Ice Models and Classical Groups

Yulia Alexandr¹

Patricia Commins² Alexandra Embry³ Yutong Li⁵ Alexander Vetter⁶

¹Wesleyan University

²Carleton College

⁵Indiana University

⁴Amherst College

⁵Haverford College

⁶Villanova University

July 30th, 2018

Alexandr et al.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sylvia Frank⁴

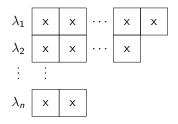
GL(n) Case

SO(2n+1) Case

- Sundaram Tableaux
- Koike-Terada Tableau
- Proctor Tableaux

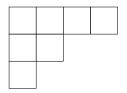
GL(n) Case: Tableaux

- Let $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n)$
- Our alphabet is $(1, 2, \cdots, n)$
- To form a Young tableau, fill the tableaux with elements of the alphabet such that:
 - Weakly increasing along rows
 - Strictly increasing along columns



GL(n) case: Tableaux Example

Let $\lambda = (4, 2, 1)$. Our tableau will be of the shape:



A possible filling:

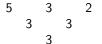
1	1	2	3
2	3		
3			

 $GL(n) \downarrow GL(n-1)$

Gelfand-Tsetlin pattern rules:

- Rows weakly decreasing
- Interleaving

1	1	1	3	3
2	2	2		
3	3			



・ロト ・回ト ・ヨト

Gelfand-Tsetlin pattern rules:

- Rows weakly decreasing
- Interleaving

1	1	1
---	---	---

5 3 2 3 3 3

Gelfand-Tsetlin pattern rules:

- Rows weakly decreasing
- Interleaving

1	1	1
2	2	2

5 3 2 3 3 3

・ロト ・回ト ・ヨト ・

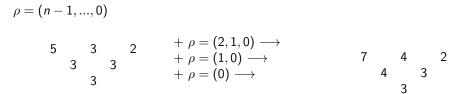
Gelfand-Tsetlin pattern rules:

- Rows weakly decreasing
- Interleaving

1	1	1	3	3
2	2	2		
3	3			

5 3 2 3 3 3

Strict Gelfand-Tsetlin Patterns



Tokuyama's Formula

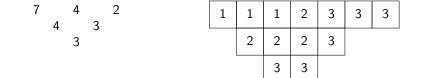
$$\sum_{T \in SGT(\lambda + \rho)} (1 + t)^{S(T)} t^{L(T)} z^{wt(T)} = \prod_{i < j} (z_i + tz_j) s_{\lambda}(z_1, ... z_n)$$

Alexandr et al.

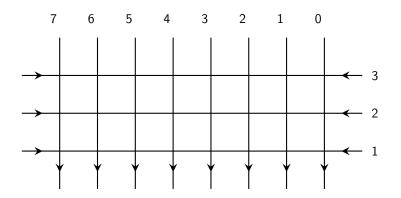
▲ 글 → 글 → へ へ
 → July 30th, 2018
 10 / 48

イロン イロン イヨン イヨン

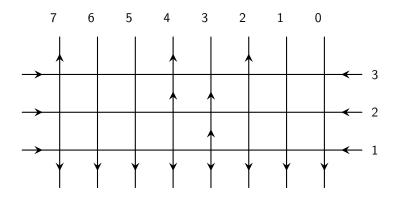
GL(n) Shifted Tableaux

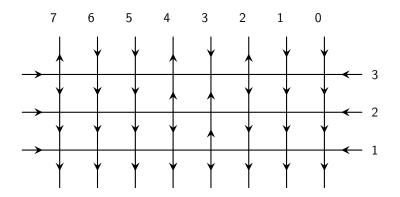


GL(n) Ice Models: Boundary Conditions

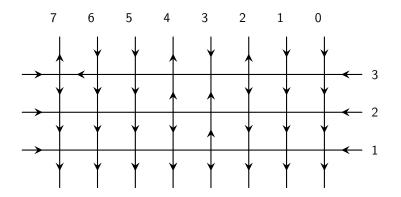


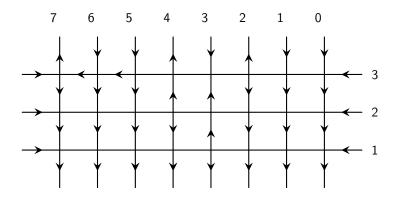
・ロト ・回ト ・ヨト ・ヨト



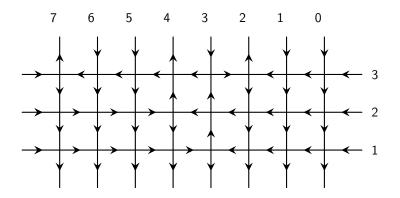


(ロ) (回) (三) (三)





(ロ) (回) (三) (三)



