This is the even special orthogonal monoid MSOn with n D 2l , defined by
taking the Zariski closure of K�SOn in which SOn is given by the same condition

as Bl : A>JA D J , where the matrix J now is

�
0 Jl

Jl 0

�
(if the characteristic of

K is not 2). Notice that the set

M D fA 2 Mn j A>JA D AJA> D cJ for some c 2 Kg

is an algebraic monoid. Naturally we ask: whether MSOn equals M ? Unfortu-
nately, no. In fact, M is reducible, and MSOn is its identity component. More
information about this M will be provided in Sect. 2.3.

The symplectic and special orthogonal algebraic monoids arise geometrically as
monoids of linear transformations that dilate certain skew-symmetric and symmetric
bilinear forms, respectively.

2.2 Monoids Induced from Representations

To construct further examples of algebraic monoids, we start with rational represen-
tations of algebraic groups. A rational representation of an algebraic group G0 is a
group homomorphism � W G0 ! GLn which is also a morphism of varieties [1,24].
The image �.G0/ is an algebraic group. Let

G D K��.G0/ D fc�.g/ j c 2 K� and g 2 G0g:

Then G is an algebraic group by [24, Corollary 7.4]. However, G is not a closed
subset of Mn since the zero matrix is in G but not in G. Write

M.�/ D G:

It follows from Corollary 2 that M.�/ is an algebraic monoid with unit group G.
In addition, if G0 is irreducible, so are M.�/, G and �.G0/. Clearly, �.G0/ is a
subgroup of G.

Why do we multiple �.G0/ by K� and then take the Zariski closure of the
product? We note that if �.G0/ is closed in Mn, then the monoid �.G0/ D �.G0/ is
a group, nothing new. This is the case if G0 is the special linear group. To make sure
that G is a monoid which includes G properly, G must contain at least one matrix
whose determinant is not 1. Renner [74, Theorem 3.3.6] and Waterhouse [91]
provide conditions under which an algebraic group G can be embedded as the unit
group of an algebraic monoid which are not a group. Huang [21, Theorem 5.1]
refines the above result and states that under the same conditions, the group G may
be embedded properly into a normal regular algebraic monoid. We refer to the above
references for more details.
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The classical monoids can be constructed via certain representations of classical
groups. Let V D Kn, and G0 be the special linear group, symplectic group (n is
even), or special orthogonal group. Then G0 acts naturally on V by their very
definition, and we obtain the natural representation � W G0 ! GLn with �.g/ D g.
The monoid M.�/ is the general linear monoid, symplectic monoid, and special
orthogonal monoid, respectively.

Let’s explore two more examples obtained by representations. They are taken
from [85] and the latter is a variant of Example 8.5 of [61].

Example 1. Let G0 D SLm and V D Km ˝ Km with basis fvi ˝ vj j 1 � i <

j � mg. Define a rational representation � W G0 ! GLn by �.g/.v˝v0/ D gv˝gv0,
where n D m2. The monoid M.�/ D fa ˝ a j a 2 Mmg is isomorphic to Mm. In
particular, G D fg ˝ g j g 2 GLmg, isomorphic to GLm.

Example 2. Let V D Km ˝ Km be as in Example 1 and let G0 D SLm. Define a
rational representation � W G0 ! GLn by �.g/.v ˝ v0/ D gv ˝ .g�1/>v0, where
n D m2. Though the monoid M.�/ is hard to describe algebraically, we however
know that the unit group of M.�/ is closely related to SLm. But M.�/ is different
dramatically from Mm since E.M.�// and E.Mm/ are not isomorphic.

2.3 Irreducible Algebraic Monoids

An algebraic monoid is irreducible if it is irreducible as an affine algebraic variety,
that is, it is not a union of proper Zariski closed subsets. The monoids Mn, Dn, and
Bn are irreducible. The classical monoids of types Al ; Bl ; Cl , and Dl above are all
irreducible. The monoid in Example 8 is irreducible since it is isomorphic to the
affine space KnC1 as varieties.

An algebraic monoid M � Mn is connected if it is connected as a subset of
Mn in the Zariski topology. Irreducible algebraic monoids are connected, but not
conversely. For example, the monoid

M D f.a; b/ 2 K2 j a2 D b2g

is connected but not irreducible. The monoid in the following example is another
instance of connected monoids even though not irreducible.

Example 3 ([12, Section 6]). Assume that the characteristic of K is not 2. Let

M D fA 2 Mn j A>JA D AJA> D cJ for some c 2 Kg

where J D
�

0 Jl

Jl 0

�
. The unit group of M is

G D fA 2 Mn j AJA> D cJ for some c 2 K�g:
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The subgroup T of G consisting of invertible diagonal matrices in G is a maximal
torus of G. The orthogonal group in GLn is

On D fA 2 GLn j AJA> D J g:

Let OC
n D fA 2 On j det A D 1g and O�

n D fA 2 On j det A D �1g. Then
On D OC

n [ O�
n . Denote by GC the subgroup of G generated by T and OC

n . Then
GC D K�SOn is a closed and connected subgroup of G. So the Zariski closure
of GC in Mn is the even special orthogonal monoid MSOn with unit group GC.
Therefore, MSOn is the irreducible identity component of M .

If n D 2, then the monoid in Example 3 is

M D
( �

a

b

� ˇ̌ˇ̌ a; b 2 K

)
[
( �

c

d

� ˇ̌ˇ̌ c; d 2 K

)
:

This monoid has two irreducible components, and so is reducible, but is connected.
However, its unit group G is not connected since G has two connected components.

Theorem 5 ([61, Proposition 6.1]). Suppose that M is an irreducible algebraic
monoid with unit group G, and a; b 2 M . Then

(1) aJ b if and only a 2 GbG.
(2) aL b if and only if a 2 Gb.
(3) aRb if and only if a 2 bG.

This theorem allows us to interpret J ; L and R-classes in M using group actions
of G on M . Each J ; L , and R-class is an orbit of a group action, which sometimes
indicates connections with geometry such as orbits and closures.

Since GM � M and MG � M , we have the left action of G given by g�a D ga,
and the right action given by a�g D ag�1. Theorem 5 shows that if M is irreducible,
then a; b lie in the same L -class if and only if they lie in the same left G orbit, and
that a; b are in the same R-class if and only if they are in the same right G orbit.
The L -class of a is thus the orbit Ga, and the R-class of a is the orbit aG. The
left and right G orbits are closely related to row and column echelon forms of M ,
respectively, which will be described in Sect. 4.4.

Consider the group action of G � G on M by .g; h/ � a D gah�1 for g; h 2 G

and a 2 M . Let GnM=G denote the set of orbits GaG for this action. It follows
from Theorem 5 that if M is irreducible, then a; b lie in the same J -class if and
only if they lie in the same G � G orbit. Moreover, the J -class Ja D GaG. We
give GnM=G the partial order

Ja � Jb , MaM � M bM , GaG � GbG;

henceforth .GnM=G; �/ is a poset. We examine this poset for different irreducible
monoids.
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Example 4. Let M D Mn. Then G D GLn. If a; b 2 M then GaG D GbG

if and only if a and b are of the same rank. There is a bijection of GnM=G onto
f0; 1; � � � ; ng given by GaG 7! rank a. The partial order is the natural linear order
on f0; 1; � � � ; ng as illustrated in the first figure below. Clearly, the number of G�G

orbits in M is n C 1.

Example 5. Let M D MSpn with unit group G and n D 2l . If a; b 2 M then
GaG D GbG if and only if rank a D rank b. There is a bijection of GnM=G onto
f0; 1; � � � ; l; ng given by GaG 7! rank a. The partial order is the natural linear
order on f0; 1; � � � ; l; ng as illustrated in the second figure. Note that there are no
elements of rank greater than l but less than n in M . The number of G � G orbits
in M is l C 2.

Example 6. The lattice of the G � G orbits of the odd special orthogonal monoid
MSOn with n D 2l C 1 is isomorphic to that of the symplectic monoid MSp2l .

Example 7. Let M D MSOn with unit group G and n D 2l . If a; b 2 M then
GaG D GbG if and only if rank a D rank b D 0; 1; � � � ; l � 1; n. However,
there are two G � G orbits of rank l whose representatives are, respectively,
diag(1; � � � ; 1; 0; � � � ; 0) and diag(1; � � � ; 1; 0; 1; � � � ; 0) each with l copies of 1. Let
l 0 be a symbol. Then there is a bijection of GnM=G onto f0; 1; � � � ; l; l 0; ng whose
partial order is given in the third figure below. There are no elements of rank greater
than l but less than n in M . The number of G � G orbits in M is l C 3.

...
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1

n − 1
n

G × G orbitsof Mn

...

0

1

l

n

G × G orbitsof MSpn

...

0

1

l − 1
l l′

n

G × G orbitsof MSOn

• •
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•
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Example 8 ([54], Example 15). Let M � MnC1 consist of matrices

0
BBBBB@

a a1 a2 � � � an

a 0 � � � 0

a � � � 0
: : :

:::

a

1
CCCCCA
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where a; a1; : : : ; an 2 K . The unit group of M consists of matrices in M whose
diagonal element a is not zero. There are infinitely many G � G orbits if n > 1.
In fact, if we denote by .a; a1; � � � ; an/ the matrix above, then the G � G orbits
are G, f0g, and orbits which contain matrices .0; a1; � � � ; an/ with at least one ai

not zero. Moreover, for the latter we have that two elements .0; a1; � � � ; an/ and
.0; b1; � � � ; bn/ lie in the same orbit if and only if there is c 2 K� such that
bi D cai for all i . So these orbits are in bijection with points in Pn�1.K/, the
projective space of dimension n � 1. More specifically, M has n orbits of form
.0; 0; � � � ; 0; ai ; 0; � � � ; 0/ where ai ¤ 0 and 1 � i � n, and M has infinitely many
orbits .0; a1; � � � ; an/ with at least two nonzero entries. Let ai1 ; � � � ; aik be all the
nonzero entries in orbit .0; a1; � � � ; an/. Then

.0; a1; � � � ; an/ � .0; b1; � � � ; bn/ if and only if none of bi1 ; � � � ; bik is zero:

Clearly, 0; 1 are idempotents of M . Check that they are the only idempotents of M .
This leads to the following important definition.

Definition 1. Let M be an algebraic monoid. A J -class J is regular if E.J / ¤ ;.
Define

U .M / D fJ � M j J is a regular J -classg:

If M is irreducible, then U .M / D fJ 2 GnM=G j J \ E.M / ¤ ;g and is
a finite lattice. A key result of [54] is that idempotents e; f are in the same G � G

orbit if and only if they are conjugate under G. This result is useful throughout
the theory of algebraic monoids. In particular, it plays a critical role in describing
certain monoids with exactly one nonzero minimal G � G orbit.

Our intention below is to introduce height function on E.M / and U .M / for
irreducible algebraic monoids M . We begin by collecting results about idempotents
of M .

