Ice Models and Classical Groups

Yulia Alexandr ${ }^{1}$ Patricia Commins ${ }^{2}$ Alexandra Embry ${ }^{3}$ Sylvia Frank ${ }^{4}$ Yutong Li ${ }^{5}$ Alexander Vetter ${ }^{6}$

${ }^{1}$ Wesleyan University
${ }^{2}$ Carleton College
${ }^{5}$ Indiana University
${ }^{4}$ Amherst College
${ }^{5}$ Haverford College
${ }^{6}$ Villanova University

July 30th, 2018
(1) GL(n) Case
(2) $\mathrm{SO}(2 n+1)$ Case

- Sundaram Tableaux
- Koike-Terada Tableau
- Proctor Tableaux

GL(n) Case: Tableaux

- Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$
- Our alphabet is $(1,2, \cdots, n)$
- To form a Young tableau, fill the tableaux with elements of the alphabet such that:
(1) Weakly increasing along rows
(2) Strictly increasing along
 columns

GL(n) case: Tableaux Example

Let $\lambda=(4,2,1)$.
Our tableau will be of the shape:

A possible filling:

1	1	2	3
2	3		
3			
y			

Gelfand-Tsetlin Patterns

$$
G L(n) \downarrow G L(n-1)
$$

Gelfand-Tsetlin pattern rules:
(1) Rows weakly decreasing
(2) Interleaving

1	1	1	3	3
2	2	2		
3	3			

5		3	
	3		3
		3	

Gelfand-Tsetlin Patterns

Gelfand-Tsetlin pattern rules:
(1) Rows weakly decreasing
(2) Interleaving

Gelfand-Tsetlin Patterns

Gelfand-Tsetlin pattern rules:
(1) Rows weakly decreasing
(2) Interleaving

1	1	1
2	2	2

5		3		2
	3		3	
		3		

Gelfand-Tsetlin Patterns

Gelfand-Tsetlin pattern rules:
(1) Rows weakly decreasing
(2) Interleaving

1	1	1	3	3
2	2	2		
3	3			

5		3	2	
	3		3	
		3		

Strict Gelfand-Tsetlin Patterns

$$
\rho=(n-1, \ldots, 0)
$$

Tokuyama's Formula

$$
\sum_{T \in S G T(\lambda+\rho)}(1+t)^{S(T)} t^{L(T)} z^{w t(T)}=\prod_{i<j}\left(z_{i}+t z_{j}\right) s_{\lambda}\left(z_{1}, \ldots z_{n}\right)
$$

$G L(n)$ Shifted Tableaux

1	1	1	2	3	3	3
	2	2	2	3		
	3					
	3	3				

$G L(n)$ Ice Models: Boundary Conditions

GL(n) Ice Models: Gelfand-Tsetlin Pattern 1

$G L(n)$ Ice Models: Gelfand-Tsetlin Pattern 2

GL(n) Ice Models: Gelfand-Tsetlin Pattern 3

$G L(n)$ Ice Models: Gelfand-Tsetlin Pattern 4

GL(n) Ice Models: Gelfand-Tsetlin Pattern 5

Boltzmann Weights

Figure: Boltzmann weights for Gamma Ice

Introduction

Branching Rule for Sundaram Tableaux

$$
\begin{gathered}
s_{\lambda}^{s o}=\sum_{\mu \subseteq \lambda} s_{(\mu)}^{s p} \\
S_{p}(2 n) \downarrow S_{p}(2 n-2) \otimes U(1)
\end{gathered}
$$

Sundaram Tableaux

Partition: $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{n} \geq 1\right)$
Alphabet: $\{1<\overline{1}<\cdots<n<\bar{n}<0\}$
(1) Rows are weakly increasing.
(2) Columns are strictly increasing, but 0 s do not violate this condition.
(3) No row contains multiple 0s.
(- In row i , all entries are greater than or equal to i .

1	$\overline{1}$	0
2	0	

Sundaram Gelfand-Tsetlin-type patterns

Gelfand-Tsetlin-type pattern rules:
(1) Rows weakly decreasing
(2) Interleaving
(3) Difference between top rows ≤ 1
(- Even rows cannot end in 0

Sundaram Strict Gelfand-Tsetlin-Type Patterns

Sundaram Shifted Tableaux

5		3		0
	4		3	
	3		2	
		2		
				1

Sundaram Ice Models: Boundary Conditions

Figure:

Sundaram Ice Models: Modeling GT-Type Pattern

Sundaram Ice Models: Full Model

Sundaram Boltzmann Weights

 Even rows						$\Delta \text { Ice }$
1	$t z_{i}$	1	z_{i}	$z_{i}(t+1)$	1	
 Odd rows						Γ Ice
1	z_{i}^{-1}	t	z_{i}^{-1}	$z_{i}^{-1}(t+1)$	1	

Figure: Boltzmann weights for Δ and Γ Sundaram Ice

Figure: Boltzmann Weights for Sundaram Bends

Sundaram Botlzmann Weights

Alternate Bend Weights for B Deformation:

$$
\mathcal{Y}_{i}^{-1} \cdot\left(z_{i}^{-n+i-1} \frac{\left(1+t z_{i}\right)}{\left(1+t z_{i}^{2}\right)}\right) \quad \text { ¢ } t \cdot\left(z_{i}^{-n+i-1} \frac{\left(1+t z_{i}\right)}{\left(1+t z_{i}^{2}\right)}\right)
$$