・ロト ・回ト ・ヨト ・

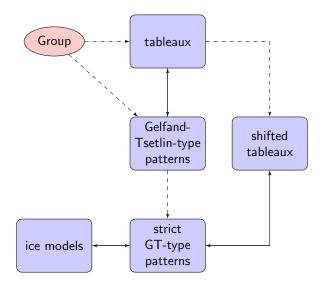
Boltzmann Weights

$j \downarrow$	j j	$j \xrightarrow{\uparrow}$	$j \downarrow$	$j \downarrow$	
1	zi	tj	zi	$z_i(t_i+1)$	1

Figure: Boltzmann weights for Gamma Ice

・ロト ・回ト ・ヨト ・ヨト

Introduction



3.0

・ロト ・回ト ・ヨト ・

Branching Rule for Sundaram Tableaux

$$egin{aligned} s^{so}_\lambda &= \sum_{\mu \subseteq \lambda} s^{sp}_{(\mu)} \ & Sp(2n) \downarrow Sp(2n-2) \otimes U(1) \end{aligned}$$

Alexandr et al.

・ロト ・回ト ・ヨト ・

Sundaram Tableaux

Partition: $\lambda = (\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_n \ge 1)$ Alphabet: $\{1 < \overline{1} < \dots < n < \overline{n} < 0\}$

- Rows are weakly increasing.
- Olumns are strictly increasing, but 0s do not violate this condition.
- On the second second
- In row i, all entries are greater than or equal to i.

1	ī	0
2	0	

(日) (同) (日) (日)

Sundaram Gelfand-Tsetlin-type patterns

Gelfand-Tsetlin-type pattern rules:

- Rows weakly decreasing
- Interleaving
- $\textcircled{O} \ \ \mathsf{Difference \ between \ top \ rows} \leq 1$
- Even rows cannot end in 0

1	ī	0	3	3	2	1
2	0				2	2

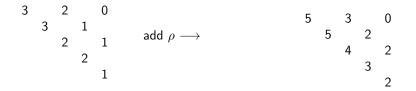
0

1

1

()

Sundaram Strict Gelfand-Tsetlin-Type Patterns



・ロン ・回 と ・ ヨン・

Sundaram Shifted Tableaux

1	ī	2	Ī	0
	2	2	2	

・ロト ・回ト ・ヨト ・

Sundaram Ice Models: Boundary Conditions

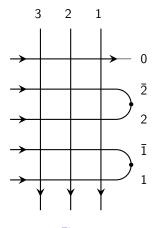
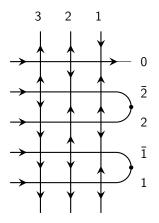


Figure:

exanc	

・ロン ・回 と ・ ヨン・

Sundaram Ice Models: Modeling GT-Type Pattern



・ロト ・回ト ・ヨト ・

Sundaram Ice Models: Full Model



・ロン ・回 と ・ ヨン・

Sundaram Boltzmann Weights

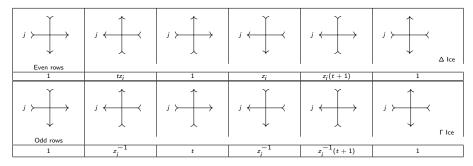


Figure: Boltzmann weights for Δ and Γ Sundaram Ice

Figure: Boltzmann Weights for Sundaram Bends

Sundaram Botlzmann Weights

Alternate Bend Weights for B Deformation:

$$\sum z_i^{-1} \cdot \left(z_i^{-n+i-1} \frac{(1+tz_i)}{(1+tz_i^2)} \right) \qquad \qquad \sum t \cdot \left(z_i^{-n+i-1} \frac{(1+tz_i)}{(1+tz_i^2)} \right)$$

・ロト ・ 日 ・ ・ 回 ・ ・

Branching Rule for Koike-Terada Tableaux

$SO(2n+1) \downarrow SO(2n-1) \otimes GL(1)$

・ロト ・回ト ・ヨト ・ヨ

Koike-Terada Tableaux

Partition: $\lambda = (\lambda_n \ge \lambda_{n-1} \ge \cdots \ge \lambda_1 \ge 0)$ Alphabet: $\{1 < \overline{1} < \overline{1} < \overline{2} < 2 < \overline{2} < \overline{\overline{2}} \cdots n < \overline{n} < \overline{\overline{n}}\}.$

- Let $T_{i,j}$ be the entry of the tableau in the *i*-th row and the *j*-th column. Then:
 - Rows are weakly increasing
 - Olumns are strictly increasing
 - 3 k can only appear in $T_{k,1}$
 - $\bullet T_{i,j} \geq i$

ī	$\overline{\overline{1}}$	2	2	$\overline{\overline{2}}$
2	2	$\overline{\overline{2}}$		

Koike-Terada Gelfand-Tsetlin-type pattern

- ② $a_{i,j-1} ≥ a_{i,j} ≥ a_{i,j+1} ≥ 0$
- **③** $a_{i-1,j} ≥ a_{i,j} ≥ a_{i-1,j+1}$
- Solution Row i must end in a 1 or a 0 (for $i \in \{1, \dots, n\}$)
- So Each entry in row \overline{i} (for $i \in \{1, \dots, n\}$) must be left-leaning.

