### Resistor Networks in a Punctured Disk

Yulia Alexandr Brian Burks Patty Commins

August 3, 2018

### Overview

- Background Definitions and Results
  - Resistor Networks and Inverse Problem
  - Known Results: Circular Planar Resistor Networks

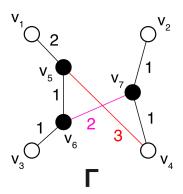
Resistor Networks on a Punctured Disk

Conjectures

### Resistor Networks

#### **Definition**

A resistor network is a finite graph (V, E) with a specified set  $B \subseteq V$  of boundary vertices and a real non-negative conductance  $c_e$ , for each  $e \in E$ . The remaining vertices, I = V - B, are called internal vertices.



### Kirchoff Matrix

#### **Definition**

The Kirchoff Matrix  $K(\Gamma)$  of a resistor network  $\Gamma$  is the unique matrix with  $K(\Gamma)_{ij}$  equal to the sum of conductances of edges between i and j and row sums equal to 0.

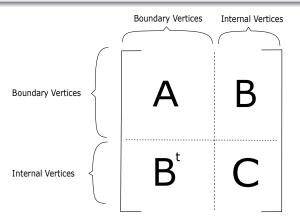
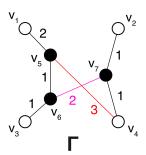


Figure: We divide the Kirchoff Matrix into 4 submatrices

# Example



$$K(\Gamma) = \begin{bmatrix} -2 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -4 & 3 & 0 & 1 \\ 2 & 0 & 0 & 3 & -6 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -4 & 2 \\ 0 & 1 & 0 & 1 & 0 & 2 & -4 \end{bmatrix}$$

### Response Matrix

#### Definition

A potential function assignment to the boundary vertices of  $\Gamma$  induces a net current at boundary vertices. This may be represented by the *response* matrix of  $\Gamma$ ,  $\Lambda(\Gamma)$ .

### Response Matrix

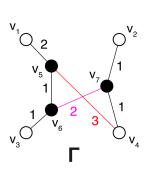
#### **Definition**

A potential function assignment to the boundary vertices of  $\Gamma$  induces a net current at boundary vertices. This may be represented by the *response matrix* of  $\Gamma$ ,  $\Lambda(\Gamma)$ .

The Response Matrix can be calculated in terms of the Kirchoff matrix:

$$\Lambda = A - BC^{-1}B^t$$

# Example



$$K(\Gamma) = \begin{bmatrix} -2 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -4 & 3 & 0 & 1 \\ 2 & 0 & 0 & 3 & -6 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -4 & 2 \\ 0 & 1 & 0 & 1 & 0 & 2 & -4 \end{bmatrix}$$

$$\Lambda(\Gamma) = \begin{bmatrix} -\frac{22}{17} & \frac{1}{17} & \frac{2}{17} & \frac{19}{17} \\ \frac{1}{17} & -\frac{7}{17} - \frac{1}{4} & \frac{3}{17} & \frac{3}{17} + \frac{1}{4} \\ \frac{2}{17} & \frac{3}{17} & -\frac{11}{17} & \frac{6}{17} \\ \frac{19}{17} & \frac{3}{17} + \frac{1}{4} & \frac{6}{17} & -\frac{28}{17} - \frac{1}{4} \end{bmatrix}$$

7 / 40

### Inverse Problem

#### Inverse Problem

Given a resistor network  $\Gamma$  without labeled conductances and  $\Lambda(\Gamma)$ , when are we able to uniquely recover its conductances?

### Circular Planar Resistor Networks

Curtis, Ingerman, and Morrow solved the inverse problem for a special class of graphs known as circular planar resistor networks (cprns)

#### Definition

A *circular planar resistor network* is a resistor network that can be embedded in a disk so that it is planar with all boundary vertices are on the boundary of the disk.

### Circular Planar Resistor Networks

#### Definition

A circular planar resistor network is a resistor network that can be embedded in a disk so that it is planar with all boundary vertices are on the boundary of the disk.