Branching Rule for Koike-Terada Tableaux

$$
S O(2 n+1) \downarrow S O(2 n-1) \otimes G L(1)
$$

Koike-Terada Tableaux

Partition: $\lambda=\left(\lambda_{n} \geq \lambda_{n-1} \geq \cdots \geq \lambda_{1} \geq 0\right)$
Alphabet: $\{1<\overline{1}<\overline{\overline{1}}<2<\overline{2}<\overline{\overline{2}} \cdots n<\bar{n}<\bar{n}\}$.
Let $T_{i, j}$ be the entry of the tableau in the i-th row and the j-th column. Then:
(1) Rows are weakly increasing
(2) Columns are strictly increasing
(c) k can only appear in $T_{k, 1}$
(-) $T_{i, j} \geq i$

$\overline{1}$	$\overline{\overline{1}}$	$\overline{2}$	$\overline{2}$	$\overline{\overline{2}}$
2	$\overline{2}$	$\overline{\overline{2}}$		

Koike-Terada Gelfand-Tsetlin-type pattern

(1) The pattern has $3 n$ rows. Label these rows $1, \overline{1}, \overline{\overline{1}}, \cdots, n, \bar{n}, \overline{\bar{n}}$, starting from the bottom of the pattern. Rows i, \bar{i}, and $\overline{\bar{i}}$ must have i entries.
(3) $a_{i, j-1} \geq a_{i, j} \geq a_{i, j+1} \geq 0$
(3) $a_{i-1, j} \geq a_{i, j} \geq a_{i-1, j+1}$
(1) Row i must end in a 1 or a 0 (for $i \in\{1, \cdots, n\}$)
(-) Each entry in row $\overline{\bar{i}}$ (for $i \in\{1, \cdots, n\}$) must be left-leaning.

5		3				$\overline{\overline{2}}$
	4		2			$\overline{2}$
		2		1		2
			2			$\overline{1}$
				1		$\overline{1}$
					0	1

Koike-Terada Shifted Tableaux

(1) Rows are weakly increasing.
(2) Columns are weakly increasing.
(Diagonals are strictly increasing.
(0) The first entry in row k is k, \bar{k} or $\overline{\bar{k}}$.

Koike-Terada Ice: Bends and Ties

To connect rows $\overline{\bar{k}}$ and \bar{k} for each $k \in\{1, \cdots, n\}$:

For rows k , where $\mathrm{k} k \in\{1, \cdots, n\}$, there are 3 possible "ties":

Note: Along with ties U, D and O , rows $\mathrm{k} k \in\{1, \cdots, n\}$ are three-vertex models, the vertices being SW, NW, and NE.

Koike-Terada Ice: Boundary Conditions

The following depicts the boundary conditions for an ice model with top row $\lambda=(2,1)$.

Koike-Terada Ice: Full Model

$\begin{array}{lllll}2 & & 1 & & \\ & 2 & & 1 & \\ & 2 & & 0 \\ & & 2 & \\ & & & 2\end{array}$
1

Theorem (1)
The following are equivalent:
(1) Koike-Terada Gelfand-Tsetlin-type pattern rules 4 and 5 are satisfied.
(2) Each ice row labeled $k \in\{1, \cdots, n\}$ has no NS, SE, or EW configurations, and tie boundary conditions are satsified.

Branching Rule for Proctor Tableaux

$S O(2 n+1) \downarrow S O(2 n-1) \otimes S O(2)$

Proctor Tableaux

(1) Rows are weakly increasing
(2) Columns are strictly increasing
(3) Follows the 2 c orthogonal condition
(9) Follows the $2 m$ protection condition

Proctor Tableaux

2c Orthogonal Condition: Less than or equal to 2 c entries that are less than or equal to 2 c in the first two columns.

1	1	3	5
x	3	4	
5			

Proctor Tableaux

2c Orthogonal Condition: Less than or equal to 2 c entries that are less than or equal to 2 c in the first two columns.

1	1	3	5
\times	3	4	
5			

1	1	3	5
3	3	4	
5			

Proctor Tableaux

$2 m$ Protection Condition: For a $2 m-1$ entry in the first column, specified $2 m$ entries must be "protected" by $2 \mathrm{~m}-1$ entries.

1	1		
3	\times	4	
5			

Proctor Tableaux

$2 m$ Protection Condition: For a $2 m-1$ entry in the first column, specified $2 m$ entries must be "protected" by $2 \mathrm{~m}-1$ entries.

1	1	3	5
3	3	4	
5			

Proctor Gelfand-Tsetlin-type Patterns

$\mathrm{n}=4$ shape

Proctor Gelfand-Tsetlin-type Patterns

2c Orthogonal Condition

| 6 | | 5 | | 3 | | 1 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| | 6 | | 5 | | 3 | | 1 | | | | | $=2+2+2+1(8)$ |
| | 6 | | 4 | | 2 | | 1 | | | | | |
| | | 4 | | 3 | | 1 | | 0 | | | $=2+2+1$ | (6) |
| | | | 4 | | 2 | | 1 | | 0 | | | |
| | | | | 2 | | 1 | | 0 | | 0 | $=2+1$ | (4) |
| | | | | | 2 | | 1 | | 0 | | | |
| | | | | | | 1 | | 0 | | | $=1$ | |

Proctor Gelfand-Tsetlin-type Patterns

$2 m$ Protection Condition:
Add in 0 s to make all rows length n

Proctor Gelfand-Tsetlin-type Patterns

$2 m$ Protection Condition:
Identify non-left-leaning 0 s in even rows

Proctor Gelfand-Tsetlin-type Patterns

$2 m$ Protection Condition

Check Example:

- For 0 , if $2>1$
- Check:
- $2 \geq 2$
- $2>1$
- $0 \leq 1$

Proctor Strict Gelfand-Tsetlin-type Patterns

Change to be Strict and check Orthogonal Condition:

Acknowledgements:

- Prof. Ben Brubaker and Katy Weber
- University of Minnesota, Twin Cities REU
- NSF

Questions?

