Algebraic Monoids and Their Hecke Algebras

Jared Marx-Kuo, Vaughan McDonald, John M. O'Brien, & Alexander Vetter

University of Minnesota REU in Algebraic Combinatorics

August 2, 2018

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 1 / 30

Outline

1	IntroductionBackground on MonoidsExamples of Renner Monoids
2	Monoid Representation TheoryDefinitionsInduced Representations
3	Representations of Renner Monoids Rook Monoid Representations Symplectic Rook Monoid Representations
4	Hecke algebras of monoidsThe Borel-Matsumoto theorem for finite monoids
5	References

 $Problem \ 6 \ Group \ (UMN)$

Algebraic Monoids

August 2, 2018 2 / 30

Introduction

- In this presentation, we explore algebraic monoids, their Hecke algebras, and their representations.
- We seek to produce analogous results from finite algebraic group representation theory in the setting of algebraic monoids.
- We focus on the representation theory of the rook monoid R_n and the symplectic rook monoid RSp_{2n} , and their Hecke algebras, $\mathcal{H}(R_n)$ and $\mathcal{H}(RSp_{2n})$, respectively.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 3 / 30

Background on Monoids

Definition

A <u>monoid</u> is a semigroup (assoc. mult.) with identity.

Contained in every monoid, M, is a group of units (i.e., invertible elements) G(M). By studying M, we gain valuable insight into the action of G(M), informing its representation theory.

Algebraic Monoids

August 2, 2018 4 / 30

Background on Monoids

Definition

A <u>monoid</u> is a semigroup (assoc. mult.) with identity.

Contained in every monoid, M, is a group of units (i.e., invertible elements) G(M). By studying M, we gain valuable insight into the action of G(M), informing its representation theory.

Definition

M is an algebraic monoid if it is a Zariski-closed subset of $Mat_n(F)$ for some $n \in \mathbb{Z}$ and F a field. Furthermore, M is <u>reductive</u> if G(M) is a reductive group and M is an irreducible algebraic variety.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 4 / 30

Properties of reductive monoids

If M is reductive, G(M) has a Borel subgroup B, e.g. the invertible upper triangular matrices in the case of $Mat_n(F)$.

Furthermore, M has a Renner decomposition as the disjoint union of double cosets of B:

$$M = \bigsqcup_{r \in R} B \underline{r} B \tag{1}$$

where R, the <u>Renner monoid</u> of M, encodes vital structural information about M.

The group of units of R is the Weyl group of G(M). Furthermore, R has the decomposition

$$R = G(R)E(\overline{T}) \tag{2}$$

where $E(\overline{T})$ is a set of idempotents.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 5 / 30

Rook Monoid

The "Rook Monoid" is the Renner monoid of the algebraic monoid $Mat_n(F)$.

- R_n is realized as the set of all $n \times n$ matrices with entries 0 and 1 such that each row and column has at most one nonzero entry.
- We call this the Rook monoid because if we view the ones as rooks, then this monoid is the set of all $n \times n$ chessboard with at most n non-attacking rooks.
- Its unit group $G(R_n)$ is isomorphic to the symmetric group, S_n .

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 6 / 30

Rook Monoid Examples

Example

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \in R_3$$

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 7 / 30

Rook Monoid Examples

Example

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \in R_3$$

Example (er... Non-example)

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \notin R_3$$

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 7 / 30

Symplectic Rook Monoid

Similarly, the symplectic Rook monoid is the Renner monoid for the more complicated algebraic monoid whose unit group is the symplectic group $\operatorname{Sp}_{2n}(F)$. Further, The B_n Weyl group embeds as $G(RSp_{2n})$.