### Example

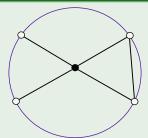
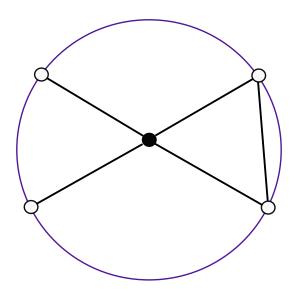


Figure: A cprn



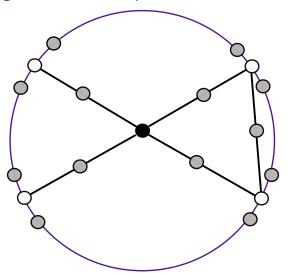


Figure: Add in new vertices

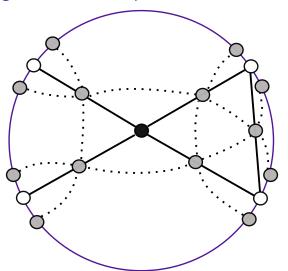


Figure: Connect Edges

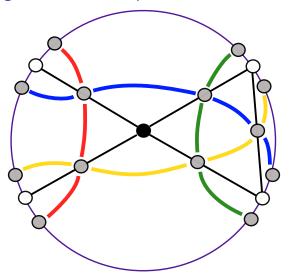


Figure: 4 Strands of the Medial Graph

# **Z-Sequence**

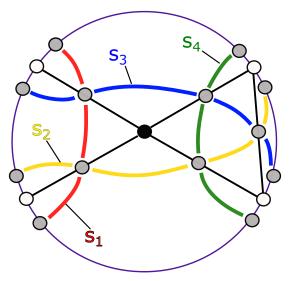


Figure: The z-sequence of this network is 1 2 3 1 4 2 3 4

#### Definition

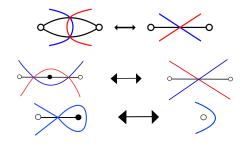
Call two resistor networks  $\Gamma$  and  $\Gamma'$  electrically equivalent if the following holds:

- For every assignment of conductances to  $\Gamma$ , there exists an assignment of conductances to  $\Gamma'$  such that  $\Lambda(\Gamma) = \Lambda(\Gamma')$ .
- For every assignment of conductances to  $\Gamma'$ , there exists an assignment of conductances to  $\Gamma$  such that  $\Lambda(\Gamma) = \Lambda(\Gamma')$ .

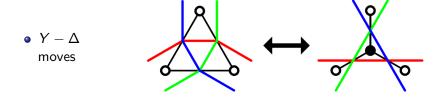
### Local Transformations

The following transformations can be done without affecting the response matrix:

- Parallel Reduction
- Series Reduction
- Pendant Removal



# Local Transformations (continued)



### Critical cprns

### Defnition

Call a cprn *critical* if it is not electrically equivalent to any graph with fewer edges.

### Theorem (Curtis, Ingerman, Morrow)

A cprn is critical if and only if it satisfies the following medial graph conditions:

- No medial strands form closed loops.
- No medial strands self-intersect.
- No two medial strands intersect more than once.

Furthermore, For two critical circular planar resistance networks  $\Gamma_1$  and  $\Gamma_2$ , the following conditions are equivalent:

- $\Gamma_1$  and  $\Gamma_2$  are electrically equivalent.
- $\Gamma_1$  and  $\Gamma_2$  are related by  $Y \Delta$  moves.
- $\Gamma_1$  and  $\Gamma_2$  share a z-sequence.

### Answer to Inverse Problem: CPRN Case

#### Theorem

We can uniquely recover the conductances of a cprn if and only if it is critical. Additionally, every cprn can be transformed to a critical cprn through a sequence of the defined local moves.

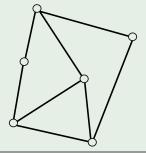
### Resistor Networks on a Punctured Disk

We worked towards expanding on Curtis, Ingerman, and Morrow's results by examining a new class of resistor networks.

#### **Definition**

A Resistor Network on a Punctured Disk (rnpd) is a resistor network that can be embedded in a disk so that it is planar, and all boundary vertices but one (the *interior boundary vertex*) are on the boundary of the disk.

### Example



# The Medial Graph and Z-sequences for RNPDs

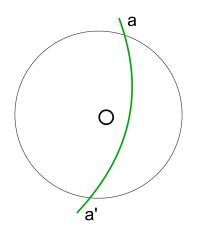
#### Definition

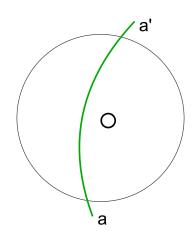
The *medial graph for an rnpd* is the medial graph of the cprn that results from treating the interior boundary vertex as internal.

#### **Definition**

The z-sequence for an rnpd is defined similarly as for cprns, with a slight modification. In the medial graph, we label one endpoint of each strand s with an s', such from the perspective of the interior boundary vertex the strand travels clockwise from s to s'. Additionally, if a strand s contains a self-intersection, underline s'.