Theorem 6 ([61, Corollaries 6.8 and 6.10 and Proposition 6.25]). Let M be an
irreducible algebraic monoid M with unit group G. Let T be a maximal torus, and
W the Weyl group of G. Then

(1) E.M / D [g2G gE.T /g�1.
(2) Two elements e; f 2 E.T / are conjugate under G if and only if they are

conjugate under W .

We observe from the previous theorem that there are as many G-orbits as W -
orbits in E.T /, and that E.M / is not only stable under the conjugation action of G

on M

a 7! gag�1 for a 2 M and g 2 G;
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but also completely determined by the G-orbits of the idempotents in T . Theorem 7
below describes the lengths of chains of idempotents in E.M /. A chain of
idempotents is a linearly ordered subset � D fe0 < e1 < e2 < � � � < ekg of the
poset E.M /, and the length of � is k. A chain is maximal if it is properly contained
in no other chain.

Theorem 7 ([61, Corollary 6.10 and Theorem 6.20]). Let M be an irreducible
algebraic monoid with unit group G. Then every chain of idempotents is contained
in a maximal torus T of G. Furthermore, the lengths of the maximal chains in E.T /,
E.M /, and U .M / are all the same. If M has a zero, then this number is equal to
dim T .

We now define height function on U .M / and E.M / for any irreducible
algebraic monoid M with kernel J0.

Definition 2. Define ht.J0/ D 0 and ht.J / D ht.J 0/ C 1 if J; J 0 2 U .M / and J

covers J 0. If e 2 J 2 U .M /, then ht.e/ D ht.J /. If ht.1/ D p, then ht.M / D
ht.E.M // D p.

This function is a powerful tool to prove and obtain useful results using induction
on height of regular J -classes of the monoid. This approach has been employed
extensively in [61].

We can extend height function from U .M / to M if M is an irreducible regular
algebraic monoid. A monoid M is regular if for each a 2 M , there is b 2 M such
that a D aba. A monoid M with unit group G is unit regular if for each a 2 M ,
there is b 2 G such that a D aba.

Theorem 8 ([54, Theorem 1.3]; [85, Proposition 3.2]). Suppose that M is an
irreducible algebraic monoid with unit group G. The following are equivalent.

(1) M is regular.
(2) M is unit regular.
(3) M D GE.M /.
(4) GnM=G D U .M /.

By Theorem 8 if M is an irreducible regular algebraic monoid then U .M / is
equal to the set of all J -classes. Thus height function on U .M / can be extended
to M by

ht.a/ D ht.Ja/

for all a 2 M .
The height functions on classical monoids are consistent with the usual rank

functions. If a 2 Mn, then ht.a/ 2 f0; � � � ; ng. If M is a classical monoid of type
Bl; Cl or Dl as defined in Sect. 2.1, then ht.a/ 2 f0; � � � ; l; ng.
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2.4 Putcha Lattice

The Putcha lattice of cross sections, for short Putcha lattice, of an irreducible
algebraic monoid M with unit group G was initially introduced in [57]. Let T be a
maximal torus of G.

Definition 3. A subset � � E.T / is called a Putcha lattice of M if jJ \ �j D 1

for all J 2 U .M /, and for all e; f 2 �, e � f , Je � Jf .

A Putcha lattice � is indeed a sublattice of E.T /. We agree that � inherits the partial
order on E.T / which in turn inherits the partial order on E.M /. By definition � is
a set of representatives for the G � G orbits. Thus M is a disjoint union of G � G

orbits GeG with � as the index set

M D
G
e2�

GeG;

and the bijection � ! GnM=G is order preserving. In addition, the lattice � is a
set of representatives for the orbits of the conjugation action of W on E.T /. Thus
E.T / D F

e2�fwew�1 j w 2 W g.
Putcha lattices exist for irreducible algebraic monoids [57, Theorem 6.2]. The

following theorem describes Putcha lattices making use of R relation and Borel
subgroups of M with a zero.

Theorem 9 ([61, Theorem 9.3]). Let M be an irreducible algebraic monoid with
a zero and unit group G. Let B be a Borel subgroup of G containing a maximal
torus T . Then

� D fe 2 E.T / j for all f 2 E.M /; if eRf then f 2 Bg

is a Putcha lattice of M .

We describe Putcha lattices of classical algebraic monoids. Let ei denote the
diagonal matrix diag.1; � � � ; 1; 0; � � � ; 0/ with i -copies of 1 for i D 0; � � � ; n, and let
Eij be the matrix unit of size n whose .i; j /-entry is 1 and others are all 0. So, en is
the identity matrix of Mn. The Putcha lattice of Mn is

� D fei j i D 0; � � � ; ng:
The Putcha lattice of MSpn with n D 2l is

� D fei j i D 0; � � � ; l; ng;
which is formally the Putcha lattice of MSOn where n D 2l C 1. The Putcha lattice
of MSOn with n D 2l is

� D fei j i D 0; � � � ; l; ng [ felC1;lC1 � El;lg:
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2.5 Rook Monoids

Our objective here is to introduce the rook monoid and its relatives. These monoids
are finite, and hence algebraic. They are vital in determining the structure of classical
algebraic monoids.

2.5.1 The General Rook Monoid

A matrix of size n is a rook matrix if its entries are 0 or 1 and there is at most one
1 in each row and each column. Viewing each 1 as a rook, we can identify a rook
matrix of rank r with an arrangement of r non-attacking rooks on an n � n chess
board. Let

Rn D fA 2 Mn j A is a rook matrixg:

Then Rn is a monoid with respect to the multiplication of matrices. We call this
monoid the general rook monoid, for short rook monoid. Its unit group is the
permutation group Pn consisting of permutation matrices whose each row and each
column have exactly one 1. The order of Rn is jRnj D Pn

iD0

�
n
i

�2
i Š. In particular,

R2 D
��

0 0

0 0

�
;

�
1 0

0 0

�
;

�
0 1

0 0

�
;

�
0 0

1 0

�
;

�
0 0

0 1

�
;

�
1 0

0 1

�
;

�
0 1

1 0

��
:

A partial injective transformation � of n D f1; 2; � � � ; ng is a one to one
correspondence from a subset X of n onto a subset Y of n. We call X the domain
of � , denoted by I.�/, and Y the range of � , denoted by J.�/. Let In be the set
of all injective partial transformations of n. Then In is a monoid with respect to the
composition of partial transformations, and is called symmetric inverse semigroup.
The zero element of In is the empty function whose domain and range are the empty
set. The unit group of In is the symmetric group Sn on n letters.

Let A D .aj i / 2 Rn, and let I.A/ and J.A/ denote the sets of indices of
nonzero columns and rows of A, respectively. Then A induces a partial injective
transformation �A W I.A/ ! J.A/ with �A W i 7! j , if aj i D 1. It follows
that the rook monoid is isomorphic to the symmetric inverse semigroup In via the
isomorphism,

� W Rn ! In; A 7! �A :

2.5.2 The Symplectic Rook Monoid

To introduce symplectic rook monoids we need some preparations. Define an
involution � of n D f1; 2; � � � ; ng by �.i/ D nC1�i . A subset I of n is admissible if
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whenever i 2 I , then �.i/ … I . The empty set ; and the whole set n are considered
admissible. A proper subset I of n is admissible if and only if I \ �.I / D ; if and
only if �.I / is admissible. Write

Ni D �.i/:

Clearly fi; Nig is not admissible. If n D 4, then the admissible subsets of n are

;; f1g; f2g; f3g; f4g; f1; 2g; f1; 3g; f2; 4g; f3; 4g; f1; 2; 3; 4g:

Notice the difference of these admissible subsets from those for n D 5 below

;; f1g; f2g; f4g; f5g; f1; 2g; f1; 4g; f2; 5g; f4; 5g; f1; 2; 3; 4; 5g:

The centralizer C of � in Sn consists of those elements � 2 Sn that map any
admissible subset of n D f1; 2; � � � ; ng to an admissible subset. Indeed, if � 2 C

and I is an admissible subset of n, then for i 2 I we have �.i/ D �. Ni / … �.I /

since Ni … I . Thus �.I / is admissible. Next, if � 2 Sn and it maps all admissible
subsets to admissible subsets, so is ��1. We show that �� D �� by contradiction.
Suppose that there is i 2 n such that �.i/ ¤ �. Ni /. Then f�.i/; �. Ni /g is admissible.
But then ��1f�.i/; �. Ni /g D fi; Nig is admissible, which is a contradiction.

Thus, C acts on the set of all admissible subsets of n. From [36, Theorem 3.1.7]
it follows that the orbits of this action are

;; f1; � � � ; ig; where i D 1; � � � ; l; n:

Next, let n D 2l and W the preimage of C under �. Then W is a subgroup of Rn,
and is referred to as the symplectic rook group. A rook matrix A is symplectic if both
I.A/ and J.A/ are proper admissible subsets of n, or if A 2 W .

The set of all symplectic rook matrices is a submonoid of Rn, called the
symplectic rook monoid, and will be denoted by RSpn. The unit group of RSpn

is W . The zero element of RSpn is the zero matrix of size n.

Theorem 10 ([36, Corollary 3.1.9 and Theorem 3.1.10]; [39, Corollary 2.3]).
The symplectic rook monoid is

RSpn D
n
A 2 Rn

ˇ̌
A D

nX
i2I; w2W

Ewi; i where I is admissible
o

D
n
A 2 Rn

ˇ̌
A is singular and I.A/ and J.A/ are admissible

o
[ W

' fA 2 Rn j AJA> D A>JA D 0 or J g:

where J is as in the definition of MSpn for n D 2l .
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2.5.3 The Even Special Orthogonal Rook Monoid

Let n D 2l � 2. An admissible subset is referred to as r-admissible if its cardinality
is r . There are no r-admissible subsets for r > l except the whole set n. A subset I

of n is r-admissible if and only if �.I / is r-admissible. Let C be the centralizer of
� in Sn. Denote by C1 the subgroup of C generated by

.1N1/.2N2/; .2N2/.3N3/; � � � ; .l � 1 l � 1/.l Nl/;
and let

C2 D f � 2 Sn j � stablizes f1; : : : ; lg and �. Ni / D �.i/ g:
Then C 0 D C1C2 is a subgroup of C . It follows from [32, Lemmas 5.2 and 5.4]
that the orbits of the restriction to C 0 of the action of C on the set of all admissible
subsets of n are

;; f1; � � � ; l � 1; l C 1g; and f1; � � � ; ig; where i D 1; � � � ; l; n:

An admissible subset I is called type I if there exists w in W such that wI D
f1; � � � ; l � 1; lg; type II if wI D f1; � � � ; l � 1; l C1g. Such admissible sets contain
l elements.