Nice presentation:

Theorem $RSp_{2n} \cong \{A \in R_{2n} \mid AJA^T = 0 \text{ or } J\}, \quad J = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 0 & \dots & 1 & 0 \\ \dots & \dots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}$

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 8 / 30

Symplectic Rook Monoid Examples

Exa	mp	le																	
$\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$	$0\\1\\0\\0$	$0 \\ 0 \\ 1 \\ 0$	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,	$\begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}$	0 1 0 0	0 0 0 0	$\begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}$,	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	0 0 0 0	0 0 0 0	$\begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}$,	$\begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}$	0 0 0 0	0 0 1 0	$\begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}$	$\in RSp_4$

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 9 / 30

Symplectic Rook Monoid Examples

Example	Exampl	e
---------	--------	---

/0	0	0	1		/1	0	0	0		/1	0	0	0		/0	0	0	(
0	1	0	0		0	1	0	0		0	0	0	0		0	0	0	(
0	0	1	0	,	0	0	0	0	,	0	0	0	0	,	0	0	1	(
$\backslash 1$	0	0	0/		$\setminus 0$	0	0	0/		$\sqrt{0}$	0	0	0/		$\left(0 \right)$	0	0	(

Example (er... Non-example)

/1	0	0	0		/0	0	0	0		0	0	0	1		/1	0	0	0	
0	1	0	0		0	0	1	0		0	0	0	0		0	0	0	1	d DC.
0	0	0	1	,	0	1	0	0	,	0	0	0	0	,	0	1	0	0	$\notin RSp_4$
$\setminus 0$	0	1	0/		$\setminus 0$	0	0	1		$\backslash 1$	0	0	0/		$\setminus 0$	0	0	1/	

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 9 / 30

 $\in RSp_4$

Representations of Monoids

Let M, N be monoids. A map $\varphi: M \to N$ is a homomorphism of monoids if the following hold:

- For all $m_i \in M$, $\pi(m_1m_2) = \pi(m_1)\pi(m_2)$.
- For e_M, e_N the identity elements of M and N respectively, $\pi(e_M) = e_N$.

Let V be a vector space over k. A morphism $\pi: M \to End_k(V)$ is called a representation of M. We denote representations as the pair (π, V) .

A representation is <u>irreducible</u> if it has no proper subrepresentations.

If V is finite dimensional, we define the <u>character</u> $\chi : M \to k$ of π as the function defined by $\chi(m) = tr(\pi(m))$ for all $m \in M$.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 10 / 30

Induced Representations

Let N be a submonoid of M and (π, V) a representation of N. We have that (π, V) induces a representation $(\operatorname{Ind}_N^M \pi, \operatorname{Ind}_N^M V)$ of M. Define

•
$$\operatorname{Ind}_{N}^{M}V = \{f: M \to V \mid f(nm) = \pi(n)f(m)\} \quad \forall n \in N, m \in M$$

• $(\operatorname{Ind}_{N}^{M}\pi)(m)f(x) = f(xm) \quad \forall x, m \in M.$

We proved that the following result holds in the case of monoids:

Frobenius Reciprocity for finite monoids

If N is a submonoid of M, (π, V) a representation of N, and (σ, W) a representation of M, then

$$\operatorname{Hom}_{M}(\operatorname{Ind}_{N}^{M}V, W) \cong \operatorname{Hom}_{N}(V, W)$$
(3)

as vector spaces over F

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 11 / 30

Rook Monoid Representations [Solomon, 2002]

- The irreducible representations of R_n are indexed by partitions of at most n.
- Further, these representations are derived from representations of S_k for $k \in \{0, \ldots, n\}$.
- Let λ be a partition of k, and let V^{λ} be the corresponding irreducible representation of S_k .
 - There exists an irreducible representation W^{λ} of R_n .
 - $\blacktriangleright \ dim(W^{\lambda}) = \binom{n}{k} dim(V^{\lambda})$

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 12 / 30

Rook Monoid Representations [Solomon, 2002]

- The irreducible representations of R_n are indexed by partitions of at most n.
- Further, these representations are derived from representations of S_k for $k \in \{0, \ldots, n\}$.
- Let λ be a partition of k, and let V^{λ} be the corresponding irreducible representation of S_k .
 - There exists an irreducible representation W^{λ} of R_n .