# Z-sequence Illustration





# Example

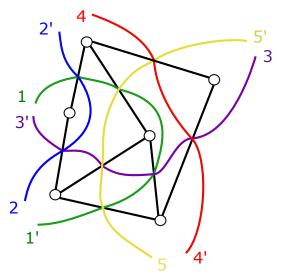


Figure: Z-Sequence: 1' 2 3' 1 2' 4 5' 3 3 4' 5

### Irreducible RNPD results

### **Definition**

We call an rnpd *irreducible* if it is not electrically equivalent to an rnpd with fewer edges.

#### Theorem

In any irreducible rnpd,

- No medial strand is a closed circle.
- Every medial lens and medial loop contains the interior boundary vertex.
- Every strand intersects itself at most once.
- At most one strand contains a self-intersection.
- Every pair of strands intersects at most twice.

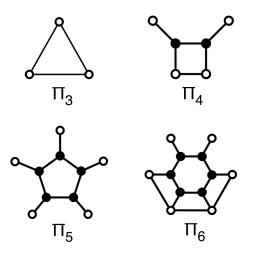
### Irreducible RNPD results

#### Theorem

Two irreducible rnpds share a z-sequence if and only if they are related by  $Y-\Delta$  moves

### 4-Periodic Graphs

We define an infinite family of cprns called 4-periodic graphs

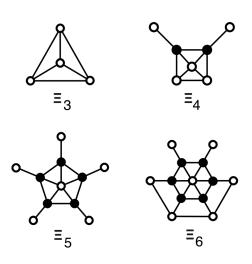


### 4-Periodic Graphs

### Properties of 4-periodic graphs:

- Critical cprns with z-sequence  $1 \ 2 \ \cdots \ n \ 1 \ 2 \ \cdots \ n$  (Electrically equivalent to special network in cprn case:  $\Sigma_n$ )
- Maximal critical cprns

We construct a new family of graphs known as *spider graphs* from 4-periodic graphs



#### Theorem

Spider Graphs are recoverable

#### Theorem

Spider Graphs are recoverable

#### Proof Idea

#### Terms:

- Boundary Edge: An edge connecting two boundary vertices
- Boundary Spike: An edge connecting an internal vertex to a boundary vertex of degree 1
- We say  $P,Q\subseteq B$  form a connection (P,Q) if |P|=|Q|=k and there exist k disjoint paths through internal vertices connecting each  $p\in P$  to a  $q\in Q$

#### Theorem

Spider Graphs are recoverable

### Proof Idea

Known for cprns: If deleting or contracting a boundary edge or spike breaks some connection, we can recover the conductance of that edge or spike from the response matrix.

We generalized this result for rnpds by restricting P and Q to not contain the interior boundary vertex.

#### Theorem

### Spider Graphs are recoverable

#### Proof Idea

Deleting any boundary edge or boundary spike in our spider graph results in a broken connection (because 4-periodic graphs are critical).

We can delete and contract boundary edges and spikes one by one, until we are left with a *star graph*, which is trivially recoverable.



Figure: Star Graph

# Sufficient Condition for Recoverability

We can use the same process to generalize our result for Spider Graphs to a much larger family of rnpds:

#### Theorem

Let  $\Gamma$  be any critical cprn. Let  $\Gamma'$  be the result of inserting a star graph into one of the faces of  $\Gamma$ . Then,  $\Gamma'$  is a recoverable rnpd.

# Necessary Condition for Recoverability of RNPDs

### • Algorithm:

• For rnpd  $\Gamma$ : Remove interior boundary vertex and change all its neighbors to boundary vertices. Repeat process for each newly created interior boundary vertex until you get a cprn. If the original rnpd was recoverable, then the resulting cprn is.

### Additional Local Moves for RNPDs

The following moves can be done in a way that does not affect the response matrix:

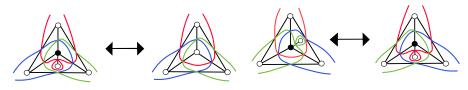


Figure: Antenna Absorption

Figure: Antenna Jumping

### Additional Local Moves for RNPDs

The following are local move equivalences that alter *z*-sequences.

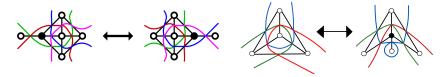


Figure: Square Jump

Figure: Generalized Antenna Absorption

### Conjectures

- An rnpd is recoverable if and only if it is irreducible (in which case we'd have a natural definition of critical).
- The moves described in the talk are sufficient to describe all electrical equivalences of rnpds.

### References



E.B. Curtis, D. Ingerman, J.A. Morrow (1998)

Circular Planar Graphs and Resistor Networks

Linear Algebra and its Applications 283, pgs 115 - 150

# Questions?