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Definitions and Previous Results

Definitions

Definition

Given Fr
2,M, where M = {v1, . . . , vn} is a set of generators, we define the

Cayley graph G (F r
2 ,M) with V (G ) = Fr

2 and u,w ∈ V (G ) share an edge
if u − w = vi for some generator. Multiple edges are allowed.

Example

Let M = {e1, . . . , en}. Then G (Fr
2,M) = Qn, is called the

hypercube graph.

If M = {v ∈ Fr
2 − {0}}, then G (Fr

2,M) = K2r is called the
complete graph on 2r vertices.

See board for image of Q2 and K4 with generators labelled
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Definitions and Previous Results

Definitions

Definition

The Laplacian of a nondirected graph G , denoted L(G ) has entries

L(G )i ,j =

{
deg(vi ) i = j

−#edges from vi to vj i 6= j

Definition

Given a connected graph G with |V (G )| = w , L(G ) is an integer w × w
matrix, so we can view it as map of Z-modules Zw → Zw . The kernel is
span(1), so coker L(G ) ∼= Z⊕ K (G ) where K (G ) is a finite abelian group.
We call K (G ) the sandpile group of G .

Example

It is well known that K (Kn) ∼= (Z/nZ)n−2. So we can determine at least
one case of Cayley graphs.
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Definitions and Previous Results

Previous Results for Fr
2

Lemma

Let M = {v1, . . . , vn} be the set of generators. For every u ∈ Fr
2, let

fu =
∑
v∈Fr

2

(−1)u·vev λu,M = n −

n∑
i=1

(−1)u·vi

Then {fu} is an eigenbasis of R2r each with eigenvalues {λu,M }, which is
always even. Moreover, ev = 1

2r
∑

v∈Fr
2
(−1)u·v fv .

Theorem (Ducey-Jalil)

Let G be a Cayley graph of Fr
2. For all p 6= 2,

Sylp(K (G )) ∼= Sylp

(
2r⊕
k=1

Z/λu,MZ

)
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Definitions and Previous Results

More Previous Results

Remark

L(G ) is diagonalizable over Z[1
2 ], and we can describe the Sylow-p

structure for all p 6= 2 in terms of the eigenvalues.

What about p = 2? Is the Sylow-2 group uniquely determined by the
eigenvalues?

Theorem

There is an isomorphism of abelian groups

Z⊕ K (G ) ∼= Z[x1, . . . , xr ]/

x2
1 − 1, . . . , x2

r − 1, n −

n∑
i=1

∏
j

x
(vi )j
j
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Definitions and Previous Results

Previous results for p = 2

Theorem (Bai)

For G = Qn, the number of Sylow-2 cyclic factors is 2n−1 − 1.
Additionally, the number of (Z/2Z)’s in K (G ) is 2n−2 − 2b(n−2)/2c.

Theorem (Anzis-Prasad)

The size of the largest factor in Syl2(K (Qn)) is ≤ 2n+blog2 nc.

We will generalize Bai’s first result and Anzis-Prasad, but not Bai’s second
result.
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Results on the Number of Even Invariant factors
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Results on the Number of Even Invariant factors

Invariant factors

Definition

We define d(M) to be the number of Sylow-2 cyclic factors in K (G ).

Proposition (Parity Invariance)

Let our matrix of generators M have multiplicities (av1 , . . . av2r−1
) for each

nonzero vector in Fr
2. Then d(M) only depends on the parity of the

multiplicities of generators.

Example

If M =

1 0 0
0 1 0
0 0 1

 and M ′ =

1 0 0 1 1
0 1 0 1 1
0 0 1 1 1

 then

K (G (F3
2,M)) = (Z/2Z)⊕ (Z/8Z)⊕ (Z/24Z)

K (G (F3
2,M

′)) = (Z/6Z)⊕ (Z/24Z)⊕ (Z/120Z)
Jiyang Gao, Jared Marx-Kuo, Amal Mattoo, Vaughan McDonaldSandpile Groups August 3, 2018 10 / 41



Results on the Number of Even Invariant factors

Computing d(M)

Definition

A Cayley graph G (Fr
2,M) with M = {v1, . . . , vn} is called generic if∑n

i=1 vi 6= ~0. For example, Qn is generic for all n ≥ 1.

Theorem

If G (Fr
2,M) is generic, then d(M) = 2r−1 − 1.

Proof Sketch.

Consider (Z⊕ K (G ))⊗ (Z/2Z). d(M) is equal to the dimension of
K (G )⊗ (Z/2Z) as a vector space. Theorem’s condition gives us a nonzero
degree 1 term of the form ui which allows us to construct an explicit

isomorphism (Z⊕ K (G ))⊗ (Z/2Z)
(Z/2Z)−mod

∼= (Z/2Z)2r−1
.
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Results on the Number of Even Invariant factors

Conjectures

Conjecture

For a collection of generators, M, yielding a connected Cayley graph on
Fr

2, d(M) ≥ 2r−1 − 1 with equality occurring iff M is generic.

