A Virtually Complete Classification of Virtual Complete Intersections in $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Jiyang Gao, Yutong Li, Amal Mattoo

University of Minnesota - Twin Cities REU 2018
1 August 2018
(1) Preliminaries

- Projective Space and Varieties
- Free and Virtual Resolutions
- Virtual Complete Intersections (VCIs)

(2) Determination of VCIs
- Overview
- VCI Existence Cases
- VCI Non-Existence
- Conditions on VCIs
- Conclusion

The Projective Space \mathbb{P}^{n}

Definition

A projective space \mathbb{P}^{n} over the field \mathbb{C} is the set of one-dimensional subspaces of the vector space \mathbb{C}^{n+1}.

- The coordinate ring of \mathbb{P}^{n} is $S=\mathbb{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
- Grading: Constants have degree 0 . Each x_{i} has degree 1 .

The Projective Space \mathbb{P}^{n}

Definition

A projective space \mathbb{P}^{n} over the field \mathbb{C} is the set of one-dimensional subspaces of the vector space \mathbb{C}^{n+1}.

- The coordinate ring of \mathbb{P}^{n} is $S=\mathbb{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
- Grading: Constants have degree 0. Each x_{i} has degree 1 .

The Projective Space \mathbb{P}^{n}

Definition

A projective space \mathbb{P}^{n} over the field \mathbb{C} is the set of one-dimensional subspaces of the vector space \mathbb{C}^{n+1}.

- The coordinate ring of \mathbb{P}^{n} is $S=\mathbb{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
- Grading: Constants have degree 0. Each x_{i} has degree 1 .

Definition

A projective variety $X \subset \mathbb{P}^{n}$ is the zero locus of a collection of homogeneous polynomials $f_{\alpha} \in \mathbb{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.

The Biprojective Space $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Definition

The biprojective space $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is the set of equivalence classes:

$$
\mathbb{P}^{1} \times \mathbb{P}^{1}:=\left\{\left(\left(a_{0}, a_{1}\right),\left(b_{0}, b_{1}\right)\right) \in \mathbb{C}^{2} \times\left.\mathbb{C}^{2}\right|_{\text {and }\left(b_{0}, b_{1}\right) \neq(0,0)} ^{\left(a_{0}, a_{1}\right) \neq(0,0)}\right\} / \sim
$$

$$
x \sim y \Longleftrightarrow x=\lambda y, \text { where } x, y \in \mathbb{P}^{1}, \lambda \in \mathbb{C}^{*}
$$

- Varieties \leftrightarrow zero locus of bihomogenous $f \in \mathbb{C}\left[x_{0}, x_{1}, y_{0}, y_{1}\right]$
- Multigrading: $\operatorname{deg}\left(x_{i}\right)=(1,0), \operatorname{deg}\left(y_{i}\right)=(0,1)$ ex. $x_{0}^{2} y_{0}+x_{1} x_{2} y_{1}$ has degree $(2,1)$.

The Biprojective Space $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Definition

The biprojective space $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is the set of equivalence classes:
$\mathbb{P}^{1} \times \mathbb{P}^{1}:=\left\{\left(\left(a_{0}, a_{1}\right),\left(b_{0}, b_{1}\right)\right) \in \mathbb{C}^{2} \times \mathbb{C}^{2} \left\lvert\, \begin{array}{c}\left(a_{0}, a_{1}\right) \neq(0,0) \\ \text { and }\left(b_{0}, b_{1}\right) \neq(0,0)\end{array}\right.\right\} / \sim$
$x \sim y \Longleftrightarrow x=\lambda y$, where $x, y \in \mathbb{P}^{1}, \lambda \in \mathbb{C}^{*}$

- Varieties \leftrightarrow zero locus of bihomogenous $f \in \mathbb{C}\left[x_{0}, x_{1}, y_{0}, y_{1}\right]$
- Multigrading: $\operatorname{deg}\left(x_{i}\right)=(1,0), \operatorname{deg}\left(y_{i}\right)=(0,1)$ ex. $x_{0}^{2} y_{0}+x_{1} x_{2} y_{1}$ has degree $(2,1)$.
- Irrelevant ideal: $B=\left\langle x_{0}, x_{1}\right\rangle \cap\left\langle y_{0}, y_{1}\right\rangle \leftrightarrow V(B)=\emptyset$
- Saturation: $I: B^{\infty}=\left\{s \in S \mid s B^{n} \subset I\right.$ for some $\left.n\right\}$

The Nullstellensatz

The Nullstellensatz establishes a correspondence between ideals and varieties:

