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The Projective Space Pn

Definition

A projective space Pn over the field C is the set of
one-dimensional subspaces of the vector space Cn+1.

• The coordinate ring of Pn is S = C[x0, x1, . . . , xn].

• Grading: Constants have degree 0. Each xi has degree 1.
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The Projective Space Pn

Definition

A projective space Pn over the field C is the set of
one-dimensional subspaces of the vector space Cn+1.

• The coordinate ring of Pn is S = C[x0, x1, . . . , xn].

• Grading: Constants have degree 0. Each xi has degree 1.

P1

O

[0 : 1] [1 : 1] [2 : 1] [3 : 1] [4 : 1]

Gao, Li, Mattoo VCIs in P1 × P1 3 / 25



Outline
Preliminaries

Determination of VCIs

Projective Space and Varieties
Free and Virtual Resolutions
Virtual Complete Intersections (VCIs)

The Projective Space Pn

Definition

A projective space Pn over the field C is the set of
one-dimensional subspaces of the vector space Cn+1.

• The coordinate ring of Pn is S = C[x0, x1, . . . , xn].

• Grading: Constants have degree 0. Each xi has degree 1.

Definition

A projective variety X ⊂ Pn is the zero locus of a collection of
homogeneous polynomials fα ∈ C[x0, x1, . . . , xn].
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The Biprojective Space P1 × P1

Definition

The biprojective space P1 × P1 is the set of equivalence classes:

P1 × P1 := {((a0, a1), (b0, b1)) ∈ C2 × C2
∣∣ (a0,a1)6=(0,0)
and (b0,b1) 6=(0,0)}/∼

x ∼ y ⇐⇒ x = λy, where x, y ∈ P1, λ ∈ C∗

• Varieties ↔ zero locus of bihomogenous f ∈ C[x0, x1, y0, y1]

• Multigrading: deg(xi) = (1, 0),deg(yi) = (0, 1)
ex. x20y0 + x1x2y1 has degree (2, 1).

• Irrelevant ideal: B = 〈x0, x1〉 ∩ 〈y0, y1〉 ↔ V (B) = ∅
• Saturation: I : B∞ = {s ∈ S|sBn ⊂ I for some n}
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The Nullstellensatz

The Nullstellensatz establishes a correspondence between ideals
and varieties:

Theorem

Let X be a non-empty variety with the coordinate ring S and
irrelevant ideal B. If I ⊆ S is a homogeneous ideal, then there
is an inclusion-reversing bijective correspondence:

{V (I) 6= ∅}
I
−→
←−
V
{radical homogeneous B-saturated ideals ⊂ S}

• V (I) := zero locus of all f ∈ I
• I(V (I)) =

√
I
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Varieties in P1 × P1

Definition

P1 × P1 := {((a0, a1), (b0, b1)) ∈ C2 × C2
∣∣(a0,a1)6=(0,0)
(b0,b1) 6=(0,0)}/∼

[1 : 0]

[1 : 0]

[0 : 1]

[0 : 1]

[1 : 1]

[1 : 1]

[1 : 2]

[1 : 2]

[1 : 3]

[1 : 3]

X = ([0 : 1], [0 : 1])

I = 〈x0, y0〉

∪([1 : 1], [1 : 1])

∩〈x0 − x1, y0 − y1〉
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Free Resolution

Definition

A free resolution of a module M is an exact sequence of
homomorphisms:

0←−M ϕ0←− F0
ϕ1←− F1

ϕ2←− F2 ←− · · · ,

• imϕi+1 = kerϕi at each step

• every Fi ∼= Rri is a free module
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Minimal Free Resolution

Definition

A free resolution is minimal if for every ` ≥ 1, the nonzero
entries of the graded matrix of ϕ` have positive degree.

• For each ` > 0, ϕ` takes the standard basis of F` to a
minimal generating set of im(ϕ`).

• Unique up to isomorphism.

• Depends on geometry of points (configuration/cross ratios)
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Virtual Resolution

Definition

A virtual resolution for an ideal I in the biprojective space
P1 × P1 is a free complex:

0←− I ϕ0←− S ϕ1←− F1
ϕ2←− F2

ϕ3←− · · ·

such that

• Fi are free modules for i ≥ 0

• ann
( ker(ϕi)
im(ϕi+1)

)
⊇ Bl

• im(ϕ1) : B∞ = I : B∞.
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Complete and Virtual Complete Intersection

• X is a complete intersection if I(X) has 2 generators.