•
$$dim(W^{\lambda}) = \binom{n}{k} dim(V^{\lambda})$$

- We note that "conjugacy classes" of the monoid are also indexed by partitions of at most *n*.
- It turns out the character table of any Renner monoid is block upper triangular, when the representations are the columns and conjugacy classes are the rows.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 12 / 30

Character Table of R_n

Let Ch_k be the character table of S_k . Then define Y_n to be the following block diagonal matrix:

$$Y_n = \begin{pmatrix} Ch_n & & \\ & Ch_{n-1} & \\ & & \dots & \\ & & & Ch_1 \\ & & & & Ch_0 \end{pmatrix}$$

Let M_n be the character table of R_n . Solomon found explicit descriptions of the matrices A and B such that

$$M_n = AY_n = Y_n B \tag{4}$$

The A matrix comes from combinatorics of cycle structures.

The B matrix comes from the Pieri rules for induced representations.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 13 / 30

Pieri Rules and Induced Representations

Our motivation in this section comes from restricting our monoid representations to their corresponding group of units. Using [Solomon, 2002] and [Li et al., 2008], we obtain the following result:

Theorem

Let W_n be a Weyl group of type A_n, B_n, C_n , or D_n , with corresponding Renner monoids RW_n . Let χ be a character of S_r , and χ^* the associated character of W_n . Then

 $\chi^*|_{W_n} = \operatorname{Ind}_{S_k \times W_{n-k}}^{W_n} (\chi \otimes \eta_{n-k})$

In particular, when the Weyl group is A_n , the above restriction produces the well-known Pieri rules. From this result, we can now describe the *B* matrix as Solomon does.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 14 / 30

B matrix for R_n

Let λ and μ index partitions of at most n. Recall that the rows and columns were also indexed by partitions. Thus, we can describe the B matrix entries by the partitions. Solomon finds the B matrix to be:

$$B_{\lambda,\mu} = \begin{cases} 1, & \text{if } \lambda - \mu \text{ is a horizontal strip} \\ 0, & \text{otherwise} \end{cases}$$

This comes exactly from the Pieri rules for type A found in [Geck et al., 2000].

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 15 / 30

Example from R_3 Character Table

$$Y_{3}B_{3} = \begin{pmatrix} 1 & 2 & 1 & 3 & 3 & 3 & 1 \\ 1 & 0 & -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 16 / 30

Symplectic Rook Monoid Representations

- Similar story in the Symplectic Rook monoid case.
- The irreducible representations of RSp_{2n} are indexed by pairs of partitions, (λ, μ), such that |λ| + |μ| = n, as well as partitions, ν, of {0,...,n}.
- The representations are derived from representations of B_n and S_k .

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 17 / 30

Symplectic Rook Monoid Representations

- Similar story in the Symplectic Rook monoid case.
- The irreducible representations of RSp_{2n} are indexed by pairs of partitions, (λ, μ), such that |λ| + |μ| = n, as well as partitions, ν, of {0,...,n}.
- The representations are derived from representations of B_n and S_k .
- Let (λ, μ) be as above, and let $V^{(\lambda,\mu)}$ be the corresponding irreducible representation of B_n .
 - There exists an irreducible representation $W^{(\lambda,\mu)}$ of RSp_{2n} .
- Let ν be as above, and let V^{ν} be the corresponding irreducible representation of S_k .
 - There exists an irreducible representation W^{ν} of RSp_{2n} .
 - $dim(W^{\nu}) = 2^k \binom{n}{k} dim(V^{\nu})$
- We note that "conjugacy classes" of the monoid are also indexed by partitions of at most *n* and pairs of partitions whose sum is *n*.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 17 / 30

Character Table of RSp_{2n}

Let X_n be the character table of B_n , and let Ch_k be the character table of S_k . Then define Y_n to be the following block diagonal matrix:

$$Y_{n} = \begin{pmatrix} X_{n} & & & \\ & Ch_{n} & & & \\ & & Ch_{n-1} & & \\ & & & & \ddots & \\ & & & & Ch_{1} & \\ & & & & & Ch_{0} \end{pmatrix}$$

Let $CRSp_{2n}$ be the character table of RSp_{2n} . In the spirit of Solomon, we derive explicit descriptions of the matrices A and B such that

$$CRSp_{2n} = AY_n = Y_nB \tag{5}$$

The A matrix comes from combinatorics of cycle structures.