Theorem

Let X be a non-empty variety with the coordinate ring S and irrelevant ideal B. If $I \subseteq S$ is a homogeneous ideal, then there is an inclusion-reversing bijective correspondence:
$\{V(I) \neq \emptyset\} \underset{V}{\stackrel{I}{\leftrightarrows}}\{$ radical homogeneous B-saturated ideals $\subset S\}$

- $V(I):=$ zero locus of all $f \in I$
- $I(V(I))=\sqrt{I}$

Varieties in $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Definition

$$
\mathbb{P}^{1} \times \mathbb{P}^{1}:=\left\{\left(\left(a_{0}, a_{1}\right),\left(b_{0}, b_{1}\right)\right) \in \mathbb{C}^{2} \times \mathbb{C}^{2} \left\lvert\, \begin{array}{c}
\left(a_{0}, a_{1}\right) \neq(0,0) \\
\left(b_{0}, b_{1}\right) \neq(0,0)
\end{array}\right.\right\} / \sim
$$

$[1: 0][0: 1][1: 1][1: 2][1: 3]$

Varieties in $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Definition

$$
\mathbb{P}^{1} \times \mathbb{P}^{1}:=\left\{\left(\left(a_{0}, a_{1}\right),\left(b_{0}, b_{1}\right)\right) \in \mathbb{C}^{2} \times \mathbb{C}^{2} \left\lvert\, \begin{array}{c}
\left(a_{0}, a_{1}\right) \neq(0,0) \\
\left(b_{0}, b_{1}\right) \neq(0,0)
\end{array}\right.\right\} / \sim
$$

$[1: 0][0: 1][1: 1][1: 2][1: 3]$

$X=([0: 1],[0: 1])$
$I=\left\langle x_{0}, y_{0}\right\rangle$

Varieties in $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Definition

$$
\mathbb{P}^{1} \times \mathbb{P}^{1}:=\left\{\left(\left(a_{0}, a_{1}\right),\left(b_{0}, b_{1}\right)\right) \in \mathbb{C}^{2} \times \mathbb{C}^{2} \left\lvert\, \begin{array}{c}
\left(a_{0}, a_{0}\right) \neq(0,0,0) \\
\left(b_{0}\right) \neq(0,0)
\end{array}\right.\right\} / \sim
$$

$[1: 0][0: 1][1: 1][1: 2][1: 3]$

$X=([0: 1],[0: 1]) \cup([1: 1],[1: 1])$
$I=\left\langle x_{0}, y_{0}\right\rangle \cap\left\langle x_{0}-x_{1}, y_{0}-y_{1}\right\rangle$

Free Resolution

Definition

A free resolution of a module M is an exact sequence of homomorphisms:

$$
0 \longleftarrow M \stackrel{\varphi_{0}}{\longleftarrow} F_{0} \stackrel{\varphi_{1}}{\longleftarrow} F_{1} \stackrel{\varphi_{2}}{\longleftarrow} F_{2} \longleftarrow \cdots,
$$

- $\operatorname{im} \varphi_{i+1}=\operatorname{ker} \varphi_{i}$ at each step
- every $F_{i} \cong R^{r_{i}}$ is a free module

Minimal Free Resolution

Definition

A free resolution is minimal if for every $\ell \geq 1$, the nonzero entries of the graded matrix of φ_{ℓ} have positive degree.

- For each $\ell>0, \varphi_{\ell}$ takes the standard basis of F_{ℓ} to a minimal generating set of $\operatorname{im}\left(\varphi_{\ell}\right)$.
- Unique up to isomorphism.
- Depends on geometry of points (configuration/cross ratios)

Virtual Resolution

Definition

A virtual resolution for an ideal I in the biprojective space $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is a free complex:

$$
0 \longleftarrow I \stackrel{\varphi_{0}}{\leftrightarrows} S \stackrel{\varphi_{1}}{\leftrightarrows} F_{1} \stackrel{\varphi_{2}}{\leftrightarrows} F_{2} \stackrel{\varphi_{3}}{\leftrightarrows} \cdots
$$

such that

- F_{i} are free modules for $i \geq 0$
- $\operatorname{ann}\left(\frac{\operatorname{ker}\left(\varphi_{i}\right)}{\operatorname{im}\left(\varphi_{i+1}\right)}\right) \supseteq B^{l}$
- $\operatorname{im}\left(\varphi_{1}\right): B^{\infty}=I: B^{\infty}$.