V (x0x1)

V (y0y1)
X =


([0 : 1], [1 : 0]),
([1 : 0], [1 : 0]),
([0 : 1], [0 : 1]),
([1 : 0], [0 : 1])


=⇒ I(X) = 〈x0x1, y0y1〉

• Complete intersection ⇐⇒ min. free resolution is Koszul:
S1 ← S2 ← S1 ← 0

Definition

An ideal I of points in P1 × P1 is a virtual complete intersection
(VCI) if I has a short virtual resolution that is Koszul.
In particular, V (I) = V (f) ∩ V (g).
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VCI Examples

S1 ← S2 ← S1 ← 0
=⇒ Complete intersection

S1 ← S6 ← S8 ← S3 ← 0
=⇒ Not complete intersection
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VCI Examples

S1 ← S2 ← S1 ← 0
=⇒ Complete intersection

S1 ← S2 ← S1 ← 0

S1 ← S6 ← S8 ← S3 ← 0
=⇒ Not complete intersection

S1 ← S2 ← S1 ← 0

=⇒ Both are VCIs.
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Generalized Bézout’s Theorem

Theorem

Let f, g ∈ k[x0, x1, y0, y1] be bihomogeneous forms. If f and g
have multidegree (a, b) and (c, d), then |V (f) ∩ V (g)| = ad+ bc
counting multiplicities.

Red: x0y1 + x1y0: (1, 1)
Blue: x0y1 − x1y0: (1, 1)
1 · 1 + 1 · 1 = 2 points.

Red: x0x1(y0 − y1): (2, 1)
Blue:(x0 − x1)y0y1: (1, 2)

1 · 1 + 2 · 2 = 5 points.
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Our Main Results

Let X be a set of points in P1 × P1.

This is a VCI: each vertical
ruling has 2 points.

• Existence Case: Same
number of points on each
ruling.

• Non existence case: Bound
on |X| and maximal
rulings form cross.

• Further conditions on
VCIs.

Gao, Li, Mattoo VCIs in P1 × P1 13 / 25



Outline
Preliminaries

Determination of VCIs

Overview
VCI Existence Cases
VCI Non-Existence
Conditions on VCIs
Conclusion

Our Main Results

Let X be a set of points in P1 × P1.

A (4, 2, 1, 1)-Ferrers Diagram

|X| = 8. We expect 16
points to have a VCI.

• Existence Case: Same
number of points on each
ruling.

• Non existence case: Bound
on |X| and maximal
rulings form cross.

• Further conditions on
VCIs.
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Same Cardinality of Rulings

Theorem

If X has the same number (n) of points in each vertical (or
each horizontal) ruling, it is a VCI.

• k vertical rulings each having n points
=⇒ deg(f) = (n,≤ n), deg(g) = (0, k).

• Idea: Use Lagrangian interpolation

Gao, Li, Mattoo VCIs in P1 × P1 14 / 25
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Degree Bound Lemma

Setup: f : (a, b)-form, g: (c, d)-form. Assume X = V (f) ∩ V (g).

≤ m points collinear horizontally, ≤ n vertically

Lemma

max(a, c) ≥ m and max(b, d) ≥ n.
When |X| < mn, we must have a ≥ m, b ≥ n (or c ≥ m, d ≥ n).

n = 3

m = 4

Two cases:
deg(f) = (≥ m,≥ n)
deg(g) = ( ? , ? )

deg(f) = (≥ m, ? )
deg(g) = ( ? ,≥ n)

Gao, Li, Mattoo VCIs in P1 × P1 15 / 25
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Cross Point Condition

Theorem

If |X| < mn, and there is at least one point in X that is on a
horizontal ruling with m points and a vertical ruling with n
points, then X is not a VCI.

m = 3

n = 4

Gao, Li, Mattoo VCIs in P1 × P1 16 / 25
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Cross Point Condition: Proof Sketch

Theorem

|X| < mn and cross point exists =⇒ not VCI.

m = 3

n = 4

• Assume V (f) ∩ V (g) = X. By
Bézout, |X| = ad+ bc = 7.

• a ≥ m, b ≥ n.

• g = (x1 − αx0)(y1 − βy0)g0.
• Suppose deg(g0) = (p, q).

=⇒ deg(g) = (t+ p, s+ q)

•

Gao, Li, Mattoo VCIs in P1 × P1 17 / 25
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[1 : β]

[1 : α]
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• a ≥ m, b ≥ n.

• g = (x1 − αx0)(y1 − βy0)g0.
• Suppose deg(g0) = (p, q).

=⇒ deg(g) = (t+ p, s+ q)

• a(s+ q) + b(t+ p) = |X|
≤ ms+ nt− 1+aq + bp
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Bézout, |X| = ad+ bc = 7.

• a ≥ m, b ≥ n.

• g = (x1 − αx0)(y1 − βy0)g0.
• Suppose deg(g0) = (p, q).