Let W D ��1.C 0/. Then W is a subgroup of Rn \ SOn and is isomorphic to
.Z2/

l�1 Ì Sl . In addition, jW j D 2l�1lŠ. We call W the even special orthogonal
rook group. A rook matrix A is even special orthogonal if I.A/ is admissible and
there is w 2 C 0 such that J.A/ D w.I.A//, or if A 2 W . The set of all even special
orthogonal rook matrices is a submonoid of Rn, called the even special orthogonal
rook monoid, and will be denoted by RSOn. The unit group of RSOn is W .

Theorem 11 ([32, Corollary 5.8 and Theorem 5.9]). The even special orthogonal
rook monoid is

RSOn D
n
A 2 Rn

ˇ̌
A D

nX
i2I; w2W

Ewi; i where I is admissible,
o

D
�

A 2 Rn

ˇ̌
ˇ A is singular, I.A/ and J.A/ are admissible

and of the same type if jI.x/j D jJ.x/j D l

�
[ W

D fA 2 Rn j AJA> D A>JA D 0 or J g:
where J is as in the definition of MSOn for n D 2l .

2.5.4 The Odd Special Orthogonal Rook Monoid

Let n D 2l C1 � 3 and W the preimage of C under �, where C is the centralizer of
� in Sn. Then W is a subgroup of Rn, and is referred to as the odd special orthogonal
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rook group. A rook matrix A is odd special orthogonal if both I.A/ and J.A/ are
proper admissible subsets of n, or if A 2 W . The set of all odd special orthogonal
rook matrices is a submonoid of Rn, called the odd special orthogonal rook monoid,
and will be denoted by RSOn. The unit group of RSOn is W . Combining [33,
Theorem 3.10] and Theorem 10, we have the following conclusion.

Theorem 12. The odd special orthogonal rook monoid RSOn is isomorphic to the
symplectic rook monoid RSp2l , where n D 2l C 1 � 3.

3 Reductive Monoids

An irreducible algebraic monoid is reductive if its unit group is a reductive algebraic
group. The monoids Mn and Dn are reductive, but Bn is not for n � 2. The classical
monoids of types Al ; Bl ; Cl , and Dl are all reductive. The monoid in Example 3 is
not reductive if n � 2, since its unit group is not connected and so not reductive.
The monoid in Example 8 is not reductive for n � 1 because the unipotent radical
of its unit group is

f.1; a1; � � � ; an/ j ai 2 K for i D 1; � � � ; ng:

Reductive monoids are central to the theory of algebraic monoids; regular
semigroups form an eminent class in semigroup theory. At a glance, reductive
monoids have nothing to do with regular semigroups. But, the two notions are
connected very closely. The following result is a summary of [57, Theorem 2.11],
[58, Theorem 2.4], [59, Theorem 1.1], [74, Theorem 4.4.15], and [76, Theorem 3.1].

Theorem 13. Every reductive algebraic monoid is regular. Moreover, an irre-
ducible algebraic monoid with a zero is reductive if and only if it is regular.

It follows from Theorems 8 and 13 that every reductive monoid is unit regular.
A complete description of the reductivity of an irreducible algebraic monoid is given
in [19].

Theorem 14 ([19, Theorem 2.1]). Suppose that M is an irreducible algebraic
monoid. Then M is reductive if and only if M is regular and the semigroup kernel
of M is a reductive group.

Reductive monoids are regular and unit dense monoids, which are distinguished
from irreducible algebraic monoids in that they have finite number of G � G orbits,
and each G � G orbit contains an idempotent. This, however, is not the case for all
irreducible algebraic monoids. If n > 1, then the monoid in Example 8, again, is
not reductive since it has infinitely many G � G orbits, but only two orbits f0g and
G have idempotents 0 and 1, respectively.
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3.1 Jordan Decomposition

Every element x in an algebraic group G has its Jordan decomposition

x D su D us

where s is semisimple (diagonalizable) and u is unipotent (sole eigenvalue 1). This
decomposition is unique. Is there an analogue of such decomposition in algebraic
monoids? Putcha [71] shows that each element in a reductive monoid M is a product
of a semisimple element and a quasi-unipotent element.

The unit group He of eMe for e 2 E.M / is an algebraic group. If a 2 M , it
follows from Theorem 3 that there is a positive integer k such that ak 2 He for
some e 2 E.M /. Such e is uniquely determined by a, since if ak 2 Hf for some
f 2 E.M / then eH f and hence e D ef D f . By [27, Corollary 1] we have
ae D ea 2 He . The element ae is called the invertible part of a. An element
a 2 M is completely regular if a 2 He for some e 2 E.M /, and He is called
the bubble group of a. Clearly, for any a 2 M , the invertible part of a is always
completely regular.

An element s 2 M is semisimple if s is completely regular and is semisimple in
its bubble group. If s 2 M D Mn is semisimple then s is diagonalizable. The set
of all semisimple elements of M is denoted by Ms . An element u of M is quasi-
unipotent if its invertible part ue is unipotent in its bubble group He . If M has a
zero, then every nilpotent element is quasi-unipotent. The set of all quasi-unipotent
elements will be denoted by Mu. Then

Ms \ Mu D E.M /:

If M is a closed monoid of Mn, then Mu is the zero set of the polynomial
Xn.X � I /n. Renner studies the conjugacy classes of semisimple elements in
algebraic monoids [78]; Winter investigates quasi-unipotent elements in a different
name in [92]. Theorem 15 below shows that Jordan decomposition exists for
reductive monoids.

Theorem 15 ([71, Theorem 2.2]). Let M be a reductive monoid and a 2 M .
Then a D su D us for some invertible semisimple element s and quasi-unipotent
element u.

Such decomposition is not unique. For example (cf. Example 2.3 of [71]), in M2,
for any b 2 K ,

�
0 b

0 0

�
D
�

˛ 0

0 ˛

��
0 b=˛

0 0

�
D
�

0 b=˛

0 0

��
˛ 0

0 ˛

�

where ˛ 2 K�.
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Our next objective is to study the structure of a reductive monoid M in terms of
root semigroups, which are analogues of root groups U˛ for reductive groups. We
fix notation. Let G be the unit group of M , let T be a maximal torus of G and B a
Borel subgroup containing T , and let ˚ be the roots of G relative to T . Denote by
B� the unique Borel subgroup such that B \ B� D T . Then G is generated by the
root groups U˛ along with T where ˛ 2 ˚ [24, Theorem 26.3 d)].

Is there a monoid analogue of this result for M ? Putcha confirms this matter in
[71]. The key is to find a monoid analogue fU˛ of the one-dimensional root subgroup
U˛ associated with a root ˛ 2 ˚ . Let fU˛ D .T U ˛/u, the set of quasi-unipotent
elements of T U ˛. Then fU˛ is referred to as the root semigroup associated with ˛.
It is easy to see that U˛ � fU˛ . Denote by QU the set of quasi-unipotents of B .
Imbedding M into Mn in such a way that every element of B is upper triangular
and every element of B� is lower triangular, we can define a map 	 W B ! T such
that 	.b/ is the diagonal matrix of the diagonal of b 2 B . Then 	 is an epimorphism
and 	jT is the identity.

Theorem 16 ([71, Theorem 2.6 and Corollary 4.4]). Let M be a reductive
monoid and let ˚C be the set of positive roots. Then

(1) QU is an algebraic monoid and equal to 	�1.E.T //:

(2) B is generated by T and fU˛ for ˛ 2 ˚C, and B D T QU D QU T .
(3) Mu D S

g2G g QU g�1.

The following corollary is from [61, Proposition 6.3] and Theorem 16.

Corollary 3. Let M be a reductive monoid, T a maximal torus of the unit group of
M , and ˚ the set of roots relative to T . Then M is generated by T and QU˛, ˛ 2 ˚ .

3.2 Parabolic Subgroups

The aim here is to describe parabolic subgroups of G in terms of idempotents
of a reductive monoid M . When M has a zero, these subgroups are completely
determined by the chains in E.M / [57, 60]. Recall that a chain of idempotents is a
linearly ordered subset � D fe0 < e1 < e2 < � � � < ekg of the poset E.M /. In view
of [61, Corollary 6.10], every chain of idempotents is contained in a maximal torus
T of G. If � � E.M /, define the left centralizer and the right centralizer of � by

P.� / D fx 2 G j xe D exeg and P �.� / D fx 2 G j ex D exeg:

As Brion did in [3], we switched Putcha’s notation for left and right centralizers to
comply with standard conventions in algebraic geometry and algebraic groups. The
centralizer of � is by definition

CG.� / D fx 2 G j xe D exg:
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More information on local structures such as stabilizers, centralizers, and kernels of
algebraic monoids can be found in [3, 20, 22, 61, 70, 82].

Theorem 17 ([57, Theorem 4.6]; [60, Theorem 2.7]). Let M be a reductive
monoid and let � be a chain in E.M /. Then P.� / and P �.� / are a pair of
opposite parabolic subgroups with common Levi factor CG.� /. Furthermore, if M

has a zero, then every parabolic subgroup P of G is of the form P D P.� / for
some chain � � �, where � is a Putcha lattice of M .

When the chain � in the above theorem is maximal, its left and right centralizers
are Borel subgroups as described below.

Theorem 18 ([57, Theorem 4.5]; [61, Theorem 7.1]). Let M be a reductive
monoid with a zero and let � be a maximal chain of E.M /. Then

(1) P.� / is a Borel subgroup of G whose opposite Borel subgroup is P �.� /.
Moreover, every Borel subgroup of G can be obtained this way.

(2) CG.� / is a maximal torus of G and every maximal torus of G is obtainable in
this manner.

The set of Borel subgroups containing a maximal torus T is in one to one
correspondence with the set of Putcha lattices in E.T /.

Theorem 19 ([60, Lemma 1.1]; [61, Theorem 7.1]). Let M be a reductive
algebraic monoid with a zero and unit group G. Let B be a Borel subgroup of
G containing a maximal torus T . Then

�.B/ D fe 2 E.T / j Be D eBeg

is a Putcha lattice of M . Moreover, the map B 7! �.B/ is a bijection from the set
of all Borel subgroups containing T onto the set of Putcha lattices in E.T /.

3.3 The Type Map

Let M be a reductive monoid with unit group G and let W D NG.T /=T be the
Weyl group. Denote by 
 the set of simple roots relative to T and B , and by S D
fs˛ j ˛ 2 
g the set of simple reflections that generate the Weyl group. Let � be
the cross-section lattice of M .

Definition 4. The type map of M is defined by

� W � ! 2
I �.e/ D f˛ 2 
 j s˛e D es˛g:

As Renner mentions in his book [82], the type map is the most important combi-
natorial invariant in the structure theory of reductive monoids. In some sense, it is
the monoid analogue of the Coxeter-Dynkin diagram. Especially, for J -irreducible
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monoids, Putcha and Renner [72] give a very precise recipe to completely determine
the type map using the Coxeter-Dynkin diagram associated with the monoids. We
consider the type maps of classical algebraic monoids, and refer the reader to
[34, 35, 72, 82] for further details about type maps of reductive monoids.