Complete and Virtual Complete Intersection

- X is a complete intersection if $I(X)$ has 2 generators.

$$
\begin{gathered}
X=\left(\begin{array}{l}
([0: 1],[1: 0]), \\
([1: 0],[1: 0]), \\
([0: 1],[0: 1]), \\
([1: 0],[0: 1])
\end{array}\right) \\
\Longrightarrow I(X)=\left\langle x_{0} x_{1}, y_{0} y_{1}\right\rangle
\end{gathered}
$$

Complete and Virtual Complete Intersection

- X is a complete intersection if $I(X)$ has 2 generators.

- Complete intersection \Longleftrightarrow min. free resolution is Koszul: $S^{1} \leftarrow S^{2} \leftarrow S^{1} \leftarrow 0$

Complete and Virtual Complete Intersection

- X is a complete intersection if $I(X)$ has 2 generators.

- Complete intersection \Longleftrightarrow min. free resolution is Koszul: $S^{1} \leftarrow S^{2} \leftarrow S^{1} \leftarrow 0$

Definition

An ideal I of points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is a virtual complete intersection (VCI) if I has a short virtual resolution that is Koszul.
In particular, $V(I)=V(f) \cap V(g)$.

VCI Examples

$S^{1} \leftarrow S^{2} \leftarrow S^{1} \leftarrow 0$
\Longrightarrow Complete intersection

$S^{1} \leftarrow S^{6} \leftarrow S^{8} \leftarrow S^{3} \leftarrow 0$
\Longrightarrow Not complete intersection

VCI Examples

$$
S^{1} \leftarrow S^{2} \leftarrow S^{1} \leftarrow 0
$$

\Longrightarrow Complete intersection

$$
S^{1} \leftarrow S^{2} \leftarrow S^{1} \leftarrow 0
$$

$$
S^{1} \leftarrow S^{6} \leftarrow S^{8} \leftarrow S^{3} \leftarrow 0
$$

\Longrightarrow Not complete intersection

$$
S^{1} \leftarrow S^{2} \leftarrow S^{1} \leftarrow 0
$$

\Longrightarrow Both are VCIs.

Generalized Bézout's Theorem

Theorem

Let $f, g \in k\left[x_{0}, x_{1}, y_{0}, y_{1}\right]$ be bihomogeneous forms. If f and g have multidegree (a, b) and (c, d), then $|V(f) \cap V(g)|=a d+b c$ counting multiplicities.

Generalized Bézout's Theorem

Theorem

Let $f, g \in k\left[x_{0}, x_{1}, y_{0}, y_{1}\right]$ be bihomogeneous forms. If f and g have multidegree (a, b) and (c, d), then $|V(f) \cap V(g)|=a d+b c$ counting multiplicities.

Red: $x_{0} y_{1}+x_{1} y_{0}:(1,1)$
Blue: $x_{0} y_{1}-x_{1} y_{0}:(1,1)$
$1 \cdot 1+1 \cdot 1=2$ points.

Red: $x_{0} x_{1}\left(y_{0}-y_{1}\right):(2,1)$
Blue: $\left(x_{0}-x_{1}\right) y_{0} y_{1}:(1,2)$
$1 \cdot 1+2 \cdot 2=5$ points.

Our Main Results

Let X be a set of points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

This is a VCI: each vertical ruling has 2 points.

- Existence Case: Same number of points on each ruling.
- Non existence case: Bound on $|X|$ and maximal rulings form cross.
- Further conditions on VCIs.

Our Main Results

Let X be a set of points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

A (4, 2, 1, 1)-Ferrers Diagram
$|X|=8$. We expect 16 points to have a VCI.

- Existence Case: Same number of points on each ruling.
- Non existence case: Bound on $|X|$ and maximal rulings form cross.
- Further conditions on VCIs.

Same Cardinality of Rulings

Theorem

If X has the same number (n) of points in each vertical (or each horizontal) ruling, it is a VCI.

- k vertical rulings each having n points $\Longrightarrow \operatorname{deg}(f)=(n, \leq n), \operatorname{deg}(g)=(0, k)$.
- Idea: Use Lagrangian interpolation

Same Cardinality of Rulings

Theorem

If X has the same number (n) of points in each vertical (or each horizontal) ruling, it is a VCI.

- k vertical rulings each having n points $\Longrightarrow \operatorname{deg}(f)=(n, \leq n), \operatorname{deg}(g)=(0, k)$.
- Idea: Use Lagrangian interpolation

Same Cardinality of Rulings

Theorem

If X has the same number (n) of points in each vertical (or each horizontal) ruling, it is a VCI.