The B matrix comes from the Pieri rules for induced representations.

Problem 6 Group (UMN)Algebraic MonoidsAugust 2, 201818 / 30

B matrix for RSp_{2n}

We determine the character table to be the following:

$$CRSp_{2n} = \begin{bmatrix} X_n & * \\ 0 & M_n \end{bmatrix}$$
(6)

We are able to determine the B matrix in a similar way to the rook matrix. In particular:

$$B = \begin{bmatrix} Id & P \\ 0 & B^* \end{bmatrix}$$
(7)

where B^* is the B matrix for R_n , and P comes from Pieri rules in the type B case.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 19 / 30

Pieri Coefficients for type B

Theorem
Let
$$\nu \vdash k$$
 index a representation of S_k . Then,

$$\operatorname{Ind}_{S_k \times B_{n-k}}^{B_n}(\chi_{\nu} \boxtimes \eta_{n-k}) = \sum_{\substack{\gamma, \mu \\ \gamma + \mu \vdash n}} \left(\sum_{\substack{\lambda \\ \gamma - \lambda \text{ is } \\ n-k \text{ horiz. strip}}} c_{\lambda, \mu}^{\nu} \right) \chi_{\gamma, \mu}$$
(8)

The coefficients obtained from the above formula are the numbers in the P matrix on the previous slide.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 20 / 30

What the Hecke?

- It turns out, we can form Hecke algebras from R_n and RSp_{2n} .
- $\mathcal{H}(R_n)$
 - Representations of $\mathcal{H}(R_n)$ are described by [Halverson, 2004].
 - ▶ The character table is described in [Dieng et al., 2003].
 - We show that the character table can be decomposed into

$$\mathcal{M}_n = Y_n B \tag{9}$$

where Y_n is a block diagonal matrix with Hecke algebra character table blocks, and B is the same B matrix we computed for R_n .

Algebraic Monoids

August 2, 2018 21 / 30

What the Hecke?

- It turns out, we can form Hecke algebras from R_n and RSp_{2n} .
- $\mathcal{H}(R_n)$
 - Representations of $\mathcal{H}(R_n)$ are described by [Halverson, 2004].
 - ▶ The character table is described in [Dieng et al., 2003].
 - We show that the character table can be decomposed into

$$\mathcal{M}_n = Y_n B \tag{9}$$

where Y_n is a block diagonal matrix with Hecke algebra character table blocks, and B is the same B matrix we computed for R_n .

- $\mathcal{H}(RSp_{2n})$
 - Representations have not been described before.
 - We give a first description of the character table.
 - We show that the character table can be decomposed into

$$\mathcal{M}_{2n} = Y_n B \tag{10}$$

where Y_n is a block diagonal matrix with Hecke algebra character table blocks, and B is the same B matrix we computed for RSp_{2n} .

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 21 / 30

The Iwahori-Hecke algebra of a reductive monoid

Let M be a reductive monoid over a finite field F. Recall that M unit group G(M), Borel subgroup B, and Renner monoid R.