Example 9. The type maps of Mn with n D l C 1, MSpn with n D 2l , and MSOn

with n D 2l C 1. Let 
 D f˛1; � � � ; ˛l g be the simple roots of type Al; Bl and Cl ,
and let ei D diag .1; � � � ; 1; 0; � � � ; 0/ with i -copies of 1, for i D 1; � � � ; l . Then
� D f0; e1; � � � ; el ; 1g, and the type map is determined by �.0/ D �.1/ D 
,
�.e1/ D f˛2; � � � ; ˛l g, and for 2 � i � l ,

�.ei / D f˛1; � � � ; ˛i�1g [ f˛iC1; � � � ; ˛l g:

Example 10. The type map of MSOn with n D 2l . Let 
 D f˛1; � � � ; ˛l g be the
simple roots of SOn, and let ei D diag .1; � � � ; 1; 0; � � � ; 0/ with i -copies of 1,
for i D 1; � � � ; l . Let e0

l D diag .1; � � � ; 1; 0; 1; � � � ; 0/ with l-copies of 1. Then
� D f0; e1; � � � ; el ; e0

l ; 1g, and the type map is determined by �.0/ D �.1/ D

, �.e1/ D f˛2; � � � ; ˛l g, �.el�1/ D f˛1; � � � ; ˛l�2g, �.el / D f˛1; � � � ; ˛l�1g,
�.e0

l / D f˛1; � � � ; ˛l�2; ˛l g, and for 2 � i � l � 2 with l � 4,

�.ei / D f˛1; � � � ; ˛i�1g [ f˛iC1; � � � ; ˛l g:

In general, associated with the type map of a reductive monoid are some
parabolic subgroups of the Weyl group. Let ��.e/ D f˛ 2 
 j s˛e D es˛ 6D eg
and ��.e/ D f˛ 2 
 j s˛e D es˛ D eg. Then �.e/ D ��.e/ t ��.e/. Denote by
W.e/ D W�.e/, W �.e/ D W��.e/ and W�.e/ D W��.e/ the parabolic subgroups of W

associated with �.e/; ��.e/ and ��.e/, respectively. These subgroups are useful in
determining the orders, conjugacy classes, and representations of Renner monoids
[37, 40, 41]. Descriptions and applications of these subgroups can be found in the
books [61, 82] and the references there.

Proposition 2. Let e be an element of the Putcha lattice of a reductive monoid M .
Then

(1) W.e/ D fw 2 W j we D ewg
(2) W �.e/ D \f �eW.f /.
(3) W�.e/ D \f �eW.f / D fw 2 W j we D ew D eg.
(4) W.e/ D W �.e/ � W�.e/.

3.4 J -Irreducible Monoids

Renner introduces the concept of J -irreducible monoids in his work on the
classification of semisimple algebraic monoids in [75]. A reductive monoid M

with a zero is J -irreducible if its Putcha lattice has a unique minimal nonzero
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idempotent. A reductive monoid M with a zero and unit group G is semisimple
if the dimension of the center C.G/ is one. In view of [75, Lemma 8.3.2], each
J -irreducible algebraic monoid is semisimple. The classical monoids defined
in Sect. 2.1 are J -irreducible and hence semisimple. The following results give
alterative descriptions of J -irreducible monoids.

Theorem 20 ([61, Corollary 15.3]; [75, Corollary 8.3.3]). Let M be a reductive
monoid with a zero and let W be the Weyl group of the unit group of M . Then the
following are equivalent.

(a) M is J -irreducible.
(b) W acts transitively on the set of minimal nonzero idempotents of E.T /.
(c) There is an irreducible rational representation � W M ! Mn which is finite as

a morphism of algebraic varieties.

Our intention next is to confirm that all J -irreducible algebraic monoids can
be obtained, up to finite morphism, from irreducible representations of semisimple
algebraic groups. This is a known result given in Renner [83].

Theorem 21. Let G be a semisimple algebraic group and � be an irreducible
rational representation of G. Then M.�/ D K��.G/ is a J -irreducible algebraic
monoid. Furthermore, one can construct, up to finite morphism, all J -irreducible
algebraic monoids from irreducible representations of a semisimple algebraic
group.

Recall that M.�/ is the Zariski closure of K��.G/. Suppose that � is an
irreducible representation of a semisimple group G, then the inclusion map M.�/ !
Mn is a faithful representation of M.�/. Thus M.�/ is J -irreducible. Now suppose
that M is J -irreducible and let H be the unit group of M . Then M D H since
M is irreducible. The radical R.H/ of H is the identity component of the center
C.H/ of H , and dim R.H/ D 1, since C.H/ is one dimensional. Thanks to [87,
Proposition 6.15] and [61, Theorem 4.32], we have H D R.H/G where G is
the semisimple commutator group of H . By [61, Corollary 10.13], there exists a
finite morphism � W M ! Mn of algebraic varieties such that �.R.H// D K�.
We obtain that �.H/ D K��.G/, and hence �.M / D �.H/ � �.H/ D K��.G/.
On the other hand, it is clear that K��.G/ � �.M /. Therefore, �.M / D K��.G/

is J -irreducible.
The Putcha lattice of a J -irreducible monoid is completely determined by its

type J0 D �.e0/ where e0 is the unique nonzero minimal element of �. Putcha and
Renner determine the Putcha lattices of J -irreducible monoids associated with an
arbitrary dominant weight by using the following theorem, which is a summary of
[72, Corollary 4.11 and Theorem 4.16].

Theorem 22. Let M be a J -irreducible monoid associated with a dominant
weight � and J0 D f˛ 2 
 j h�; ˛i D 0g where h ; i is defined as in ([23],
p42). Then

(1) ��.� n f0g/ D fX � 
 j X has no connected component lying in J0g.
(2) ��.e/ D f˛ 2 J0 n ��.e/ j s˛sˇ D sˇs˛ for all ˇ 2 ��.e/g; for e 2 � n f0g.
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4 Renner Monoids

The Bruhat decomposition and Tits system are among the gems in the structure
theory of reductive algebraic groups G. This makes it possible to reduce many
questions about G to questions about the Weyl group. Renner [77, 80] finds an
analogue of such decomposition for reductive algebraic monoids with many useful
consequences, resulting in the Bruhat-Renner decomposition. This decomposition
is now central in the structure theory of reductive monoids.

Let M be a reductive monoid with unit group G, B � G a Borel subgroup, and
T � B a maximal torus of G. Denote by N the normalizer of T in G and N the
Zariski closure of N in M . Thus N is an algebraic monoid and has N as its unit
group, and T is an algebraic monoid with unit group T . The Weyl group W D N=T

is a finite reflection group.
Recall that an inverse monoid is a monoid M such that for a 2 M , there is

a unique b 2 M that satisfies a D aba and b D bab. A regular monoid with
commutative idempotents is an inverse monoid. An irreducible regular monoid
M is inverse if and only if M have finitely many idempotents. In particular, by
[18, Theorem 3.1] a regular irreducible algebraic monoid with nilpotent unit group
is an inverse monoid.

Lemma 2 ([61, Proposition 11.1]; [77, Proposition 3.2.1]). N D N T is a unit
regular inverse monoid with unit group N and idempotent set E.T /. Furthermore,
N D NE.T /.

To show that N D N T , note that W is finite. Let k D jW j. Then there exists
yi 2 N such that N D Sk

iD1 yi T . It follows from Lemma 1 that

N D [k
iD1yi T D [k

iD1yi T � N T :

By Corollary 2, the unit group of N is N .
Next, we show that an idempotent of N is in E.T /. Let x 2 N . Then x 2 yT for

some y 2 N . Since yT D Ty, we obtain that yT D T y by Lemma 1. As yk 2 T ,
we have

xk 2 .yT /k D yk.T /k � T T � T :

If x is an idempotent in N , then x D x2 D xk 2 T , that is, x 2 E.T /.
Finally, in view of T D TE.T /, we have N D NE.T /, which shows that N is

unit regular. Since E.T / is commutative, N is an inverse monoid.

Lemma 3. Let � be the relation on N given by

x � y if and only if x 2 yT:

Then � is a congruence, and the quotient set R D N = � is a monoid.
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It is straightforward that � is an equivalent relation. It suffices to show that for
x; y; u; v 2 N , if x � y and u � v then xu � yv. Assume that x D yt1, u D vt2
where t1; t2 2 T . Then xu D yt1vt2. By Lemma 2, we have v D nt3 for some n 2 N

and t3 2 T . Then

xu D yt1nt3t2 D yn.n�1t1n/t3t2:

But n�1t1n 2 T . Hence

xu D ynt3.n�1t1n/t2 D yv.n�1t1n/t2 2 yvT:

Therefore, xu � yv. Write R D N =T .

Definition 5. The monoid R is called the Renner monoid of M , and an element of
R is called a Renner element.

4.1 Classical Renner Monoids

The Renner monoids of classical algebraic monoids are called classical Renner
monoids. More specifically, the Renner monoids of the general, symplectic, and
special orthogonal algebraic monoids are referred to as general, symplectic and
special orthogonal Renner monoids, respectively. We describe these monoids below.

Example 11. The general Renner monoid. In this case M D Mn. Then T D Tn

and N consists of matrices with at most one nonzero entry in each row and each
column. The unit group of N comprises matrices which have exactly one nonzero
entry in each row and each column. Let Ej i for 1 � i; j � n be the matrix units
whose .j; i/ entry is 1 and the rest are all 0. Thus

N D f˙n
iD1ti E�i;i j ti 2 K and � 2 Sng

and

N D f˙n
iD1ti E�i;i j ti 2 K� and � 2 Sng:

The map
Pn

iD1 ti E�i;i 7! Pn
iD1 bi E�i;i is an epimorphism from N onto Rn with

kernel T , where bi D 0 if ti D 0, and bi D 1 if ti ¤ 0. Thus we have proved the
following result.

Theorem 23 ([77, Section 7]). The general Renner monoid R D N =T is iso-
morphic to the general rook monoid Rn, and its unit group is isomorphic to the
symmetric group Sn. The order of R is jRnj D Pn

iD0

�
n
i

�2
i Š.