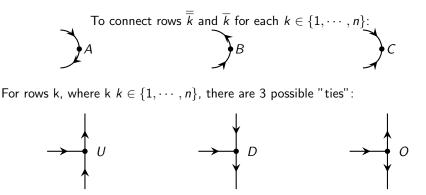
(日) (同) (日) (日)

Koike-Terada Shifted Tableaux

- Rows are weakly increasing.
- Olumns are weakly increasing.
- Oiagonals are strictly increasing.
- The first entry in row k is k, \overline{k} or $\overline{\overline{k}}$.

Image: A math a math

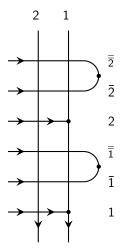
Koike-Terada Ice: Bends and Ties



Note: Along with ties U, D and O, rows k $k \in \{1, \dots, n\}$ are three-vertex models, the vertices being SW, NW, and NE.

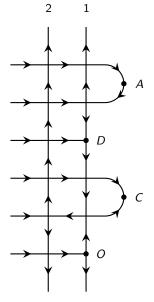
Koike-Terada Ice: Boundary Conditions

The following depicts the boundary conditions for an ice model with top row $\lambda = (2, 1)$.



・ロン ・回 と ・ ヨン・

Koike-Terada Ice: Full Model



・ロト ・回ト ・ヨト ・

Theorem (1)

The following are equivalent:

- Soike-Terada Gelfand-Tsetlin-type pattern rules 4 and 5 are satisfied.
- Solution 28 Each ice row labeled $k \in \{1, \dots, n\}$ has no NS, SE, or EW configurations, and tie boundary conditions are satsified.

イロト イ団ト イヨト イヨト

Branching Rule for Proctor Tableaux

$SO(2n+1) \downarrow SO(2n-1) \otimes SO(2)$

- Rows are weakly increasing
- Olumns are strictly increasing
- Sollows the 2c orthogonal condition
- Follows the 2*m* protection condition

2c Orthogonal Condition: Less than or equal to 2c entries that are less than or equal to 2c in the first two columns.

1	1	3	5
x	3	4	
5			

-

2c Orthogonal Condition: Less than or equal to 2c entries that are less than or equal to 2c in the first two columns.

1	1	3	5
x	3	4	
5			
_		-	_
1	1	3	5
1 3	1 3	3 4	5

2m Protection Condition: For a 2m-1 entry in the first column, specified 2m entries must be "protected" by 2m-1 entries.

1	1	х	5
3	х	4	
5			

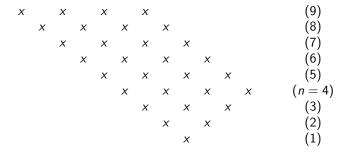
イロト イヨト イヨト イヨ

2m Protection Condition: For a 2m-1 entry in the first column, specified 2m entries must be "protected" by 2m-1 entries.

1	1	х	5
3	х	4	
5			
1	1	3	5
3	3	4	
5			

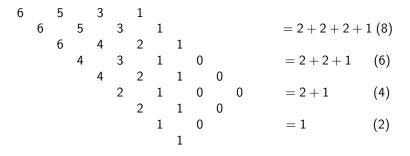
イロト イヨト イヨト イヨト

n=4 shape



イロト イヨト イヨト イ

2c Orthogonal Condition



イロト イヨト イヨト イ

2m Protection Condition:

Add in 0s to make all rows length n

-

2m Protection Condition:

Identify non-left-leaning 0s in even rows

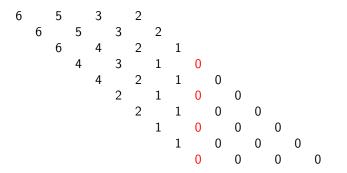
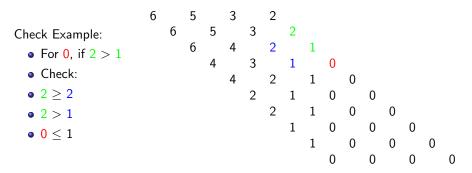


Image: A math a math

2m Protection Condition



Change to be Strict and check Orthogonal Condition:

Acknowledgements:

- Prof. Ben Brubaker and Katy Weber
- University of Minnesota, Twin Cities REU
- NSF

Questions?

Alexandr et al.