Conjecture

d(M) is odd unless all of the eigenvalues have the same power of 2, in
which case d(M) = 2n − 2.
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Reducing the Sandpile Group and Results for Small Cases

Reducing multiplicities in M

Given generators for V = Fr
2, we can express these generators in terms of

their multiplicities ~a = (av1 , . . . , av2r−1
), where the multiplicity, avi , denotes

the number of times the vector vi occurs. Here, we will use the binary
naming convention for vectors, so v3 = (1, 1, 0).

Lemma

Let G1 = G (Fr
2,M1) and G2 = G (Fr

2,M2) such that ~a2 = λ~a2 for λ ∈ N
and let {αi } be the invariant factors in the Smith Normal Form of L(G1).
Then

K (G1) =

2r∏
i=1

Z/αiZ =⇒ K (G2) =

2r∏
i=1

Z/(λαi )Z

Proof.

~a2 = λ~a2 =⇒ L(G2) = (λId) · L(G1). Now consider SNF of L(G2). (Note:
reduces analysis to gcd(~a) = 1 case.)

Jiyang Gao, Jared Marx-Kuo, Amal Mattoo, Vaughan McDonaldSandpile Groups August 3, 2018 14 / 41



Reducing the Sandpile Group and Results for Small Cases

Example

Consider the two matrices of generators:

M1 =

(
1 0 1
0 1 1

)
=⇒ K (G (F2

2,M1)) = (Z/1Z)⊕ (Z/4Z)⊕ (Z/4Z)

M2 =

(
1 1 0 0 1 1
0 0 1 1 1 1

)
=⇒ K (G (F2

2,M2)) = (Z/2Z)⊕ (Z/8Z)⊕ (Z/8Z)
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Reducing the Sandpile Group and Results for Small Cases

Invariance Under GL Action

Theorem

Given a matrix of generators on Fr
2

M =

 | | . . . |

v1 v2 . . . vn
| | . . . |


and an element g ∈ GLr (F2), define M ′ := g ·M, then G (Fr

2,M) and
G (Fr

2,M
′) have the same sandpile group.

Proof.

An element of GLr permutes the nonzero vertices of the graphs and the
edges in a consistent manner. This induces a graph isomorphism, and thus
a sandpile group isomorphism.
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Reducing the Sandpile Group and Results for Small Cases

Example

Assume av1 = av2 = av4 = av8 = 2. Let {i1, . . . , ik } denote
avi1 = · · · = avik = 2 and avj = 1 for all j 6∈ {1, 2, 4, 8} ∪ {i1, . . . , ik }:

{6, 10, 12}, {5, 9, 12}, {3, 5, 6}, {3, 9, 10}, {10, 12, 14},

{9, 12, 13}, {5, 6, 7}, {3, 10, 11}, {6, 12, 14}, {5, 9, 13}, {5, 12, 13},

{3, 6, 7}, {3, 9, 11}, {6, 10, 14}, {3, 5, 7}, {9, 10, 11}

All of the 16 previous cases yield

K (G ) = (Z/3Z)⊕ (Z/6Z)⊕ (Z/48Z)⊕ (Z/48Z)
⊕ (Z/528Z)⊕ (Z/6864Z)⊕ (Z/6864Z)
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Reducing the Sandpile Group and Results for Small Cases

Size of 2-Sylow component

By Kirchoff’s Matrix Tree Theorem

|K (G )| = det L(G )
i ,i

=
λ2 · · · λm

m

where λ1 = 0 is only 0 eigenvalue by convention. Here, m = 2r , so

|Syl2(K (G ))| =
1

2r
Pow2

 ∏
u∈Fr

2−{0}

λu,M


where for n = 2k · b with k-maximal, we define Pow2(n) := 2k and
v2(n) := k .
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Reducing the Sandpile Group and Results for Small Cases

Application: Determining Sandpile Group for r = 2

In the generic case for r = 2 with multiplicities ~a = (a1, a2, a3), we have
Syl2(K (G )) ∼= Z/2eZ with

λ2 = 2(a1 + a3), λ3 = 2(a2 + a3), λ4 = 2(a1 + a2)

~a ≡ (1, 0, 0) =⇒ e = v2(λ2λ3λ4) − 2 = v2(a2 + a3) + 1

~a ≡ (1, 1, 0) =⇒ e = v2(a2 + a3) + 1

by GL equivalence of generators, these handle all generic cases. Note the
symmetry of the 2 Sylow w.r.t. the eigenvalues
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Reducing the Sandpile Group and Results for Small Cases