In what follows we identify the general Renner monoid with the general rook
monoid Rn.
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Example 12. The symplectic Renner monoid. Here M D MSpn where n D 2l

and l � 1. Recall that

MSpn D
G
c2K

Mc

where Mc D fA 2 Mn j A>JA D AJA> D cJ g with J D
�

0 Jl

�Jl 0

�
and

Jl D
�

1��
1

�
of size l . We are led to the following map

 W MSpn ! K; A 7! c if A 2 Mc:

By [12], T D ft D P
ti Ei i j ti 2 K� and ti tNi D .t/g. From [7] it follows that

N D N [ N 0 in which

N D
�

! D
nX

iD1

ti E�i;i j � 2 C; ti 2 K� and ti tNi D "i"� i .!/

�
;

where C is as in Sect. 2.5.2, and N 0 consists of matrices of the form

!0 D
lX

iD1

ai Eji ;ki

where ai 2 K , 1 � i � l , and fj1; � � � ; jlg and fk1; � � � ; kl g are admissible. The
map of N onto the symplectic rook monoid RSpn, defined by

! D
nX

iD1

ti E�i;i 7!
nX

iD1

E�i;i with � 2 C; and

!0 D
lX

iD1

ai Eji ;ki 7!
lX

iD1

bi Eji ;ki ;

where bi D 0 if ai D 0, and bi D 1 if ai ¤ 0, is a homomorphism of monoids with
kernel T . We conclude:

Theorem 24 ([7, Proposition 2.3]; [36, Corollary 3.1.9]). The symplectic Renner
monoid R D N =T is isomorphic to the symplectic rook monoid RSpn. Its unit
group is isomorphic to the symplectic rook group. The order of R is

jRSpnj D
lX

iD0

4i

 
l

i

!2

i Š C 2l lŠ:

In what follows we identify the symplectic Renner monoid with the symplectic rook
monoid, and denote them by RSpn.
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Example 13. The odd special orthogonal Renner monoid is the Renner monoid
of the odd special orthogonal algebraic monoid MSOn with n D 2l C 1 � 3.
A similar discussion to that of Example 12 gives rise to the following result.

Theorem 25 ([13, Theorem 4.2]; [33, Corollary 3.12]). The odd special orthog-
onal Renner monoid R is isomorphic to the odd special orthogonal rook monoid
RSOn where n D 2l C 1; its unit group is isomorphic to the odd special orthogonal
rook group. The order of R is

jRSOnj D
lX

iD0

4i

 
l

i

!2

i Š C 2l lŠ:

Example 14. The even special orthogonal Renner monoid is the Renner monoid
of MSOn where n D 2l with l � 1. Recall that

MSOn D
G
c2K

Mc;

where Mc D fA 2 Mn j A>JA D AJA> D cJ g with J D
�

0 Jl

Jl 0

�
. We have the

following homomorphism of algebraic monoids

 W MSpn ! K; A 7! c if A 2 Mc:

By [12], T D ft D P
ti Ei i j ti 2 K� and ti tNi D .t/g. From [13] we obtain that

N D
[

�2An

M� ;

where M� D S
c2Kfai Ei;� i j ai 2 K and ai aNi D cg and An is the alternating

group on n letters. We have the result below.

Theorem 26 ([13, Theorem 4.4]; [32, Corollary 5.12]). The even special orthog-
onal Renner monoid R is isomorphic to the even special orthogonal rook monoid
RSOn; its unit group is isomorphic to the even special orthogonal rook group. The
order of R is

jRSOnj D
lX

iD0

4i

 
l

i

!2

i Š C .1 � 2l/2l�1lŠ

We will not distinguish the even special orthogonal Renner monoid from the even
special orthogonal rook monoid, and will use RSOn to denote them.
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4.2 Basic Properties

Now return to the general theory of a Renner monoid R. Summarizing some primary
properties of R from [77], we first describe the unit group, the idempotent set E.R/,
relations with Putcha lattices, and the Bruhat-Renner decomposition.

Proposition 3 ([77, Proposition 3.2.1, Theorem 5.7 and Corollary 5.8]). Let M

be a reductive monoid with unit group G. Let T � G be a maximal torus and
� � E.T / be a Putcha lattice. Then

(1) R is a finite inverse monoid.
(2) The unit group of R is the Weyl group W , and R D WE.R/. So R is unit

regular.
(3) The idempotent set E.R/ Š E.T / D S

w2W w�w�1.
(4) R D F

e2� W eW , and W eW D Wf W ) e D f .
(5) M D F

�2R B�B , and B�B D B�B ) � D � .
(6) If s 2 S is a Coxeter generator then BsB � B�B � Bs�B [ B�B .

We observe from (1) and (2) of Proposition 3 that Renner monoids form a special
class of inverse monoids and they are closely connected to the Weyl group,
indicating that Renner monoids are by themselves extremely important discrete
invariants for reductive monoids. The results (3) and (4) of Proposition 3 show that
R is a disjoint union of W � W double cosets with a Putcha lattice as its index set,
and that the idempotent set E.T / of R is completely determined by the conjugation
action of W on the Putcha lattice. From (5) and (6), the Renner monoid plays the
same role for reductive monoids that the Weyl group does for reductive groups.
Many questions about M may be reduced to questions about R.

The idempotent set E.T / is closely connected to convex geometry and torus
embeddings. We characterize this connection in Proposition 4. Solomon [85]
elaborates on the connection in detail by using many interesting examples. Putcha
and Renner [55, 61, 75] have more conclusions and further examples. The theory of
torus embeddings can be found in [26].

Proposition 4 ([26, Theorem 2]; [56, Theorem 3.6]; [61, Theorem 8.7]). Let M

be a reductive monoid with unit group G. Suppose that T is a maximal torus of G.
Then there is a rational convex polytope whose face lattice is isomorphic to E.T /.

4.3 Standard Form

Let D.e/ be the set of minimal length representatives of left cosets wW.e/ and
D�.e/ be the set of minimal length representatives of left cosets wW�.e/ where e 2
�. Then D.e/�1 D fu�1 j u 2 D.e/g is the set of minimal length representatives
of right cosets W.e/w. Now R D W�W with W D F

e2� D�.e/W�.e/ and W DF
e2� W.e/D.e/�1. Each element � 2 R can be uniquely written as
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� D xey; x 2 D�.e/; e 2 �; and y 2 D.e/�1: (1)

We call (1) the standard form of the Renner element � .
The standard form of Renner elements is useful to determine RC, the index set

of the decomposition of B into double cosets B�B , that is,

B D
G

�2RC

B�B:

The set RC is a submonoid of R, and by [70]

RC D f� 2 R j � D xey with x � y�1g:

If R is the general rook monoid, then RC consists of upper triangular rook matrices.
The standard form of Renner elements plays a role in describing parabolic

submonoids obtained by taking the Zariski closures of parabolic subgroups of G.
Let S be the set of simple reflections that generate the Weyl group W . For I � S ,
denote by WI the subgroup of W generated by I , and call PI D BWI B and
P �

I D B�WI B� opposite parabolic subgroups of G with common Levi factors
LI D PI \ P �

I . Define

RC
I D fxey j e 2 �; x 2 W; y 2 D.e/�1; ux � y�1 for some u 2 WI g;

R�
I D fxey j e 2 �; x 2 D.e/; y 2 W; yu � x�1 for some u 2 WI g;

�C
I D fxex�1 j e 2 �; x 2 D�1

I g D fxex�1 j e 2 �; x 2 D�1
I \ D.e/g:

Theorem 27 ([70, Theorem 2.3]). Let I be a subset of S . Then

(1) RC
I and R�

I are submonoids of R.
(2) P I D BRC

I B and P
�
I D B�RC

I B�. In particular, P S D P
�
S D M .

(3) LI D P I \ P
�
I D LI �I LI is a reductive group.

(4) �I is the Putcha lattice of LI and RI D RC
I \ R�

I D WI �I WI is the Renner
monoid of LI .

The standard form of elements in R can be used to describe the Bruhat-Chevalley
order on R.

Definition 6. Let �; � 2 R. We say that � � � if B�B � B�B .

The Renner monoid is a poset with this partial order. This poset is characterized in
Theorem 28 below using .�; �/ and .W; �/, where

e � f in � , fe D e D ef;

and

u � v in W , BuB � BvB:
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Theorem 28 ([50, Corollary 1.5]; [82, Corollary 8.35]). Let � D xey and � D
uf v be in standard form. Then � � � if and only if e � f and there is w 2
W.f /W�.e/ such that x � uw and w�1v � y.

4.4 Reduced Row Echelon Form

Any matrix A over K may be changed to a matrix in reduced row echelon form
by the Gauss-Jordan procedure, a finite sequence of elementary row operations.
The set of all reduced row echelon forms of matrices in Mn is the set of well
chosen representatives of the orbits of the left multiplication action of GLn on Mn.
Row reduced echelon form in linear algebra can be generalized to any reductive
monoid M with unit group G. This generalization [77] solves the orbit classification
problem of the left multiplication action of G on M

G � M ! M

.g; x/ 7! gx:

We wish to describe the Gauss-Jordan elements of M . We begin by defining the
Gauss-Jordan elements of R. The set

GJ D f� 2 R j B� � �Bg
is called the set of Gauss-Jordan elements of R. The Gauss-Jordan elements of R

are useful to index the orbits in the conjugacy decomposition of M [69, 90]. Putcha
gives a description of GJ using the standard form of Renner elements.

Theorem 29 ([70, Lemma 3.1]). GJ D fey 2 R j e 2 �; y 2 D.e/�1g.

The set GJ is a poset with respect to the following partial order

� � � if and only if �B � �B:

Combining [77, Theorem 9.6] and [82, Proposition 8.9], we conclude that the
Renner monoid is the product of its unit group and the Gauss-Jordan elements,
and that for each � 2 R the orbit W � intersects the set of Gauss-Jordan elements
at exactly one element g� . On the other hand, the orbit W � contains exactly
one idempotent e� 2 E.T / (cf. [40, Lemma 3.2]). We obtain a one to one
correspondence between GJ and E.T /

g� 7! e� :

The Gauss-Jordan elements of Rn are the usual reduced row echelon form. If n D 4,
we have

GJ D f0; g1; � � � ; g14; 1g
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where g1 D E14, g2 D E13, g3 D E12, g4 D E13 C E24, g5 D E11, g6 D
E12 C E24, g7 D E11 C E24, g8 D E12 C E23, g9 D E11 C E23, g10 D
E12CE23CE34, g11 D E11CE23CE34, g12 D E11CE22, g13 D E11CE22CE34,
g14 D E11 C E22 C E33. The poset structure of these elements is shown in the first
figure below. The idempotent ei corresponding to gi can be obtained by positioning
the 1 in each column of gi to the diagonal for 1 � i � 14.
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The Gauss-Jordan elements of the symplectic Renner monoid RSpn with n D 2l

are the usual reduced row echelon form. There are, however, no reduced row echelon
form of symplectic matrices of rank i for l < i < n. The Hasse diagram for poset
.GJ ; �/ of RSp4 is given in the middle above. Note that B0 D Bn \ Spn is a Borel
subgroup of Spn, and B D K�B0 is a Borel subgroup of the unit group of MSpn. If
n D 4, then B0 consists of the invertible upper triangular matrices

0
BB@

a c d e

b f
bd�cf

a
1
b

� c
ab
1
a

1
CCA

where a; b 2 K� and c; d; e; f 2 K . A simple calculation yields that

GJ D f0; g1; : : : ; g8; 1g
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where g0 D 0, g1 D E14, g2 D E13, g3 D E12, g4 D E13 C E24, g5 D E11,
g6 D E12 C E24, g7 D E11 C E23, and g8 D E11 C E22.