=⇒ deg(g) = (t+ p, s+ q)

• a(s+ q) + b(t+ p) = |X|
≤ ms+ nt− 1+aq + bp

Gao, Li, Mattoo VCIs in P1 × P1 17 / 25



Outline
Preliminaries

Determination of VCIs

Overview
VCI Existence Cases
VCI Non-Existence
Conditions on VCIs
Conclusion

Cross Point Condition: Proof Sketch

Theorem

|X| < mn and cross point exists =⇒ not VCI.

s = 1

t = 1

[1 : β]

[1 : α]

• Assume V (f) ∩ V (g) = X. By
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Cross Point Condition: Proof Sketch

Theorem

|X| < mn and cross point exists =⇒ not VCI.

s = 1

t = 1

[1 : β]

[1 : α]

• Assume V (f) ∩ V (g) = X. By
Bézout, |X| = ad+ bc = 7.

• a ≥ m, b ≥ n.

• g = (x1 − αx0)(y1 − βy0)g0.
• Suppose deg(g0) = (p, q).

=⇒ deg(g) = (t+ p, s+ q)

• as+ bt ≤ ms+ nt− 1
=⇒ contradiction
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Conditions on VCIs

Setup: f : (a, b)-form, g: (c, d)-form.

≤ m points collinear horizontally, ≤ n vertically

Theorem

Let X be a VCI with |X| < mn.

• f has degree (m,n) and g has vertical and horizontal
components exactly on rulings with m and n points

• gcd(m,n) divides |X|
• If gcd(m,n) = 1: g has degree:

(n−1|X| mod m, m−1|X| mod n)

Gao, Li, Mattoo VCIs in P1 × P1 18 / 25
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Conditions on VCIs

Setup: f : (a, b)-form, g: (c, d)-form.

≤ m points collinear horizontally, ≤ n vertically

Theorem

If |X| < mn: f has degree (m,n) and g has vertical and
horizontal components exactly on rulings with m and n points

m = 5, n = 4, |X| = 18
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Conditions on VCIs

Setup: f : (a, b)-form, g: (c, d)-form.

≤ m points collinear horizontally, ≤ n vertically

Theorem

If |X| < mn: f has degree (m,n) and g has vertical and
horizontal components exactly on rulings with m and n points

m = 5, n = 4, |X| = 18
f has degree (5, 4)
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Conditions on VCIs

Setup: f : (a, b)-form, g: (c, d)-form.

≤ m points collinear horizontally, ≤ n vertically

Theorem

If |X| < mn: f has degree (m,n) and g has vertical and
horizontal components exactly on rulings with m and n points

m = 5, n = 4, |X| = 18
f has degree (5, 4)

g has one (1, 0) and one (0, 1) part
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Conditions on VCIs

Setup: f : (m,n)-form, g: (c, d)-form.

≤ m points collinear horizontally, ≤ n vertically

Theorem

If |X| < mn: gcd(m,n) divides |X|

• By Bézout and previous, |X| = md+ cn

m = 4,n = 4,|X| = 8
Can be VCI

m = 4,n = 4,|X| = 9
Can not be VCI
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Conditions on VCIs

Setup: f : (a, b)-form, g: (c, d)-form.

≤ m points collinear horizontally, ≤ n vertically

Theorem

If |X| < mn and gcd(m,n) = 1 g has degree:
(n−1|X| mod m, m−1|X| mod n)

m = 4, n = 3, |X| = 10
g would have degree (2,1)

Impossible, so not VCI
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Results in Action

8-point VCI

12-point VCI

If |X| < mn,m = 4, n = 4, the only
VCI configurations are as shown:

• By Cross Point Condition, m and
n points share no coordinates

• By GCD condition, |X| is 8 or 12

• f has degree (4, 4) and g contains
vertical and horizontal form

• If |X| = 12 = 4c+ 4d, rest of g
must be (1, 0) or (0, 1) form

• Each such form must have 4
points of X
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When values of coordinates matter...

Remark

Configuration does not always determine whether a set of
points is a VCI. For instance,

In general, not a VCI.

( 1
2
, 2)

( 1
3
, 3)

( 1
4
, 4)

(0, 0)

(0, 1), (1, 1)

Red:(2, 1); Blue:(2, 2).
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Conclusion

• In P~n, virtual resolutions better encode geometry.

• Exists 1-2-1 virtual resolution ⇐⇒ VCI

• Our results:

1 Same # of points on each ruling =⇒ VCI
2 When |X| < mn, restrictions on what VCIs must look like
3 Actual values of the coordinates can affect VCI, too.

• Future work:

1 Continue Classification
2 Methods for finding f and g
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