Non-generic case for r = 2

Only case left is all odd. By parity invariance, suffices to check ~a ≡ (1, 1, 1)
to find d(M). d(M) = 2, so we need only determine largest 2-factor.
WLOG a1 + a2 ≡ 2 mod 4. Through algebraic manipulation we get that

Syl2(K (G )) ∼= Z/2eZ⊕ Z/2f Z

e = v2(a2 + a3) + 1, f = v2(a1 + a3) + 1
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Reducing the Sandpile Group and Results for Small Cases

Results for r = 3

Proposition

For r = 3, let d1 ≤ d2 ≤ · · · ≤ d7 be all the powers of 2 in the nonzero
eigenvalues of L(G ) for M reduced. Let ctop be the top Sylow-2 cyclic
factor. Then

ctop =

{
2d7+1 not all di equal

2d7 di = dj for all i , j ∈ {1, . . . , 7}

.

Theorem

Let G = G (F3
2,M) be generic, and with di as above. Then

Syl2(K (G )) =

{
Z/2d5−1Z× (Z/2d7+1Z)2 d6 = d7

Z/2d5Z× Z/2d6Z× Z/2d7+1Z d6 < d7
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Largest Cyclic Factors

Section 4

Investigating Largest Cyclic
Factors of the Sandpile Group
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Largest Cyclic Factors

Background Theory

In quotient ring of the hypercube sandpile group, Anzis and Prasad
showed that xj − 1 has maximal, finite, additive order for any
j ∈ {1, . . . , r }

We adapted proof to show that for any generating set (v1, . . . , vm),
the maximal order element of the form xvk − 1 has maximal finite
order. By changing variables, we can assume that x1 − 1 has maximal
finite order.

From definition of cokernel, ord(x1 − 1) is smallest C s.t.

∃v ∈ Z2r s.t. L(G )v = C (1,−1, 0, . . . , 0) = Cw

here we use the isomorphism:

Z2r ∼= Z[x1, . . . , xr ]/(x
2
1 − 1, . . . , x2

r − 1)
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Largest Cyclic Factors

Top Cyclic Factor

Theorem

Let d be the size of the largest cyclic factor in K (G ). Then
d | 2r−2lcm (λi : i ≥ 2).

Proof.

An adaptation of the argument from Anzis and Prasad.

Corollary

The largest 2-cyclic factor, Z/2eZ has bound

e ≤ blog2(n)c+ r − 1

which is sharp when G = Q2k ,Q2k+1.
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Largest Cyclic Factors

Proof of Corollary.

Apply theorem while noting that the largest eigenvalue is bounded by 2n,
so that

v2(d) ≤ v2

[
2r−2lcm (λi : i ≥ 2)

]
≤ r − 2 + blog2(2n)c = blog2(n)c+ r − 1

when G = Q2k , we use the fact that each eigenvalue is distinct with
largest value being 2k+1 and that blog2(2

k+1)c = k + 1.
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Largest Cyclic Factors

Main Result of Interest

We can actually improve the previous result:

Corollary

The order of xr − 1 in K (G ) is equal to minimum integer C , such that for

any S ⊆ [n], |S | ≥ 2, d ∈ F|S |
2 \ {0},

C

2r−|S |

∑
uS=d

1

λu
∈ Z
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Largest Cyclic Factors

Specialization to G = Qn

When G = Qn we know the eigenvalues and their multiplicities explicitly
from Bai’s paper, so searching for v ∈ Fn

2 and C minimal such that
L(Qn)v = Cw can be solved explicitly.

Theorem

For n ≥ 2, let cn be the size of the largest cyclic factor in K (Qn). Then,

v2(cn) = max{max
x<n

{v2(x) + x}, v2(n) + n − 1}.

Theorem

For n ≥ 3, the 2nd to the (n − 1)th largest cyclic factor in K (Qn) all have
the same size dn. Moreover,

v2(dn) = max
x<n

{v2(x) + x}.
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Largest Cyclic Factors

Remaining Conjectures

Conjecture

For n ≥ 3, let en be the size of the nth largest cyclic factor in K (Qn).
Then,

v2(en) = max{max
x<n−1

{v2(x) + x}, v2(n − 1) + n − 3}.