The third diagram above illustrates the poset .GJ ; �/ of RSO4. Let B0 D Bn \
SOn be a Borel subgroup of SOn. Then B D K�B0 is a Borel subgroup of the
unit group of MSOn. If n D 4, then B0 consists of the following invertible upper
triangular matrices

0
BB@

a c d � cd
a

b 0 � bd
a

1
b

� c
ab
1
a

1
CCA

where a; b 2 K� and c; d 2 K . Thus

GJ D f0; g1; � � � ; g8; 1g

where g0 D 0, g1 D E14, g2 D E13, g3 D E12, g4 D E13 C E24, g5 D E11,
g6 D E12 C E34, g7 D E11 C E22, and g8 D E11 C E33.

The Gauss-Jordan elements of the even special orthogonal Renner monoid are
not the usual reduced row echelon form. For instance,

g6 D

0
BB@

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

1
CCA :

We now describe the Gauss-Jordan elements of M . An element x of M is in
reduced form if x 2 �B and x��1 2 � for some � 2 GJ . The requirement x 2 �B

tells us that x is in row echelon form; the condition x��1 2 � means roughly that
it is reduced.

Theorem 30 ([82, Theorem 8.13]). Let x 2 M . Then Gx \ �B ¤ ; for some
unique � 2 GJ . Moreover, there is a unique T -orbit in Gx \ �B such that each
element of the orbit is in reduced form.

4.5 The Length Function on R

Identifying successfully the elements of length 0, Renner [80] introduces a length
function on the Renner monoid of a reductive monoid. Each W eW has a unique
element of length 0. Since R D F

e2� W eW , there are totally j�j such elements
in R.

Theorem 31 ([80, Proposition 1.2]). There is a unique element � 2 W eW such
that B� D �B .
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Definition 7. Define the length function l W R ! N by l.�/ D dim.B�B/ �
dim.B�B/ where � 2 W �W with B� D �B .

Thus l.�/ D 0 if and only if �B D B� if and only if � D � by Theorem 31.
If s 2 S and � 2 W , then l.s�/ D l.�/ ˙ 1 ([24, 29.3, Lemma A]). If � 2 R,
there is a possibility that l.s�/ D l.�/. By [65], if �; � 2 W eW , then � � � implies
l.�/ � l.�/.

There is another description of this length function using the standard form of
elements in R. If w0; v0 are respectively the longest elements of W and W.e/, then
w0v0 is the longest element of D.e/. It is shown in [67] that

l.e/ D l.w0v0/;

and for � D xey in standard form,

l.�/ D l.x/ C l.e/ � l.y/:

The length function is useful in many different topics of algebraic monoids. First,
we show that it is useful to study the decomposition of nonidempotents of RC into
positive root elements, where

RC D f� 2 R j � D xey with x � y�1g:

For ˛ 2 ˚C where ˚C is the set of positive roots, let

R˛ D fes j e 2 �; es ¤ seg; R�˛ D fse j e 2 �; es ¤ seg:

We call the elements of R˛ positive root elements, and the elements of R�˛ negative
root elements of R.

Theorem 32 ([71, Theorem 4.2]). Let � D xey 2 RCnE.R/ be in standard form.
Then � is a product of l.y/ � l.x/ positive root elements in W eW .

Next, we characterize the product of B �B orbits of M using the length function.

Theorem 33 ([80, Theorem 1.4]).

BsB�B D
8<
:

B�B; if l.s�/ D l.�/

Bs�B; if l.s�/ D l.�/ C 1

Bs�B [ B�B; if l.s�/ D l.�/ � 1:

Our aim below is to introduce finite monoids of Lie type, and then show that the
length function can also be used to describe the Iwahori-Hecke algebras associated
with these monoids. Let G be a finite group of Lie type defined over Fq , a finite
field with q elements. A finite regular monoid M with unit group G is a monoid of
Lie type [64] if M is generated by E.M / and G, and
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1. For e 2 E.M /, the left centralizer P D fx 2 G j xe D exeg and the right
centralizer P � D fx 2 G j ex D exeg of e in G are opposite parabolic
subgroups of G, and eP �

u D Pue D feg.
2. For e 2 E.M /, if e L f or e Rf then xex�1 for some x 2 G.

Finite monoids of Lie type are a large class of finite regular monoids, and there
are many examples of such monoids. For instance, the finite reductive monoids
introduced by Renner [79] are finite monoids of Lie type [82, Section 10.5]. We
elaborate briefly on finite reductive monoids now. Let Mn be the monoid of all n�n

matrices over the algebraic closure of Fq , and let � W Mn ! Mn be the Frobenius
map defined by � W Œaij � 7! Œa

q
ij �. If M � Mn is a reductive monoid with a zero and

is stable under � , then

M D fa 2 M j �.a/ D ag

is a finite monoid of fixed points, and is called a finite reductive monoid. For
example, if M D Mn, then M D Mn.Fq/. If M D MSpn, then M D MSpn.Fq/.
If M D MSOn, then M D MSOn.Fq/. If M D Dn, then M is the monoid of
diagonal matrices with coefficients in Fq . If M D Bn, then M is the monoid of
upper triangular matrices with coefficients in Fq .

Iwahori [25] initiates the study of the Iwahori-Hecke algebra associated with a
Chevalley group G. Let B be a Borel subgroup of G, and W the Weyl group of G

with generating set S of simple reflections. Let

� D 1

jBj˙b2Bb 2 CŒG�:

The Iwahori-Hecke algebra

HC.G/ D HC.G; B/ D �CŒG��:

is semisimple and is isomorphic to CŒW � [9,10]. The set fAw D �w� j w 2 W g is a
basis of HC.G; B/, which is normalized as fTw D ql.�/Aw j w 2 W g. With respect
to this base, Iwahori found that the structure constants are integer polynomials in q,
depending only on W .

Using the length function, Putcha [67] studies the monoid Iwahori-Hecke algebra
of a finite monoid M of Lie type. He introduces a Putcha lattice � for the G � G

orbits, and an analogue of the Renner monoid R D hW; �i such that

M D
G
�2R

B�B:

The complex monoid algebra CŒM � of M is semisimple [49]. Let

� D 1

jBj˙b2Bb 2 CŒG�:
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The monoid Hecke algebra of M is by definition

HC.M / D HC.M; B/ D �CŒM ��:

It is a semisimple algebra with a natural basis

A� D ���; � 2 R:

This basis can be normalized as

T� D ql.�/A� ; � 2 R:

Theorem 34 ([67, Theorem 2.1]). The structure constants of HC.M; B/ with
respect to the basis fA� j � 2 Rg, and hence with respect to the normalized basis
fT� j � 2 Rg are integer Laurent polynomials in q, depending only on R.

Using Kazhdan-Lusztig polynomials and “R-polynomials”, Putcha obtains the
following result.

Theorem 35 ([63, Theorem 4.1]). The Iwahori-Hecke algebra HC.M; B/ is iso-
morphic to the complex monoid algebra CŒR� of the Renner monoid.

Here are some historical notes on the length function and Iwahori-Hecke algebra.
Solomon [84] first finds Theorems 31 and 33 for the Renner monoid Rn of M D
Mn.Fq/. He defines a length function on Rn in a different approach, but it agrees
with Definition 7. Furthermore, he introduces the Iwahori-Hecke algebra associated
with this M

H.M; B/ D
M
x2Rn

Z � Tx

with multiplication defined by

TsTx D
8<
:

qTx; if l.sx/ D l.x/

Tsx; if l.sx/ D l.x/ C 1

qTsx C .q � 1/Tx; if l.sx/ D l.x/ � 1:

TxTs D
8<
:

qTx; if l.xs/ D l.x/

Txs; if l.xs/ D l.x/ C 1

qTxs C .q � 1/Tx; if l.xs/ D l.x/ � 1:

T�Tx D ql.x/�l.�x/T�x

TxT� D ql.x/�l.x�/Tx�

where
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� D

0
BBBBB@

0 1 0 � � � 0 0

0 0 1 � � � 0 0

� � � � � � � � �
0 0 0 � � � 0 1

0 0 0 � � � 0 0

1
CCCCCA

:

4.6 Presentation of R

Let G be the unit group of a reductive monoid M . Then the commutator group
.G; G/ is semisimple. The root system ˚ and the Weyl group W of .G; G/ may be
identified with those of G [24, 27.1]. Since each semisimple algebraic group is a
product of simple algebraic groups corresponding to the decomposition of ˚ into
its irreducible components [24, 27.5], without loss of generality, we may assume
that G is a simple algebraic group. Denote by 
 D f˛1; � � � ; ˛l g a base of ˚ and
let A D .aij / be the Cartan matrix associated with 
. Then W is generated by
S D fs1; � � � ; sl g with defining relations

s2
i D 1 and .si sj /mij D 1; i; j D 1; � � � ; l;

where mij D 2; 3; 4 or 6 according to aij aj i D 0; 1; 2 or 3, respectively. Let E D
f.si ; sj ; mij / j i; j D 1; � � � ; lg. For .s; t; m/ 2 E .� /, denote by js; tim the word
sts � � � st of length m or the word sts � � � s of length m.

Let e; f 2 �0 D � n f1g and w 2 D.e/�1 \ D.f /. Thanks to [15,
Proposition 1.21], there exist a unique h 2 �0, and w 2 W�.h/ such that h � e ^ f

and ewf D hw D h; this unique element h will be denoted by e ^w f . We fix a
reduced word representative w for each w 2 W .

Theorem 36 ([15, Proposition 1.24]). The Renner monoid has the following
monoid presentation with generating set S [ �0 and defining relations

s2 D 1; s 2 S I
js; tim D jt; sim; .s; t ; m/ 2 E I
se D es; e 2 �0; s 2 ��.e/I
se D es D e; e 2 �0; s 2 ��.e/I
ew f D e ^w f; e; f 2 �0; w 2 D.e/�1 \ D.f /:
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4.7 Orders of Renner Monoids

The orders of Renner monoids provide numerical information about their structures.
The information can sometimes be used to study the generating functions associated
with the orders, indicating connections between Renner monoids and combinatorics.

Theorem 37 ([38, Theorem 2.1]). The order of the Renner monoid R of a
reductive monoid is

jRj D
X
e2�

jW j2
jW�.e/j � jW��.e/j D

X
e2�

jW j2
jW��.e/j � jW��.e/j2 :

Consider the action of W � W on R defined by .w1; w2/r D w1rw�1
2 . The

isotropic group of e 2 � is

.W � W /e D f.w; ww�/ 2 W � W j w 2 W�.e/ and w� 2 W��.e/g:

Thus jW eW j D jW j2=.jW�.e/j � jW��.e/j/, and the theorem follows.

