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Introduction
I Consider cluster variables in cluster algebras of finite types

I Give a new combinatorial interpretation of the f-polynomials
of a cluster algebra using mixed dimers.

I We build on previous work about snake graphs

Figure 1: A smashing of two Dn single dimers



Cluster Algebra: The Basics

A cluster algebra, denoted as A, is a subalgebra of
Q(x0, . . . , xn−1) defined by generators and relations, starting with
the initial cluster {x0, . . . , xn−1} and a mutation in direction j ,
denoted as µj

{x0, . . . , xj−1, xj, xj+1, . . . , xn−1}
µj−→ {x0, . . . , xj−1, x′j, xj+1, . . . , xn−1}

generating a new cluster.

We call xi an initial cluster variable of i . A cluster algebra is
generated by its cluster variables.



Quiver: The Basics

A quiver is an oriented graph. An acyclic quiver refers to a quiver
whose underlying graph is acyclic.

k j i

Throughout our work, we only consider an unweighted, finite
quivers without self-loops or 2-cycles. This quiver defines a cluster
algebra!



Quiver: The Mutation - Step 1

Given a quiver Q, a mutation in direction j , µj , transforms it
into a new quiver Q ′ according to the following rules:

I For every 2-path passing j such that k → j → i in Q, add a
new edge k → i in Q ′.

k j i



Quiver: The Mutation - Step 2

I Reverse direction of all edges incident to j in Q ′.

k j i



Quiver: The Mutation - Step 3

I Delete all 2-cycles in Q ′.

k j i

Here we go!



Quiver: The Mutation in Terms of Cluster Variables...

Algebraically, the mutation at direction j gives the following
relation for a new cluster variable x ′j :

xjx
′
j = Πi→jxi + Πj→kxk

where the multiplication term is 1 if no edges suit the condition
and parallel edges are accounted with multiplicity.



Quiver: The Mutation in Terms of Cluster Variables

In our example, j → k twice and i → j ; therefore, we obtain the
relation

xjx
′
j = x2k + xi .

k j i



Quiver: The Mutation-Equivalent Dynkin Diagram

Theorem (Fomin-Zelevinsky 2002)

A connected, unweighted quiver is mutation equivalent to an
oriented Dynkin diagram of the following types: An,Dn,E6,E7 or
E8.

In other words, mutating a quiver gives rise to a finite cluster
algebra exactly when the quiver has an underlying graph that is a
Dynkin diagram of type An,Dn,E6,E7 or E8.



unoriented An :
n − 1 n − 2

. . .
2 1 0

unoriented Dn :
n − 1 n − 2

. . .
3 2

1

0

unoriented E6 :

unoriented E7 :

unoriented E8 :



F-Polynomial: The Basic Idea...

The principal extension of a quiver Q is formed by adding
shadow vertices i ′ for every vertex i of Q and shadow edges i ′ → i .

Each new shadow i ′ is assigned to a shadow cluster variable yi .

2 1 0

Q

2 1 0

2′ 1′ 0′

the principal extension of Q



F-Polynomial: The Basics

Given a quiver Q and its principal extension, the F-polynomial of
a vertex i is obtained from the current cluster variable of i by
setting every initial cluster variable xj to 1.

By setting every initial cluster variable xj to 1, the F-polynomial is
in fact in the shadow cluster (y0, . . . , yn−1).



F-Polynomial: Example

Suppose we have the following quiver Q and its principal extension:

2 1 0

2′ 1′ 0′

The initial cluster is {x0, x1, x2}. Setting every xi to 1, the initial
F-polynomial for every vertex is simply 1.



F-Polynomial: Example cont.

We mutate at vertex 1 and obtain the following quiver:

step 1

2 1 0

2′ 1′ 0′
step 2,3

2 1 0

2′ 1′ 0′

This mutation gives us the expression:

x1x
′
1 = Πi→1xi + Π1→kxk = x22y1 + x0.

By setting every xi to 1, we have that the F-polynomial of vertex 1

is now 12y1+1
1 = y1 + 1.



F-Polynomial: Combinatorial Interpretation

Following previous works, we are able to find a bijection between a
quiver of finite type and its square-free F-polynomials with the
hexagon-square model, whose edges have a single dimer covering.

This bijections maps the F-polynomial of a quiver, as a
consequence of mutation, with a specific transformation of the
matching of the hexagon-square model.

=

a square graph

+ 1y1F-poly



F-Polynomial: Combinatorial Interpretation cont.

Another example where the F-polynomial is 1 + y1 + y2.

=

a two-square graph

F- poly

1 1 +

+y11 y2 1



F-Polynomial: Single Dimer

Given a graph G , a single dimer, or equivalently a perfect
matching, on G is a set of edges such that each vertex is touched
exactly once.

:

a square graph

,

the single dimers of the graph

a hexagon graph

:

the single dimers of the hexagon graph

,



F-Polynomial: The Flip

Given a square or hexagon graph and its perfect matching, the flip
of the graph is a transformation that changes the initial perfect
matching to another perfect matching.

flip

the two perfect matchings of the square graph

the two perfect matchings of the hexagon graph

flip



F-Polynomial: The Account Factor for The Flip

For each square/hexagon graph, we assign it the account factor,
denoted here as y , to keep track of the number of flips applied to
the graph. Then,

I A minimal matching is the dimer covering of a graph that
allows us to flip in given sequence in order to reach all
possible dimer coverings, without having to perform flips that
are involutions in this sequence. We assign it a value of 1.

I We flip a minimal matching to get another perfect matching,
assigned with a value y .