Similarly, for n ≥ 4, let fn be the size of the (n + 1)th largest cyclic factor
in K (Qn). Then,

v2(fn) = max
x<n−1

{v2(x) + x}.
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Future Areas of Investigation

Section 5

Future Areas of Research
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Future Areas of Investigation

Groebner Bases

Very difficult! Groebner bases must be redefined over Z, or in general
PIDs vs. fields

Recall we can order monomials xI =
∏

i∈I xi by the multi-indices they
are indexed by

For f =
∑

I aI xI = aI0xI0 +
∑

I 6=I0
aI xI with xI0 largest present,

LT (f ) = aI0xI0 , lm(f ) := xI0 , and lc(f ) = aI0
Assuming a novel (unstated) definition of groebner basis, we have...
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Future Areas of Investigation

Groebner Isomorphism

Theorem

For A a PID, and ideal s ⊆ A[x1, . . . , xn]. Let G = {gi }
t
i=1 be a groebner

basis for s. Let

Jxα := {i : lm(gi ) | xα, gi ∈ G }, IJxα := 〈{lc(gi ) : i ∈ Jxα}〉

Call IJxα the leading coefficient ideal. Under a few other conditions (which
hold for A = Z), there exists an isomorphism

φ : A[x1, . . . , xn]/〈G 〉→ A/IJxα,1 ⊕ · · · ⊕ A/IJxα,m
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Future Areas of Investigation

Example

Consider

M =


1 0 0 0 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


{LT (gi ) | gi ∈ G } ={x2

1 , x1x2, x
2
2 ,

x1x3, x
2
3 , 2x1x4, x

2
4 , 6x1, 24x2, 24x3, 480x4}

K (G (F4
2,M)) ∼= (Z/2Z)⊕ (Z/6Z)⊕ (Z/24Z)4 ⊕ (Z/480Z)

Note
Jx2x3 = {9, 10}, IJx2x3

= 24

Jx3x4 = {10, 11}, IJx3x4
= 24
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Future Areas of Investigation

Flaws with Groebner Basis Method

Sage’s implemented version of groebner basis is not general enough for
this isomorphism to always hold.

M ′ =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0


should yield same sandpile, but

{LT (gi ) | gi ∈ G } ={x2
1 , x1x2, x

2
2 , x1x3, x

2
3 , x1x4,

x2x4, 2x3x4, x
2
4 , 24x1, 24x2, 48x3, 60x4}

which does not match the sandpile group (no order 480 term!). Sage is
not to be trusted, but groebner bases could be useful in the future.
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Future Areas of Investigation

Matroid Contraction

For

M =

 | . . . |

v1 . . . vn
| . . . |


where each vi ∈ Fr

2, consider

M ′ = πr−1(M) =

 | . . . |

πr−1(v1) . . . πr−1(vn)
| . . . |


=

 | . . . |

v ′1 . . . v ′n
| . . . |
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Future Areas of Investigation

Continued

Gives rise to surjection

Z[x1, . . . , xr ]/

x2
1 − 1, . . . , x2

r − 1, n −

n∑
i=1

r∏
j=1

x
(vi )j
j


"xr=1"
� Z[x1, . . . , xr−1]/

x2
1 − 1, . . . , x2

r−1 − 1, n ′ −
n∑

i=1

r−1∏
j=1

x
(vi )j
j


Comparing torsion components: the cyclic factors in image can be
viewed as subgroups of a larger cyclic factor in the domain sandpile
group.

Process of evaluating at xr = 1 is matroid contraction.
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Future Areas of Investigation

Example

Consider

M =

 1 1 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 1

 7→ M ′ =

(
1 1 1 0 0 0
0 0 0 1 0 0

)

[K (G (F3
2,M)) = Z/4Z⊕ Z/48Z⊕ Z/240Z] 7→ [K (G (F2

2,M
′)) = Z/24Z]

From Groebner basis approach, we can think of each invariant factor being
generated by a monomial xI . In fact. . .

Jiyang Gao, Jared Marx-Kuo, Amal Mattoo, Vaughan McDonaldSandpile Groups August 3, 2018 36 / 41



Future Areas of Investigation

Continued

M M’

1 0 0

x1x2x3 1 NA

x1x3 1 NA

x1x2 1 NA

x1 12 3

x3 240 NA

x2 16 8

x2x3 1 NA

Notice that ord(x I )M ′ | ord(x I )M . Consistent with map of quotients

Indicates ”growth” of sandpile group
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Future Work and Acknowledgements

Future Work

Our data and preliminary results raise other questions:

Can we find a bound from below the top cyclic factor of the sandpile
group in terms of r , n? We have one for the cube, but not in general.

Can we implement the novel definition of groebner bases for PIDs as
described by Franz Pauer in his work ”Groebner basis with coefficients
in rings”?

Can we show the sandpile group of a Cayley graph only depends on
the set of eigenvalues, and not by their indexing set?

Is there a larger pattern to the number of even invariant factors?

Can we describe r = 3 in full generality? We have conjecture for all
the cases except all odd parities

Maybe r = 4 as well?

Unfortunately our funding has run out, so the world may never know. . .

Jiyang Gao, Jared Marx-Kuo, Amal Mattoo, Vaughan McDonaldSandpile Groups August 3, 2018 38 / 41



Future Work and Acknowledgements
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Future Work and Acknowledgements

The End!
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Future Work and Acknowledgements

Questions?
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