4.8 Group Conjugacy Classes

Two elements �; � in a Renner monoid R are group conjugate, denoted by � � � ,
if � D w�w�1 for some w 2 W . Let W=W�.e/ be the set of left cosets of W�.e/ in
W and let W e D fwe j w 2 W g:
Lemma 4 ([41, Lemmas 3.1 and 3.3]). Each element in a Renner monoid R is
group conjugate to an element in fwe j w 2 D�.e/g � W e for some e 2 �.
Furthermore, if f 2 � and f ¤ e, then no element of Wf is group conjugate to
an element of W e.

Let W.e/ act on W=W�.e/ by conjugation

w � uW�.e/ D wuw�1W�.e/;

where w 2 W.e/ and u 2 W . The normality of W�.e/ in W.e/ shows that the action
is well defined. The following theorem gives a necessary and sufficient condition
for two elements to be group conjugate.

Theorem 38 ([41, Theorem 3.4]). Let e 2 �. Two elements ue; ve in W e are group
conjugate if and only if the two cosets uW�.e/ and vW�.e/ lie in the same W.e/-
orbit of W=W�.e/.

Thus, there is a one-to-one correspondence between the group conjugacy classes
of a Renner monoid and the orbits of the conjugation action of W.e/ on W=W�.e/
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for e 2 �. Let ne be the number of W.e/-orbits in W=W�.e/. Then the number of
the group conjugacy classes in a Renner monoid is

P
e2� ne:

From now on, we identify the general rook monoid Rn with the symmetric
inverse semigroup In. Our purpose is to describe the group conjugacy classes
of classical Renner monoids. First we collect some standard results about the
conjugacy classes of the rook monoid.

Theorem 39 ([47, Theorem 1.1]). Every injective partial transformation in the
rook monoid Rn may be expressed uniquely as a join of disjoint cycles and links
up to the order of cycles and links, where cycles and links of length 1 cannot be
omitted.

We explain the concepts used in the theorem. A cycle .i1i2 : : : im/ of length m is
an injective partial transformation with domain and range fi1; i2; : : : ; img given by
i1 7! i2 7! � � � 7! im 7! i1. This is different from the usual meaning of .i1i2 : : : im/

in Sn whose domain and range are n. A link Œj1j2 : : : jm� of length m is an injective
partial transformation determined by j1 7! j2 7! � � � 7! jm with jm going to
nowhere; its domain is fj1; : : : ; jm�1g and range is fj2; : : : ; jmg. Note that a cycle
.i1/ of length 1 means i1 is mapped to itself, and a link Œj1� of length 1 means
that j1 is neither in its domain nor in its range, i.e., Œj1� is the zero element of
Rn. A cycle of length m has m distinct expressions: .i1 : : : im/ D .i2 : : : imi1/ D
� � � D .imi1 : : : il�1/I A link of length m has only one expression Œj1 : : : jm� since the
starting point j1 and the terminal point jl are fixed.

Two elements �; � 2 Rn are disjoint if .I.�/ [ J.�// \ .I.�/ [ J.�// D ;.
If �; � 2 Rn are disjoint, then the join of � and � is defined to be the map � W
I.�/ [ I.�/ ! J.�/ [ J.�/ given by

�.i/ D
�

�.i/ if i 2 I.�/;

�.i/ if i 2 I.�/:

This join is denoted by � D �� . It is clear that �� D �� .
A signed partition of a positive integer n is a tuple of positive integers

� D .�1; : : : ; �s j �1; : : : ; �t /;

where
Ps

iD1 �i C Pt
j D1 �j D n with �1 � � � � � �s and �1 � � � � � �t . Let

� 2 Rn be the join of s cycles of lengths �1; : : : ; �s with �1 � � � � � �s and t links
of lengths �1; : : : ; �t with �1 � � � � � �t . Then � corresponds uniquely to a signed
partition of n

.�1; : : : ; �s j �1; : : : ; �t /:

This partition is called the cycle-link type of � .

Theorem 40 ([42, Theorem 63.5]). Two partial injective transformations are
group conjugate if and only if their cycle-link types are the same. Moreover, the
number of conjugacy classes in Rn is
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X
0�k�n

p.k/p.n � k/

where p.k/ is the number of usual partitions of k.

The orders of conjugacy classes in Rn are given in [6]. Writing the cycle-link
type of � 2 Rn as

.�
p1

1 ; : : : ; �pu
u j �

q1

1 ; : : : ; �qv
v /; (2)

where �1; : : : ; �u are distinct positive integers and so are �1; : : : ; �v, we have the
following

Theorem 41 ([6, Proposition 2.4]). The order of the conjugacy class of � is
equal to

nŠ

p1Š : : : puŠq1Š : : : qvŠ�
p1

1 : : : �
pu
u

:

The conjugacy class of an injective partial transformation in Rn corresponds to
a unique signed partition of n. Is there a similar result for the conjugacy classes of
symplectic transformations? A result of [6] answers this question affirmatively. We
need some preparation to state the result.

Strictly disjoint symplectic transformations are introduced in [6]. Let OI D I [ NI
where NI D fNi j i 2 I g for I � n. It is clear that if I; J � n, then

I \ OJ D ; , OI \ J D ; , OI \ OJ D ;:

Two symplectic transformations �; � 2 RSpn are strictly disjoint if

�
I.�/ [ J.�/

	\�
bI.�/ [ bJ.�/

	
D ;:

Strictly disjoint symplectic transformations are disjoint, but not the other way
around. Let V D RSpn n W be the submonoid of all singular symplectic
transformations. We will describe conjugacy classes in V first and then those in W .

There is an epimorphism ' W RSpn ! Rl with ' W � 7! Q� defined by

Q�.ji j/ D j�.i/j for i 2 I.�/;

where ji j D i if 1 � i � l , and ji j D n C 1 � i if l < i � n. The following
definition will be used in Theorem 42.

Definition 8. (a) The join & D Œi11 : : : i1t1 � Œi21 : : : i2t2 � : : : Œiu1 : : : iutu � of disjoint
links in V is called a string if ti � 2 for 1 � i � u and

Ni1t1 D i21; Ni2t2 D i31; : : : ; Niu�1;tu�1 D iu1:
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(b) If Niutu D i11, then Q& is a cycle in Rl and & is referred to as positive, otherwise, Q&
is a link in Rl and & is called negative.

(c) The length of & is the length of Q& in Rl .
(d) The link Œj � of length one is considered a negative string.

Theorem 42 ([6, Theorem 3.5]). Every symplectic transformation � 2 V can be
expressed uniquely as a join of strictly disjoint cycles and strings up to the order in
which they occur.

For clarity, we now state the main result of [6], and provide necessary concepts
needed after it.

Theorem 43 ([6, Theorem 4.5]). There is a one-to-one correspondence between
conjugacy classes in V and symplectic partitions of l .

What is a symplectic partition of a positive integer l? Well, the story is quite long.
Let m be a positive integer. A composition of m of length s is an ordered sequence of
s positive integers � D .�1; �2; : : : ; �s/ such that

Ps
iD1 �i D m. We agree that 0 has

one composition, the empty sequence. It is also regarded as the only partition of 0.
Define an equivalence relation on the set of compositions of m of length s: � and �0
are equivalent if �0 is a cycle-permutation of �. For instance, .1; 3; 5/ and .3; 5; 1/

are equivalent, but .1; 3; 5/ and .1; 5; 3/ are not equivalent. The equivalence class of
a composition � D .�1; �2; : : : ; �s/ in the set of compositions of m of length s is
called a positive composition, and will be denoted by � D .�1; �2; : : : ; �s/ if there
is no confusion. A negative composition is a composition itself.

A weak composition of a positive integer m is similar to a composition of m,
but allowing parts of the sequence to be zero. For example, .4; 0; 2/ is a weak
composition of 6 of length 3.

We can now define the symplectic partition of a positive integer l . Let
.m1; m2; m3/ be a weak composition of l of length 3. If m1 > 0, let .�1; : : : ; �s/
be a partition of m1 where �1 � � � � ; � �s � 1. If m2 > 0, let .f1; � � � ; ft / with
f1 � � � � ; � ft � 1 be a partition of m2. If m3 > 0, let .g1; � � � ; gu; 1.v// be a
partition of m3 where v � 0, and g1 � � � � ; � gu � 2 if u � 1. A symplectic
partition of l is a set of non-negative integers

�
�1; : : : ; �s

ˇ̌
�11; ; : : : ; �1p1

I : : : I �t1; : : : ; �tpt

ˇ̌
�11; ; : : : ; �1q1

I : : : I �u1; : : : ; �uqu I 1.v/
�

(3)

where .�1; �2; : : : ; �s/ is a partition of m1, .�j1; �j 2; : : : ; �jpj / is a positive
composition of fj for 1 � j � t , .�k1; �k2; : : : ; �kqk

/ with �kqk
� 2 is a negative

composition of gk for 1 � k � u, and 1.v/ is v negative compositions of length one,
such that m1 C m2 C m3 D l . We agree that if mi D 0 for i D 1; 2; 3 then the
corresponding part in the symplectic partition is empty.

The concept of the cycle-link type of a symplectic transformation � 2 V plays a
crucial role in determining conjugacy classes.

Definition 9. Let & D Œi11 : : : i1t1 � Œi21 : : : i2t2 � : : : Œiu1 : : : iutu � be a string. If & is
positive, the positive composition .t1 � 1; t2 � 1; � � � ; tu�1 � 1; tu � 1/ is referred
to as the string type of & . If & is negative, the negative composition .t1 � 1; t2 �
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1; � � � ; tu�1 � 1; tu/ is called the string type of & . Moreover, we say that the negative
string Œj �, consisting of only one link of length 1, has the negative composition .1/

as its string type.

If � 2 V corresponds to the symplectic partition (3), then (3) is referred to as the
cycle-string type of � . For completeness we state the traditional result, taken from
[8], about conjugacy classes of the unit group W of RSpn.

Theorem 44. There is a bijection between the conjugacy classes in W and the
signed partitions of l .

We refer the reader to [6] for the formulas for calculating the number of conjugacy
classes and the order of each class.

What are the group conjugacy classes of the even special orthogonal Renner
monoid RSOn. Let W be the unit group of the symplectic Renner monoid RSpn

and An the unit group of the even rook monoid RSOn with n D 2l . Thus An is
the subgroup of W consisting of all even permutations in W . Let V D RSpn n W

and V 0 D RSOn n An. Then V 0 is the submonoid of V consisting of even special
orthogonal injective partial transformations in V .

We consider the restriction to V 0 of the conjugation action of W on V . A simple
calculation yields that if � 2 V 0 and � 2 W , then ����1 2 V 0. So the restriction
to V 0 of the conjugation action of W on V induces an action of W on V 0, the
conjugation action of W on V 0. For now, let C be a W conjugacy class in V . It
follows from [13, Lemma 6.3] that two elements of C are An conjugate if and only
if there is � 2 C that commutes with an odd permutation in W . We also know that
if there are two elements in C not An conjugate, then C is a disjoint union of two
An conjugacy classes with equal cardinality.