Definition

The **Hecke algebra** $\mathcal{H}(M, B)$ over \mathbb{C} is the algebra

$$\mathcal{H}(M,B) = \{ f: M \to \mathbb{C} \mid f(b_1 x b_2) = f(x) \ \forall b_1, b_2 \in B, \ x \in M \}$$
(11)

under addition and convolution of functions, with convolution given by

$$(f * g)(x) = \sum_{yz=x} f(y)g(z).$$
 (12)

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 22 / 30

Properties of Hecke algebras

- The Hecke algebra of a monoid has a basis over \mathbb{C} given by, for all $r \in R$, $1_{B\underline{r}B}$ defined to be the characteristic function of the double coset of \underline{r} .
- Let M be a reductive monoid with Renner monoid R. Then $\mathcal{H}(M,B) \cong \mathbb{C}[R]$ as \mathbb{C} -algebras.
- Let (π, V) be a representation of M. Then V has a $\mathcal{H}(M, B)$ -module structure under the following action: for $f \in \mathcal{H}(M, B)$,

$$\pi(f)v = \sum_{x \in M} f(x)\pi(x)v \tag{13}$$

• Let $V^B = \{v \in V \mid \pi(b)v = v \forall b \in B\}$ be the space of vectors fixed pointwise by a Borel subgroup. The Hecke algebra of an algebraic monoid M encodes information about representations of M with V^B nonzero.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 23 / 30

The Borel-Matsumoto Theorem

The Borel-Matsumoto theorem for finite monoids

- Let (π, V) be an irreducible representation of M with $V^B \neq \{0\}$. Then V^B is irreducible as an $\mathcal{H}(M, B)$ -module.
- If (π, V) and (σ, W) are two irreducible representations of M with V^B and W^B nonzero and isomorphic as $\mathcal{H}(M, B)$ -modules, then $(\pi, V) \cong (\sigma, W)$.

The Borel-Matsumoto theorem allows us to reduce questions about representations of our algebraic monoid M with V^B nonzero to questions about the representations of $\mathcal{H}(M, B)$.

Since $\mathcal{H}(M, B) \cong \mathbb{C}[R]$ for R, the Renner monoid of M, its representation theory is markedly simpler than that of M itself.

In theory, we could use $\mathcal{H}(M, B)$ to classify irreducible representations of M with V^B nonzero.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 24 / 30

Further Questions

- How do representations of R_{2n} restrict to RSp_{2n} ?
- What does this process look like for type D Renner monoids?
- Can we construct the irreducible representations of a reductive monoid M with V^B nonzero guaranteed by the Borel-Matsumoto theorem?
- Is there a Deligne-Lusztig theory for finite monoids of Lie type?
- Is there a Borel-Matsumoto theorem for p-adic reductive monoids?
- Does the comparatively simple geometry of algebraic monoids help us with their representation theory?
- What other aspects of the theory of group Hecke algebras hold in the case of monoid Hecke algebras?

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 25 / 30

References I

Bump, D. (2011). Hecke algebras.

- Dieng, M., Halverson, T., and Poladian, V. (2003). Character formulas for q-rook monoid algebras. Journal of Algebraic Combinatorics, 17(2):99–123.
- Geck, M., Pfeiffer, G., et al. (2000).
 Characters of finite Coxeter groups and Iwahori-Hecke algebras.
 Number 21. Oxford University Press.

Godelle, E. (2010). Generic hecke algebra for renner monoids.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 26 / 30

References II

Gondran, M. and Minoux, M. (2008). Graphs, dioids and semirings: new models and algorithms, volume 41. Springer Science & Business Media. Halverson, T. (2004). Representations of the q-rook monoid. Journal of Algebra, 273(1):227 – 251. Li, Z., Li, Z., and Cao, Y. (2008). Representations of the symplectic rook monoid. International Journal of Algebra and Computation, 18(05):837–852. Solomon, L. (1995). An introduction to reductive monoids. NATO ASI Series C Mathematical and Physical Sciences-Advanced Study Institute, 466:295–352.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 27 / 30

References III

Solomon, L. (2002). Representations of the rook monoid. Journal of Algebra, 256(2):309–342.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 28 / 30

Acknowledgements

Special thanks to our mentor Dr. Ben Brubaker and TA Andy Hardt for guiding us on this project.

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018 29 / 30

Questions

Any questions?

Problem 6 Group (UMN)

Algebraic Monoids

August 2, 2018

30 / 30