:

a square graph

,1 y

the single dimers of the graph



Another example:

a hexagon graph

:

the single dimers of the hexagon graph

,1 y



F-Polynomial: Summing up the Values

I F-polynomial is the sum of values obtained from every
possible flip sequence.

We reproduce our earlier example here where the F-polynomial is
1 + y1 + y2.

=

a two-square graph

F- poly

1 1 +

+y11 y2 1



Different minimal matchings usually represent different
F-polynomials.

Compare the following example of a two-square graph to the above
example.

=

a two-square graph

F- poly

1 1 +

+1y2 y2 y1

the single dimers of the two-square graph



Introducing a Hexagon for our Model

We focus on vertex 2 of the Dn case:

unoriented An :
n − 1 n − 2

. . .
2 1 0

unoriented Dn :
n − 1 n − 2

. . .
3 2

1

0



The Attachment Rule: Where to Place Squares and
Hexagons

Based on directions of edges. For the “head” of the Dn:

2

1

3 0

0

13



The Attachment Rule: Where to Place Squares and
Hexagons cont.

Based on directions of edges. For the “tail” of the Dn:

4 3 2
2

3

4

4 3 2
2

3

4



Attachment Rule: Cont.

5 4 3 2
2

3

4

5

5 4 3 2
2

3

4

5



Attachment Rule: Cont.

5 4 3 2
2

3

4

5

5 4 3 2
2

3

4

5



Working with our model: Terms we need

An A-type tail (or simply tail) is the portion of a dimer matching
that corresponds to indices ≥ 3 in a given quiver. The length of a
tail refers to the highest indexed vertex in the quiver.

Interior edges are edges in the perfect matching of the A-type tail
that occur between two squares in a snake graph. All other edges
of the tail are deemed boundary edges. (Rabideau)

Figure 2: Interior edges in purple, boundary in blue for a tail of length 8



Double Dimers: Remove Limitation of Single Dimer

Applying a flip twice to a single dimer square or hexagon yields the
original matching. This means that we cannot use a single dimer
model to represent F-polynomials with squared terms.

We introduce a new matching: a double dimer is the matching in
which each vertex is touched by exactly two edges. A term y2i in
the f-polynomial corresponds to a double dimer matching of i :

For the Dn case, we need to use both single and double dimers,
giving rise to a mixed dimer.



Mixed Dimers: Additional Rule

Our mixed dimer model has to obey connectivity rules: the
vertices labeled with the same colored circles must be connected
by the red edges of our matching.

Figure 3: Using our rules for a D4 quiver



Working with our model: Terms we need

A revolution is a source-inducing mutation sequence through
every vertex in the quiver. Going through n-revolutions of the
quiver produces all possible f-polynomials (Schiffler).

A batch is the set of F-polynomials obtained after a revolution,
numbered in order. The kth batch is produced by the kth
revolution



Let’s Make a Table

We want to know all possible dimer configurations for any
f-polynomial for this Dn “all right” quiver, where we use a
source-inducing mutation sequence along the A-type tail:

Figure 4: Dn quiver with all arrows pointing right



Table

Suppose we want to make a table of the f-polynomials we can
generate by mutating our Dn ”all right” quiver through n − 1
revolutions.

Figure 5: The first few entries of a table of f-polynomials corresponding
to a specific vertex and a batch



A-type Tail- Solved

Figure 6: The upper right triangle of the dimer table for Dn ”all right”



How do we complete the table?

From examining the f-polynomials, we know the last row of the
table is single dimers

Figure 7: The tail length decreases by one square as we move left to right



What about the rest of the table?
Do we know anything about what these mixed dimers look like?

Figure 8: We need to focus on the mixed dimers in this table



Splitting and Smashing
Suppose S is a mixed dimer. We can split S into two single dimers,
so that when we smash them together, we get S back.

We want to show that M#N=S, where M and N are dimers from
our table according to specific rules.

Figure 9: S is a mixed dimer we want to split



What do N and M look like?

Suppose S has l as its highest indexed square with a doubled
covering, and that S has a length of j , where j ≥ l + 1. Then
S=M#N, where we have:

Figure 10: N has length j , M has length l



Mixed Dimers and Diamonds

We want to look at a diamond of mixed dimers in our table. From
the f-polynomials, AD − BC = Yterm. We are able to split each
mixed dimer in this diamond into these specific single dimers:

Figure 11: A diamond recurrence within our table



Helper Lemmas

Lemma
Consider the Dn quiver with all arrows pointing to the right. Let α
and β refer to possible source-inducing flip-sequences for two single
dimers, M l

α and N j
β respectively, where M l

α has length l and N j
β

has length j , and j ≥ l + 1. The smashings M l
α# N j

β violate

connectivity only if N j
β = N j

max ; when β={j , ..., 1, 0}= maxN and
α 6= {l, ..., 3, 2} = maxM .

Figure 12: We flip M at l , ..., k and smash with Nmax



Bad Smash!

There is no path of edges to get from one orange vertex to the
other! Same problem for purple vertices!

Figure 13: We flip M at l , ..., k and smash with Nmax to get this mixed
dimer



The Forbidden Split

Lemma
AD has one extra matching that cannot be split into B and C. This
matching is the one that corresponds to Amin#Dmax .

Theorem
The unsplittable matching Amin#Dmax corresponds to the extra Y
term in the f-polynomial recurrence in our diamond.



Figure 14: Amin #Dmax results in a split that violates connectivity



Given a Quiver...

Our goal for future work is completing more tables for different
orientations of the quiver (not just all arrows pointing to the right).

Given an acyclic Dn quiver, we want to prove the rules for drawing
its minimal matching.
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