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Introduction

In this presentation, we explore algebraic monoids, their Hecke
algebras, and their representations.

We seek to produce analogous results from finite algebraic group
representation theory in the setting of algebraic monoids.

We focus on the representation theory of the rook monoid Rn and
the symplectic rook monoid RSp2n, and their Hecke algebras,
H(Rn) and H(RSp2n), respectively.
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Background on Monoids

Definition

A monoid is a semigroup (assoc. mult.) with identity.

Contained in every monoid, M , is a group of units (i.e., invertible
elements) G(M). By studying M, we gain valuable insight into the
action of G(M), informing its representation theory.

Definition

M is an algebraic monoid if it is a Zariski-closed subset of Matn(F ) for
some n 2 Z and F a field. Furthermore, M is reductive if G(M) is a
reductive group and M is an irreducible algebraic variety.

Problem 6 Group (UMN) Algebraic Monoids August 2, 2018 4 / 30



Background on Monoids

Definition

A monoid is a semigroup (assoc. mult.) with identity.

Contained in every monoid, M , is a group of units (i.e., invertible
elements) G(M). By studying M, we gain valuable insight into the
action of G(M), informing its representation theory.

Definition

M is an algebraic monoid if it is a Zariski-closed subset of Matn(F ) for
some n 2 Z and F a field. Furthermore, M is reductive if G(M) is a
reductive group and M is an irreducible algebraic variety.

Problem 6 Group (UMN) Algebraic Monoids August 2, 2018 4 / 30



Properties of reductive monoids

If M is reductive, G(M) has a Borel subgroup B, e.g. the invertible
upper triangular matrices in the case of Matn(F ).

Furthermore, M has a Renner decomposition as the disjoint union of
double cosets of B:

M =
G

r2R
BrB (1)

where R, the Renner monoid of M , encodes vital structural
information about M .

The group of units of R is the Weyl group of G(M). Furthermore, R
has the decomposition

R = G(R)E(T ) (2)

where E(T ) is a set of idempotents.
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Rook Monoid

The “Rook Monoid” is the Renner monoid of the algebraic monoid
Matn(F ).

Rn is realized as the set of all n⇥ n matrices with entries 0 and 1
such that each row and column has at most one nonzero entry.

We call this the Rook monoid because if we view the ones as
rooks, then this monoid is the set of all n⇥ n chessboard with at
most n non-attacking rooks.

Its unit group G(Rn) is isomorphic to the symmetric group, Sn.
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Rook Monoid Examples

Example
0

@
0 0 0
0 0 0
0 0 0

1

A ,

0

@
0 0 0
0 1 0
0 0 0

1

A ,

0

@
0 0 0
1 0 0
0 0 1

1

A ,

0

@
0 1 0
0 0 1
1 0 0

1

A 2 R3

Example (er... Non-example)
0

@
1 0 0
1 0 0
0 0 0

1

A ,

0

@
0 0 1
0 1 0
0 1 0

1

A ,

0

@
0 0 1
1 0 0
0 0 1

1

A ,

0

@
1 0 0
0 1 1
0 0 1

1

A 62 R3
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Symplectic Rook Monoid

Similarly, the symplectic Rook monoid is the Renner monoid for the
more complicated algebraic monoid whose unit group is the symplectic
group Sp2n(F ). Further, The Bn Weyl group embeds as G(RSp2n).

Nice presentation:

Theorem

RSp2n ⇠= {A 2 R2n | AJAT = 0 or J}, J =

0

BB@

0 . . . 0 1
0 . . . 1 0

. . . . . .
1 0 . . . 0

1

CCA
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Symplectic Rook Monoid Examples

Example

0

BB@

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

1

CCA ,

0

BB@

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1

CCA ,

0

BB@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCA ,

0

BB@

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

1

CCA 2 RSp4

Example (er... Non-example)

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA ,

0

BB@

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

CCA ,

0

BB@

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

1

CCA ,

0

BB@

1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 1

1

CCA 62 RSp4
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Representations of Monoids

Let M, N be monoids. A map ' : M ! N is a homomorphism of
monoids if the following hold:

For all mi 2 M , ⇡(m1m2) = ⇡(m1)⇡(m2).

For eM , eN the identity elements of M and N respectively,
⇡(eM ) = eN .

Let V be a vector space over k. A morphism ⇡ : M ! Endk(V ) is
called a representation of M. We denote representations as the pair
(⇡, V ).

A representation is irreducible if it has no proper subrepresentations.