- k vertical rulings each having n points $\Longrightarrow \operatorname{deg}(f)=(n, \leq n), \operatorname{deg}(g)=(0, k)$.
- Idea: Use Lagrangian interpolation

Degree Bound Lemma

Setup: $f:(a, b)$-form, $g:(c, d)$-form. Assume $X=V(f) \cap V(g)$. $\leq m$ points collinear horizontally, $\leq n$ vertically

Lemma

$\max (a, c) \geq m$ and $\max (b, d) \geq n$.
When $|X|<m n$, we must have $a \geq m, b \geq n$ (or $c \geq m, d \geq n$).

Degree Bound Lemma

Setup: $f:(a, b)$-form, $g:(c, d)$-form. Assume $X=V(f) \cap V(g)$. $\leq m$ points collinear horizontally, $\leq n$ vertically

Lemma

$$
\max (a, c) \geq m \text { and } \max (b, d) \geq n .
$$

$$
\text { When }|X|<m n \text {, we must have } a \geq m, b \geq n \text { (or } c \geq m, d \geq n \text {). }
$$

Two cases:

$$
\operatorname{deg}(f)=(\geq m, \geq n) \quad \operatorname{deg}(f)=(\geq m, ? \quad)
$$

$$
\operatorname{deg}(g)=(? \quad, \quad ?) \operatorname{deg}(g)=(? \quad, \geq n)
$$

Cross Point Condition

Theorem

If $|X|<m n$, and there is at least one point in X that is on a horizontal ruling with m points and a vertical ruling with n points, then X is not a VCI.

$$
n=4
$$

Cross Point Condition: Proof Sketch

Theorem

$|X|<m n$ and cross point exists \Longrightarrow not VCI.

- Assume $V(f) \cap V(g)=X$. By

Bézout, $|X|=a d+b c=7$.

- $a \geq m, b \geq n$.

Cross Point Condition: Proof Sketch

Theorem

$|X|<m n$ and cross point exists \Longrightarrow not VCI.

- Assume $V(f) \cap V(g)=X$. By

Bézout, $|X|=a d+b c=7$.

- $a \geq m, b \geq n$.
- $g=\left(x_{1}-\alpha x_{0}\right)\left(y_{1}-\beta y_{0}\right) g_{0}$.
- Suppose $\operatorname{deg}\left(g_{0}\right)=(p, q)$.
$\Longrightarrow \operatorname{deg}(g)=(t+p, s+q)$

Cross Point Condition: Proof Sketch

Theorem

$|X|<m n$ and cross point exists \Longrightarrow not VCI.

Cross Point Condition: Proof Sketch

Theorem

$|X|<m n$ and cross point exists \Longrightarrow not VCI.

- Assume $V(f) \cap V(g)=X$. By Bézout, $|X|=a d+b c=7$.
- $a \geq m, b \geq n$.
- $g=\left(x_{1}-\alpha x_{0}\right)\left(y_{1}-\beta y_{0}\right) g_{0}$.
- Suppose $\operatorname{deg}\left(g_{0}\right)=(p, q)$. $\Longrightarrow \operatorname{deg}(g)=(t+p, s+q)$
- $a(s+q)+b(t+p)=|X|$
$\leq m s+n t-1+a q+b p$

Cross Point Condition: Proof Sketch

Theorem

$|X|<m n$ and cross point exists \Longrightarrow not VCI.

Cross Point Condition: Proof Sketch

Theorem

$|X|<m n$ and cross point exists \Longrightarrow not VCI.

- Assume $V(f) \cap V(g)=X$. By Bézout, $|X|=a d+b c=7$.
- $a \geq m, b \geq n$.
- $g=\left(x_{1}-\alpha x_{0}\right)\left(y_{1}-\beta y_{0}\right) g_{0}$.
- Suppose $\operatorname{deg}\left(g_{0}\right)=(p, q)$.
$\Longrightarrow \operatorname{deg}(g)=(t+p, s+q)$
- $a s+b t \leq m s+n t-1$

Cross Point Condition: Proof Sketch

Theorem

$|X|<m n$ and cross point exists \Longrightarrow not VCI.

Conditions on VCIs

Setup: $f:(a, b)$-form, $g:(c, d)$-form.

m points collinear horizontally, $\leq n$ vertically

Theorem

Let X be a VCI with $|X|<m n$.