We define a class function c on V 0. Let � 2 V 0 with domain I.�/ D fi1; � � � ; irg
and range J.�/ D fj1; � � � ; jrg. Define c.�/ to be the cardinality of the set
fji1j; � � � ; jir j; jj1j; � � � ; jjr jg. For example, if n D 8 and � maps 3 to 5 and 7 to 2 and
leaves the rest unchanged, then c.�/ D 3 since I.�/ D f3; 7g and J.�/ D f5; 2g
and fj3j; j7j; j5j; j2jg D f2; 3; 4g. Clearly, if �; � 2 V 0 are W conjugate, then
c.�/ D c.�/.

Theorem 45 ([13, Theorem 6.8]). Let C be a W conjugacy class in V 0. If c.C / <

l , then C is an An conjugacy class. If c.C / D l , then C is a disjoint union of two
An conjugacy classes with equal number of elements.

How can one determine if an element of V is in V 0 using its cycle-link type?

Theorem 46 ([13, Theorem 6.9]). If � 2 V has cycle-link type
�
�1; : : : ; �s

ˇ̌
�11; : : : ; �1p1I : : : I �t1; : : : ; �tpt

ˇ̌
�11; : : : ; �1q1I : : : I �u1; : : : ; �uqu I 1.v/

�

then � 2 V 0 if and only if u C v > 0, or u=v=0 and p1 C � � � C pt is even.
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4.9 Munn Conjugacy

The set of i 2 I.�/ such that �k.i/ is defined for all k � 1 is called the stable
domain of � 2 R, and is denoted by I ı.�/. That is,

I ı.�/ D
1\

k�1

I.�k/:

The restriction of � to I ı.�/ induces a permutation �ı of I ı.�/. This permutation
is an element of R. If �ı 2 W eW for some e 2 �, then e is referred to as the
subrank of � .

Definition 10. Two elements �; � 2 R are called Munn conjugate, denoted by
� 	 � , if there exists w 2 W such that w�1�ıw D �ı.

The Munn conjugacy class of � is denoted by Œ��. All elements of Œ�� have the
same subrank, and Œ�� meets one and only one parabolic subgroup of the form
fW �.f / j f 2 �g. More specifically, Œ�� meets W �.e/ where e is the subrank
of � .

Theorem 47 ([41, Theorems 4.16 and 4.17]). There is a bijection between the set
of Munn conjugacy classes of a Renner monoid R and the set of all group conjugacy
classes of W �.e/ for all e 2 �.

As a consequence, a Renner monoid has as many Munn conjugacy classes
as inequivalent irreducible representations over an algebraically closed field of
characteristic zero.

Theorem 48 ([6, Theorem 7.2]). Let W be the unit group of RSpn and V D
RSpn n W . Then two elements in V are Munn conjugate if and only if they have
the same cycle part in their cycle-string types. Furthermore, the number of Munn
classes is

Pm
rD0 p.r/:

We describe the relationship between Munn conjugacy and other conjugacies in
semigroup theory. Notice that there are different conjugacy relations in semigroups.
We are interested in semigroup conjugacy, action conjugacy, character conjugacy,
and McAlister conjugacy.

Let S be a semigroup. Then elements �; � 2 S are called primary S -conjugate
if there are x; y 2 S for which � D xy and � D yx. This latter relation is reflexive
and symmetric, but not transitive. Let 
 be its transitive closure, called semigroup
conjugacy. In general, group conjugacy is finer than semigroup conjugacy. But, in a
group they are the same, equal to the usual group conjugacy.

Kudryavtseva and Mazorchuk [30] study action conjugacy and character conju-
gacy. To define action conjugacy, consider the partial action of S1 on S
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� � x D
(

�x��1; if ��1� � exI
undefined, otherwise:

It follows from [30, Lemma 1] that if �; � 2 S1 and x 2 S then �� � x is defined if
and only if � � x and � � .� � x/ are both defined, in which case �� � x D � � .� � x/.
We call x; y 2 S primary action conjugate if there is � 2 S1 for which y D � � x

or x D � � y. This relation is reflexive and symmetric, but not necessarily transitive.
Its transitive closure is called action conjugacy.

Two elements x; y in a semigroup S are referred to as character conjugate if for
every finite-dimensional complex representation 	 of S we have 	.x/ D 	.y/,
where 	 is the character of 	.

McAlister [43] introduces a conjugacy. Let a be an element in a finite semigroup
S and Na D ae, where e is the unique idempotent in the subgroup hai generated
by a. Then a; b are conjugate if Nb D x0 Nax and Na D x Nbx0 for some regular element
x with inverse x0.

Theorem 49 ([41, Corollary 4.5]). The action conjugacy, character conjugacy,
McAlister conjugacy, Munn conjugacy, and semigroup conjugacy are all the same
in a Renner monoid.

4.10 Representations

What can we say about the representations of the Renner monoid R? We will state
the main result of [40] first, and then provide some related information on the
representation theory of finite monoids. For any e 2 �, let Be be the group algebra
of W �.e/ over F , a field of characteristic 0.

Theorem 50 ([40, Theorem 3.1]). The inequivalent irreducible representations of
R over F are completely determined by those of Be , where e 2 �.

We briefly elaborate on how to achieve the above result. Let

FR D
( X

�2R

˛� �
ˇ̌̌

˛� 2 F

)

be the monoid algebra of R over F . The key is to show that FR is isomorphic to the
direct sum

L
e2� Ae , where Ae D Mde .Be/ in which de D jW j=jW.e/j. Therefore,

FR is a semisimple algebra. To this end, an explicit description of the Möbius
function of R is found and a precise formula for Solomon central idempotents is
obtained. We refer the reader to [40] for the details.

The work of [40] is a generalization of Munn [47] and Solomon [86] from
representations of rook monoids to all Renner monoids. Munn initiates the study
of irreducible representations of rook monoid Rn in terms of irreducible repre-
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sentations of certain symmetric groups contained in the monoid. Solomon [86]
investigates these representations using central idempotents of F Rn, and then
studies many other aspects related to these representations as well. Steinberg [88,89]
discusses representations of finite inverse semigroups S and shows that there is an
algebra isomorphism between the monoid algebra of S and the groupiod algebra
of S .

Putcha [63, 66–68] has developed a systematic representation theory of finite
monoids, including representations of any finite monoid, irreducible characters of
full transformation semigroups, highest weight categories and blocks of the complex
algebra of the full transformation semigroups. In particular, he provides an explicit
isomorphism between the monoid algebra of the Renner monoid and the monoid
Hecke algebra introduced by Solomon [84]. Putcha and Oknínski describe complex
representations of matrix semigroups in [49]. Putcha and Renner study irreducible
modular representations of M in [73, 81]. Munn [45, 46] investigates semigroup
algebras and matrix representations of semigroups.

4.11 Generating Functions

We investigate the generating functions associated with the orders of classical
Renner monoids. Let rn D jRnj D Pn

iD0

�
n
i

�2
i Š. It follows from [2] that the

generating function r.x/ D P1
nD0

rn

nŠ
xn is convergent to the solution of the

differential equation

r 0.x/

r.x/
D 2 � x

.1 � x/2
:

This result is generalized in [37] to study the generating functions of the orders of
the symplectic and orthogonal Renner monoids.

Let sn D Pn
iD0 ai

�
n

i

�2
i Š, where a is a nonzero real number. The following

recursive formula for sn, taken from [37], is a variant of [2]. It allows us to calculate
the generating function of sn. Clearly, s0 D 1 and s1 D a C 1.

sn D Œa.2n � 1/ C 1�sn�1 � a2.n � 1/2sn�2; for n � 2: (4)

Theorem 51 ([37, Theorem 3.1]). Let s.x/ D P1
nD0

sn

annŠ
xn. If a � 1, then

s.x/ converges for jxj < 1 to the function 1
1�x

ex=a.1�x/. Also, s.x/ satisfies the
differential equation

s0.x/

s.x/
D a C 1 � ax

a.1 � x/2
:
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The generating function of sn is closely related to the Laguerre polynomials. Let
ln.t/ be the nth Laguerre polynomial. Then

sn

an
� nsn�1

an�1
D ln

� 1

a

	
; for a � 1:

Corollary 4. Let rn be the order of the symplectic Renner monoid, and let r.x/ DP1
nD0

�
rn

4nnŠ

�
xn, the generating function of rn. Then r.x/ converges for jxj < 1 to

the function 1
1�x

ex=4.1�x/ C 2
2�x

.

Corollary 5. Let dn be the order of the even special orthogonal Renner monoid,
and let d.x/ D P1

nD0

�
dn

4nnŠ

�
xn, the generating function of dn. Then d.x/ converges

to the function 1
1�x



ex=4.1�x/ � x

2.2�x/

�
for jxj < 1.

Remark. The generating function of the order of the odd special orthogonal Renner
monoid is the same as that of the symplectic Renner monoid.

4.12 Generalized Renner Monoids

It is convenient, for the moment, to let R be temporally a factorizable monoid with
unit group W acting on the set E.R/ of idempotents by conjugation. Denote by �

a transversal of E.R/ for this action. For each e 2 E.R/ let

W.e/ D fw 2 W j we D ewg
W�.e/ D fw 2 W j we D ew D eg:

Godelle introduces the concept of generalized Renner monoids, a class of factoriz-
able monoids.

Definition 11. A generalised Coxeter-Renner system is a triple .R; W; S/ such
that

(1) R is a factorizable monoid and .W; S/ is Coxeter system.
(2) � a sub-semilattice of E.R/.
(3) For each pair e1 � e2 in E.R/ there exists w 2 W and f1 � f2 in � such that

wfi w�1 D ei for i D 1; 2.
(4) For every e 2 � the subgroups W.e/ and W�.e/ are standard Coxeter subgroups

of W .
(5) The map � ! 2S W e 7! ��.e/ D fs 2 S j se D es ¤ eg satisfies: if e � f

then ��.e/ � ��.f /.

The monoid R in a Coxeter-Renner system is referred to as a generalized Renner
monoid. Godelle [16] introduces a different length function on R, and he used
this function to investigate the generic Hecke algebra H.R/ over ZŒq�, which are
deformations of the monoid Z-algebra of R. If M is a finite reductive monoid with
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a Borel subgroup B and Renner monoid R, he then finds the associated Iwahori-
Hecke algebra H.M; B/ by specialising q in H.R/ and tensoring by C over Z.
The Renner monoid of a reductive monoid and the Renner monoid of a finite
monoid of Lie type are examples of generalized Renner monoids. Mokler [44]
studies a different type of discrete monoids constructed from Kac-Moody Lie groups
and algebras, called Weyl monoids. The Weyl monoids are generalized Renner
monoids [16].
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