If V is finite dimensional, we define the character � : M ! k of ⇡ as
the function defined by �(m) = tr(⇡(m)) for all m 2 M .
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Induced Representations

Let N be a submonoid of M and (⇡, V ) a representation of N. We have
that (⇡, V ) induces a representation (IndMN ⇡, IndMN V ) of M. Define

IndMN V = {f : M ! V | f(nm) = ⇡(n)f(m)} 8n 2 N,m 2 M

(IndMN ⇡)(m)f(x) = f(xm) 8x, m 2 M .

We proved that the following result holds in the case of monoids:

Frobenius Reciprocity for finite monoids

If N is a submonoid of M, (⇡, V ) a representation of N, and (�,W ) a
representation of M, then

HomM (IndMN V,W ) ⇠= HomN (V,W ) (3)

as vector spaces over F
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Rook Monoid Representations [Solomon, 2002]

The irreducible representations of Rn are indexed by partitions of
at most n.

Further, these representations are derived from representations of
Sk for k 2 {0, . . . , n}.

Let � be a partition of k, and let V � be the corresponding
irreducible representation of Sk.

I There exists an irreducible representation W� of Rn.
I dim(W�) =

�n
k

�
dim(V �)

We note that “conjugacy classes” of the monoid are also indexed
by partitions of at most n.

It turns out the character table of any Renner monoid is block
upper triangular, when the representations are the columns and
conjugacy classes are the rows.
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Character Table of Rn

Let Chk be the character table of Sk. Then define Yn to be the
following block diagonal matrix:

Yn =

0

BBBB@

Chn
Chn�1

. . .
Ch1

Ch0

1

CCCCA

Let Mn be the character table of Rn. Solomon found explicit
descriptions of the matrices A and B such that

Mn = AYn = YnB (4)

The A matrix comes from combinatorics of cycle structures.

The B matrix comes from the Pieri rules for induced representations.
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Pieri Rules and Induced Representations

Our motivation in this section comes from restricting our monoid
representations to their corresponding group of units. Using
[Solomon, 2002] and [Li et al., 2008], we obtain the following result:

Theorem
Let Wn be a Weyl group of type An, Bn, Cn, or Dn, with corresponding
Renner monoids RWn. Let � be a character of Sr, and �⇤ the
associated character of Wn. Then

�⇤
|Wn = IndWn

Sk⇥Wn�k
(�⌦ ⌘n�k)

In particular, when the Weyl group is An, the above restriction
produces the well-known Pieri rules. From this result, we can now
describe the B matrix as Solomon does.

Problem 6 Group (UMN) Algebraic Monoids August 2, 2018 14 / 30



B matrix for Rn

Let � and µ index partitions of at most n. Recall that the rows and
columns were also indexed by partitions. Thus, we can describe the B
matrix entries by the partitions. Solomon finds the B matrix to be:

B�,µ =

(
1, if �� µ is a horizontal strip

0, otherwise

This comes exactly from the Pieri rules for type A found in
[Geck et al., 2000].
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Example from R3 Character Table

M3 =

0

BBBBBBBB@

1 2 1 3 3 3 1
1 0 �1 1 �1 1 1
1 �1 1 0 0 0 1
0 0 0 1 1 2 1
0 0 0 1 �1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1

1

CCCCCCCCA

Y3B3 =

0

BBBBBBBB@

1 2 1 0 0 0 0
1 0 �1 0 0 0 0
1 �1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 1 �1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1

CCCCCCCCA

0

BBBBBBBB@

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 0 0
0 0 0 1 0 1 1
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

1

CCCCCCCCA
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Symplectic Rook Monoid Representations

Similar story in the Symplectic Rook monoid case.

The irreducible representations of RSp2n are indexed by pairs of
partitions, (�, µ), such that |�|+ |µ| = n, as well as partitions, ⌫,
of {0, . . . , n}.

The representations are derived from representations of Bn and Sk.

Let (�, µ) be as above, and let V (�,µ) be the corresponding
irreducible representation of Bn.

I There exists an irreducible representation W (�,µ) of RSp2n.

Let ⌫ be as above, and let V ⌫ be the corresponding irreducible
representation of Sk.

I There exists an irreducible representation W ⌫ of RSp2n.
I dim(W ⌫) = 2k

�n
k

�
dim(V ⌫)

We note that “conjugacy classes” of the monoid are also indexed
by partitions of at most n and pairs of partitions whose sum is n.
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Character Table of RSp2n

Let Xn be the character table of Bn, and let Chk be the character
table of Sk. Then define Yn to be the following block diagonal matrix:

Yn =

0

BBBBBB@

Xn

Chn
Chn�1

. . .
Ch1

Ch0

1

CCCCCCA

Let CRSp2n be the character table of RSp2n. In the spirit of Solomon,
we derive explicit descriptions of the matrices A and B such that

CRSp2n = AYn = YnB (5)

The A matrix comes from combinatorics of cycle structures.