- f has degree (m, n) and g has vertical and horizontal components exactly on rulings with m and n points
- $\operatorname{gcd}(m, n)$ divides $|X|$
- If $\operatorname{gcd}(m, n)=1: g$ has degree:

$$
\left(n^{-1}|X| \quad \bmod m, \quad m^{-1}|X| \quad \bmod n\right)
$$

Conditions on VCIs

Setup: $f:(a, b)$-form, $g:(c, d)$-form.
$\leq m$ points collinear horizontally, $\leq n$ vertically

Theorem

If $|X|<m n: f$ has degree (m, n) and g has vertical and horizontal components exactly on rulings with m and n points

$$
m=5, n=4,|X|=18
$$

Conditions on VCIs

$$
\text { Setup: } f:(a, b) \text {-form, } g:(c, d) \text {-form. }
$$

$\leq m$ points collinear horizontally, $\leq n$ vertically

Theorem

If $|X|<m n: ~ f$ has degree (m, n) and g has vertical and horizontal components exactly on rulings with m and n points

$$
\begin{gathered}
m=5, n=4,|X|=18 \\
f \text { has degree }(5,4)
\end{gathered}
$$

Conditions on VCIs

Setup: $f:(a, b)$-form, $g:(c, d)$-form.
$\leq m$ points collinear horizontally, $\leq n$ vertically

Theorem

If $|X|<m n: f$ has degree (m, n) and g has vertical and horizontal components exactly on rulings with m and n points

$$
m=5, n=4,|X|=18
$$

$$
f \text { has degree }(5,4)
$$

g has one $(1,0)$ and one $(0,1)$ part

Conditions on VCIs

Setup: $f:(m, n)$-form, $g:(c, d)$-form.
$\leq m$ points collinear horizontally, $\leq n$ vertically

Theorem

If $|X|<m n: \operatorname{gcd}(m, n)$ divides $|X|$

- By Bézout and previous, $|X|=m d+c n$

Conditions on VCIs

Setup: $f:(a, b)$-form, $g:(c, d)$-form.
$\leq m$ points collinear horizontally, $\leq n$ vertically

Theorem

If $|X|<m n$ and $\operatorname{gcd}(m, n)=1 g$ has degree: $\left(n^{-1}|X| \bmod m, \quad m^{-1}|X| \bmod n\right)$

$$
m=4, n=3,|X|=10
$$

g would have degree $(2,1)$
Impossible, so not VCI

Results in Action

8 -point VCI

12-point VCI

If $|X|<m n, m=4, n=4$, the only VCI configurations are as shown:

- By Cross Point Condition, m and n points share no coordinates
- By GCD condition, $|X|$ is 8 or 12
- f has degree $(4,4)$ and g contains vertical and horizontal form
- If $|X|=12=4 c+4 d$, rest of g must be $(1,0)$ or $(0,1)$ form
- Each such form must have 4 points of X

When values of coordinates matter...

Remark

Configuration does not always determine whether a set of points is a VCI. For instance,

In general, not a VCI.

Red:(2,1); Blue:(2,2).

When values of coordinates matter...

Remark

Configuration does not always determine whether a set of points is a VCI. For instance,

In general, not a VCI.

Red:(2, 1); Blue:(2,2).

When values of coordinates matter...

Remark

Configuration does not always determine whether a set of points is a VCI. For instance,

In general, not a VCI.

Red:(2,1); Blue:(2, 2).

Conclusion

- In $\mathbb{P}^{\vec{n}}$, virtual resolutions better encode geometry.

Conclusion

- In $\mathbb{P}^{\vec{n}}$, virtual resolutions better encode geometry.
- Exists 1-2-1 virtual resolution \Longleftrightarrow VCI

Conclusion

- In $\mathbb{P}^{\vec{n}}$, virtual resolutions better encode geometry.
- Exists 1-2-1 virtual resolution \Longleftrightarrow VCI
- Our results:
(1) Same \# of points on each ruling \Longrightarrow VCI
(2) When $|X|<m n$, restrictions on what VCIs must look like
(3) Actual values of the coordinates can affect VCI, too.

Conclusion

- In $\mathbb{P}^{\vec{n}}$, virtual resolutions better encode geometry.
- Exists 1-2-1 virtual resolution \Longleftrightarrow VCI
- Our results:
(1) Same \# of points on each ruling \Longrightarrow VCI
(2) When $|X|<m n$, restrictions on what VCIs must look like
(3) Actual values of the coordinates can affect VCI, too.
- Future work:
(1) Continue Classification
(2) Methods for finding f and g

Acknowledgements

We would like to thank Christine and Mike for their continual guidance, support, and encouragement.
Thank you to the other mentors and TAs for their help in the REU and to the NSF for funding us.