The B matrix comes from the Pieri rules for induced representations.
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B matrix for RSp2n

We determine the character table to be the following:

CRSp2n =


Xn ⇤

0 Mn

�
(6)

We are able to determine the B matrix in a similar way to the rook
matrix. In particular:

B =


Id P
0 B⇤

�
(7)

where B⇤ is the B matrix for Rn, and P comes from Pieri rules in the
type B case.
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Pieri Coe�cients for type B

Theorem
Let ⌫ ` k index a representation of Sk. Then,

IndBn
Sk⇥Bn�k

(�⌫ ⇥ ⌘n�k) =
X

�,µ
�+µ`n

0

BBBB@

X

�
��� is

n�k horiz. strip

c⌫�,µ

1

CCCCA
��,µ (8)

The coe�cients obtained from the above formula are the numbers in
the P matrix on the previous slide.
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What the Hecke?

It turns out, we can form Hecke algebras from Rn and RSp2n.
H(Rn)

I Representations of H(Rn) are described by [Halverson, 2004].
I The character table is described in [Dieng et al., 2003].
I We show that the character table can be decomposed into

Mn = YnB (9)

where Yn is a block diagonal matrix with Hecke algebra character
table blocks, and B is the same B matrix we computed for Rn.

H(RSp2n)
I Representations have not been described before.
I We give a first description of the character table.
I We show that the character table can be decomposed into

M2n = YnB (10)

where Yn is a block diagonal matrix with Hecke algebra character
table blocks, and B is the same B matrix we computed for RSp2n.
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The Iwahori-Hecke algebra of a reductive monoid

Let M be a reductive monoid over a finite field F . Recall that M unit
group G(M), Borel subgroup B, and Renner monoid R.

Definition

The Hecke algebra H(M,B) over C is the algebra

H(M,B) = {f : M ! C | f(b1xb2) = f(x) 8b1, b2 2 B, x 2 M} (11)

under addition and convolution of functions, with convolution given by

(f ⇤ g)(x) =
X

yz=x

f(y)g(z). (12)
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Properties of Hecke algebras

The Hecke algebra of a monoid has a basis over C given by, for all
r 2 R, 1BrB defined to be the characteristic function of the double
coset of r.

Let M be a reductive monoid with Renner monoid R. Then
H(M,B) ⇠= C[R] as C-algebras.
Let (⇡, V ) be a representation of M. Then V has a
H(M,B)-module structure under the following action: for
f 2 H(M,B),

⇡(f)v =
X

x2M
f(x)⇡(x)v (13)

Let V B = {v 2 V | ⇡(b)v = v 8b 2 B} be the space of vectors fixed
pointwise by a Borel subgroup. The Hecke algebra of an algebraic
monoid M encodes information about representations of M with
V B nonzero.
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The Borel-Matsumoto Theorem

The Borel-Matsumoto theorem for finite monoids

Let (⇡, V ) be an irreducible representation of M with V B
6= {0}.

Then V B is irreducible as an H(M,B)-module.

If (⇡, V ) and (�,W ) are two irreducible representations of M with
V B and WB nonzero and isomorphic as H(M,B)-modules, then
(⇡, V ) ⇠= (�,W ).

The Borel-Matsumoto theorem allows us to reduce questions about
representations of our algebraic monoid M with V B nonzero to
questions about the representations of H(M,B).

Since H(M,B) ⇠= C[R] for R, the Renner monoid of M, its
representation theory is markedly simpler than that of M itself.

In theory, we could use H(M,B) to classify irreducible representations
of M with V B nonzero.
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Further Questions

How do representations of R2n restrict to RSp2n?

What does this process look like for type D Renner monoids?

Can we construct the irreducible representations of a reductive
monoid M with V B nonzero guaranteed by the Borel-Matsumoto
theorem?

Is there a Deligne-Lusztig theory for finite monoids of Lie type?

Is there a Borel-Matsumoto theorem for p-adic reductive monoids?

Does the comparatively simple geometry of algebraic monoids help
us with their representation theory?

What other aspects of the theory of group Hecke algebras hold in
the case of monoid Hecke algebras?
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Questions

Any questions?
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